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Preface

Audience

This book has been written to serve the mathematical needs of students engaged in a
first course in engineering or technology at degree level. Students of a very wide
range of these programmes will find that the book contains the mathematical
methods they will meet in a first-year course in most UK universities. So the book
will satisfy the needs of students of aeronautical, automotive, chemical, civil,
electronic and electrical, systems, mechanical, manufacturing, and production
engineering, and other technological fields. Care has been taken to include illustra-
tive examples from these disciplines where appropriate.

Aims

There are two main aims of this book.
Firstly, we wish to provide a readable, accessible and student-friendly introduc-

tion to mathematics for engineers and technologists at degree level. Great care has
been taken with explanations of difficult concepts, and wherever possible statements
are made in everyday language, as well as symbolically. It is the use of symbolic
notation that seems to cause many students problems, and we hope that we have
gone a long way to alleviate such problems.

Secondly, we wish to develop in the reader the confidence and competence to
handle mathematical methods relevant to engineering and technology through an
interactive approach to learning. You will find that the book encourages you to take
an active part in the learning process – this is an essential ingredient in the learning
of mathematics.
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Preface xvii

The structure of this book

The book has been divided into 24 chapters. Each chapter is subdivided into a unit
called a block. A block is intended to be a self-contained unit of study. Each block
has a brief introduction to the material in it, followed by explanations, examples and
applications. Important results and key points are highlighted. Many of the examples
require you to participate in the problem-solving process, so you will need to have
pens or pencils, scrap paper and a scientific calculator to hand. We say more about
this aspect below. Solutions to these examples are all given alongside.

Each block also contains a number of practice exercises, and the solutions to these
are placed immediately afterwards. This avoids the need for searching at the back of
the book for solutions. A further set of exercises appears at the end of each block.

At the end of each chapter you will find end of chapter exercises, which are
designed to consolidate and draw together techniques from all the blocks within the
chapter.

Some sections contain computer or calculator exercises. These are denoted by the
computer icon. It is not essential that these are attempted, but those of you with
access to graphical calculators or computer software can see how these modern
technologies can be used to speed up long and complicated calculations.

Learning mathematics

In mathematics almost all early building blocks are required in advanced work. New
ideas are usually built upon existing ones. This means that, if some early topics are
not adequately mastered, difficulties are almost certain to arise later on. For example,
if you have not mastered the arithmetic of fractions, then you will find some aspects
of algebra confusing. Without a firm grasp of algebra you will not be able to perform
the techniques of calculus, and so on. It is therefore essential to try to master the full
range of topics in your mathematics course and to remedy deficiencies in your prior
knowledge.

Learning mathematics requires you to participate actively in the learning process.
This means that in order to get a sound understanding of any mathematical topic it is
essential that you actually perform the calculations yourself. You cannot learn math-
ematics by being a spectator. You must use your brain to solve the problem, and you
must write out the solution. These are essential parts of the learning process. It is not
sufficient to watch someone else solve a similar problem, or to read a solution in a
book, although these things of course can help. The test of real understanding and
skill is whether or not you can do the necessary work on your own.

How to use this book

This book contains hundreds of fully worked examples. When studying such an
example, read it through carefully and ensure you understand each stage of the
calculation.

A central feature of the book is the use of interactive examples that require the
reader to participate actively in the learning process. These examples are indicated
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by the pencil icon. Make sure you have to hand scrap paper, pens or pencils and a
calculator. Interactive examples contain ‘empty boxes’ and ‘completed boxes’. An
empty box indicates that a calculation needs to be performed by you. The corres-
ponding completed box on the right of the page contains the calculation you should
have performed. When working through an interactive example, cover up the com-
pleted boxes, perform a calculation when prompted by an empty box, and then
compare your work with that contained in the completed box. Continue in this way
through the entire example. Interactive examples provide some help and structure
while also allowing you to test your understanding.

Sets of exercises are provided regularly throughout most blocks. Try these exer-
cises, always remembering to check your answers with those provided. Practice
enhances understanding, reinforces the techniques, and aids memory. Carrying out a
large number of exercises allows you to experience a greater variety of problems,
thus building your expertise and developing confidence.

Content

The content of the book reflects that taught to first-year engineering and technology
students in the majority of UK universities. However, particular care has been taken
to develop algebraic skills from first principles and to give students plenty of oppor-
tunity to practise using these. It is our firm belief, based on recent experience of
teaching engineering undergraduates, that many will benefit from this material
because they have had insufficient opportunity in their previous mathematical edu-
cation to develop such skills fully. Inevitably the choice of contents is a compro-
mise, but the topics covered were chosen after wide consultation coupled with
many years of teaching experience. Given the constraint of space we believe our
choice is optimal.

Use of modern IT aids

One of the main developments in the teaching of engineering mathematics in recent
years has been the widespread availability of sophisticated computer software and its
adoption by many educational institutions. Once a firm foundation of techniques has
been built, we would encourage its use, and so we have made general references at
several points in the text. In addition, in some blocks we focus specifically on two
common packages (Matlab and Maple), and these are introduced in the ‘Using
mathematical software packages’ section on page xx. Many features available in
software packages can also be found in graphical calculators.

On pages xxiii–xxiv we provide a reference table of Maple and Matlab commands
that are particularly useful for exploring and developing further the topics in this
book.

xviii Preface
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Preface xix

Additions for the fifth edition

We have been delighted with the positive response to Mathematics for Engineers
since it was first published in 1998. In writing this fifth edition we have been guided
and helped by the numerous comments from both staff and students. For these com-
ments we express our thanks.

This fifth edition has been enhanced by the addition of numerous examples from
even wider fields of engineering. Applicability lies at the heart of engineering math-
ematics. We believe these additional examples serve to reinforce the crucial role that
mathematics plays in engineering. We hope that you agree.

Following useful suggestions from reviewers we have added new sections to cover
the equation of a circle, locus of a point in the complex plane and solution of partial
differential equations. We have enhanced and integrated the use of software in the
solution of engineering problems.

We hope the book supports you in your learning and wish you every success.

Anthony Croft and Robert Davison
May 2018
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Using mathematical software packages

One of the main developments influencing the learning and teaching of engineering
mathematics in recent years has been the widespread availability of sophisticated
computer software and its adoption by many educational institutions.

As engineering students, you will meet a range of software in your studies. It is
also highly likely that you will have access to specialist mathematical software.
Two software packages that are particularly useful for engineering mathematics,
and which are referred to on occasions throughout this book, are Matlab and Maple.
There are others, and you should enquire about the packages that have been made
available for your use. A number of these packages come with specialist tools for
subjects such as control theory and signal processing, so you will find them useful in
other subjects that you study.

Common features of all these packages include:

• the facility to plot two- and three-dimensional graphs;
• the facility to perform calculations with symbols (e.g. , , as opposed to

just numbers) including the solution of equations.

In addition, some packages allow you to write computer programs of your own that
build upon existing functionality, and enable the experienced user to create powerful
tools for the solution of engineering problems.

The facility to work with symbols, as opposed to just numbers, means that these
packages are often referred to as computer algebra systems or symbolic processors.
You will be able to enter mathematical expressions, such as or 

, and subject them to all of the common mathematical operations:

simplification, factorisation, differentiation, integration, and much more. You will be
able to perform calculations with vectors and matrices. With experience you will
find that lengthy, laborious work can be performed at the click of a button.

 t - 6

t2
+ 2t + 1

(x + 2)(x - 3)

x + ya2
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The particular form in which a mathematical problem is entered – that is, the
syntax – varies from package to package. Raising to a power is usually performed
using the symbol ^. Some packages are menu driven, meaning that you can often
select symbols from a menu or toolbar. At various places in the text we have pro-
vided examples of this for illustrative purposes. This textbook is not intended to be a
manual for any of the packages described. For thorough details you will need to refer
to the manual provided with your software or its on-line help.

At first sight you might be tempted to think that the availability of such a package
removes the need for you to become fluent in algebraic manipulation and other
mathematical techniques. We believe that the converse of this is true. These pack-
ages are sophisticated, professional tools and as such require the user to have a good
understanding of the functions they perform, and particularly their limitations. Fur-
thermore, the results provided by the packages can be presented in a variety of forms
(as you will see later in the book), and only with a thorough understanding of the
mathematics will you be able to appreciate different, yet correct, equivalent forms,
and distinguish these from incorrect output.

Figure 1 shows a screenshot from Maple in which we have defined the function
and plotted part of its graph. Note that Maple requires the

following particular syntax to define the function: . The
quantity is input as .

Finally, Figure 2 shows a screenshot from the package Matlab. Here the package
is being used to obtain a three-dimensional plot of the surface as
described in Chapter 21. Observe the requirement of Matlab to input as .x # ^2x2

z = sin(x2
+ y2)

x^2x2
f : = x : x2

+ 3x - 2
f (x) = x2

+ 3x - 2

Using mathematical software packages xxi

Figure 1
A screenshot from
Maple showing 
the package being
used to define 
the function

and plot its graph.
f (x) = x2

+ 3x - 2
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Where appropriate we would encourage you to explore the use of packages
such as these. Through them you will find that whole new areas of engineering
mathematics become accessible to you, and you will develop skills that will help
you to solve engineering problems that you meet in other areas of study and in the
workplace.

xxii Using mathematical software packages

Figure 2
A screenshot from
Matlab showing the
package being used
to plot a three-
dimensional graph.
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)
;
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3
]
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]
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[
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,
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,
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;
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,
b
)
;

c
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(
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b
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a
,
b
)
;
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on

ti
nu

ed
)
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Chapter 1
Arithmetic

This chapter reminds the reader of the arithmetic of whole numbers.
Arithmetic is the study of numbers. A mastery of numbers and the
ways in which we manipulate and operate on them is essential. This
mastery forms the bedrock for further study in the field of algebra.

Block 1 introduces some essential terminology and explains rules that
determine the order in which operations must be performed. Block 2
focuses on prime numbers. These are numbers that cannot be
expressed as the product of two smaller numbers.

Computers are used extensively in all engineering disciplines to
perform calculations. Some of the examples provided in this book
make use of the software packages Maple and Matlab which are
commonly available for use in academic and industrial settings.

Because Maple and Matlab, in common with many similar packages, are
designed to compute not just with single numbers but with entire
sequences of numbers at the same time, data are sometimes entered in
the form of arrays, as we will demonstrate. Arrays are multi-
dimensional objects. Two particular types of array are vectors and
matrices, which are studied in detail in Chapters 12–14.
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Block 1 Operations on numbers
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End of chapter exercises
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BLOCK 1
Operations on numbers

1.1 Introduction

Whole numbers are the numbers . . . , , , 0, 1, 2, 3 . . . . Whole numbers are
also referred to as integers. The positive integers are 1, 2, 3, 4, . . . . The negative inte-
gers are . . . , , , , . The . . . indicates that the sequence of numbers contin-
ues indefinitely. The number 0 is an integer but it is neither positive nor negative.

Given two or more whole numbers it is possible to perform an operation on them.
The four arithmetic operations are addition , subtraction , multiplication 
and division .

Addition 

We say that is the sum of 4 and 5. Note that is equal to so that
the order in which we write down the numbers does not matter when we are adding
them. Because the order does not matter, addition is said to be commutative. When
more than two numbers are added, as in , it makes no difference whether
we add the 4 and 8 first to get , or whether we add the 8 and 9 first to get

. Whichever way we work we shall obtain the same result, 21. This property
of addition is called associativity.

Subtraction 

We say that is the difference of 8 and 3. Note that is not the same as
and so the order in which we write down the numbers is important when we

are subtracting them. Subtraction is not commutative. Adding a negative number
is equivalent to subtracting a positive number; thus 5 � (�2) � 5 � 2 � 3. Sub-
tracting a negative number is equivalent to adding a positive number: thus

.7 - (-3) = 7 + 3 = 10

3 - 8
8 - 38 - 3

(- )

4 + 17
12 + 9

4 + 8 + 9

5 + 44 + 54 + 5

(+ )

(, )
(*)(- )(+)

-1-2-3-4

-1-2-3

Multiplication 

The instruction to multiply the numbers 6 and 7 is written . This is known as
the product of 6 and 7. Sometimes the multiplication sign is missed out altogether
and we write (6)(7). An alternative and acceptable notation is to use a dot to repre-
sent multiplication and so we could write , although if we do this care must be
taken not to confuse this multiplication dot with a decimal point.

6 # 7

6 * 7

(* )

Key point Adding a negative number is equivalent to subtracting a positive number.
Subtracting a negative number is equivalent to adding a positive number.
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Note that (6)(7) is the same as (7)(6) so multiplication of numbers is commutative.
If we are multiplying three numbers, as in , we obtain the same result if we
multiply the 2 and the 3 first to get , as if we multiply the 3 and the 4 first to get

. Either way the result is 24. This property of multiplication is known as
associativity.

Recall that when multiplying positive and negative numbers the sign of the result
is given by the following rules:

2 * 12
6 * 4

2 * 3 * 4

4 Block 1 0perations on numbers1

Key point

(negative) * (negative) = positive
(negative) * (positive) = negative
(positive) * (negative) = negative
(positive) * (positive) = positive

For example, and .

Division 

The quantity means 8 divided by 4. This is also written as or and is
known as the quotient of 8 and 4. We refer to a number of the form when p and
q are whole numbers as a fraction. In the fraction the top line is called the
numerator and the bottom line is called the denominator. Note that is not the
same as and so the order in which we write down the numbers is important.
Division is not commutative. Division by 0 is never allowed: that is, the denomi-
nator of a fraction must never be 0. When dividing positive and negative numbers
recall the following rules for determining the sign of the result:

4>8
8>4

8
4

p>q
8
48>48 , 4

( , )

(-3) * (-6) = 18(-4) * 5 = -20

Key point

negative

negative
= positive

negative

positive
= negative

positive

negative
= negative

positive

positive
= positive

Example 1.1
Evaluate
(a) the sum of 9 and 4
(b) the sum of 9 and 
(c) the difference of 6 and 3

-4
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(d) the difference of 6 and 
(e) the product of 9 and 3
(f) the product of and 3
(g) the product of and 
(h) the quotient of 10 and 2
(i) the quotient of 10 and 
(j) the quotient of and 

Solution
(a)
(b)
(c)
(d)
(e)
(f)
(g)

(h)

(i)

(j)

Example 1.2 Reliability Engineering – Time between breakdowns
Reliability engineering is concerned with managing the risks associated with break-
down of equipment and machinery, particularly when such a breakdown is life-critical
or when it can have an adverse effect on business. In Chapter 23 we will discuss the
Poisson probability distribution which is used to model the number of breakdowns
occurring in a specific time interval. Of interest to the reliability engineer is both the
average number of breakdowns in a particular time period and the average time between
breakdowns. The breakdown rate is the number of breakdowns per unit time.

Suppose a reliability engineer monitors a piece of equipment for a 48-hour
period and records the number of times that a safety switch trips. Suppose the engi-
neer found that there were three trips in the 48-hour period.
(a) Assuming that the machine can be restarted instantly, calculate the average

time between trips. This is often referred to as the inter-breakdown or 
inter-arrival time.

(b) Calculate the breakdown rate per hour.

Solution
(a) With three trips in 48 hours, on average, there will be one trip every 16 hours.

Assuming that the machine can be restarted instantly, the average time
between trips is 16 hours. This is the inter-breakdown time.

(b) In 16 hours there is one trip. This is equivalent to saying that the breakdown 
rate is of a trip per hour.

More generally,

the breakdown rate =

1

the inter-breakdown time

1
16

- 10
- 2 = 5

10
- 2 = -5

10
2 = 5

(-9) * (-3) = 27
(-9) * 3 = -27
9 * 3 = 27
6 -  (-3) = 6 + 3 = 9
6 -  3 = 3
9 + (-4) = 9 -  4 = 5
9 + 4 = 13

-2-10
-2

-3-9
-9

-3

1.1 Introduction 5 1
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6 Block 1 0perations on numbers1

Solutions to exercises

2

117

73

2

1 20

4200

420 Mbit/s, 560 Mbit/s6

5

4

1.2 Order of operations

The order in which the four operations are carried out is important but may not be
obvious when looking at an expression. Consider the following case. Suppose we
wish to evaluate . If we carry out the multiplication first the result is

. However, if we carry out the addition first the result is

. Clearly we need some rules that specify the order in
which the various operations are performed. Fortunately there are rules, called
precedence rules, that tell us the priority of the various operations – in other words,
the order in which they are carried out.

Knowing the order in which operations will be carried out becomes particularly
important when programming using software such as Maple, Matlab and Excel if
you are to avoid unexpected and erroneous results.

To remind us of the order in which to carry out these operations we can make use
of the BODMAS rule. BODMAS stands for:

2 * 3 + 4 = 2 * 7 = 14
2 * 3 + 4 = 6 + 4 = 10

2 * 3 + 4

Exercises

Find the sum of and 11.

Find the product of 13 and 9.

Find the difference of 11 and 4.

Find the quotient of 100 and 5.

Manufacturing Engineering – Production of
components. A production line works 14 hours

5

4

3

2

-91
per day and produces 60 electrical components
every hour. Find the number of components
produced during a working week of 5 days.

Computer Networking – Routing of data.
Computer network traffic can be routed along
any of four routes. If a total of 1680 Mbit/s are
distributed equally along the four routes,
calculate the data rate on each. If one of the
routes is disabled, calculate the data rate on
each of the three remaining routes.

6

Key point first priority

Addition, +

Subtraction, -

  f  third priority

Division, ,

Of, *

Multiplication, *
M  second priority

Brackets,  ( )
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1.2 Order of operations 7 1

Here ‘of’ means the same as multiply, as in ‘a half of 6’ means ‘ ’.
Later in Chapter 5 we meet a further operation called exponentiation. We shall

see that exponentiation should be carried out once brackets have been dealt with.

Example 1.3
Evaluate
(a)
(b)
(c)
(d)

Solution
(a) There are two operations in the expression: multiplication and addition.

Multiplication has a higher priority than addition and so is carried out first.

(b) There are two operations: division and subtraction. Division is carried out first.

(c) The bracketed expression, , is evaluated first, even though the addition
has a lower priority than multiplication.

(d) The bracketed expression is evaluated first.

This example illustrates the crucial difference that brackets can make to the value of
an expression.

When all the operations in an expression have the same priority, then we simply
work from left to right.

Example 1.4
Evaluate
(a)
(b)

Solution
(a) Noting that the operations addition and subtraction have the same priority we

work from left to right thus:

 = 4
 = 8 - 4
 = 6 + 2 - 4

9 + 3 - 6 + 2 - 4 = 12 - 6 + 2 - 4

12 * 2 , 4 * 3
9 + 3 - 6 + 2 - 4

 = 6
6 , (2 - 1) = 6 , 1

 = 14
2 * (3 + 4) = 2 * 7

(3 + 4)

 = 2
6 , 2 - 1 = 3 - 1

 = 10
2 * 3 + 4 = 6 + 4

6 , (2 - 1)
2 * (3 + 4)
6 , 2 - 1
2 * 3 + 4

1
2 * 6
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(b) Since multiplication and division have equal priority we work from left to right.

Example 1.5
Evaluate
(a)
(b)

Solution
(a) Evaluation of the expression in brackets is performed first to give

The resulting expression contains the operations of division, multiplication and
addition. Division and multiplication have higher priority than addition and so
are performed first, from left to right. This produces

Hence the result is 21.
(b) Evaluating the innermost bracketed expressions gives:

Evaluating each of the two remaining bracketed expressions results in

and so the final result is 1.

Often a division line replaces bracketed quantities. For example, in the expression

there is an implied bracketing of the numerator and denominator, meaning

The bracketed quantities would be evaluated first, resulting in , which simplifies
to 4.

16

4

(7 + 9)

(3 + 1)

7 + 9

3 + 1

4 , 4

[12 - 3] , [3 + 5 - 7 + 3]

9 + 12

27 , 3 + 3 * 4

[(6 * 2) , (1 + 2)] , [3 + 5 - 7 + 3]
27 , (7 - 4) + 3 * 4

 = 18
 = 6 * 3

12 * 2 , 4 * 3 = 24 , 4 * 3

8 Block 1 0perations on numbers1

Exercises

Evaluate the following arithmetic expressions
using the rules for priority of operations:
(a)
(b)
(c)
(d) (12 , 2) * 6

12 , (2 * 6)
12 * 6 , 2
12 , 2 * 6

1 (e)
(f)

(g)

(h)
-10 , 2

-6 + 1

8 -  2

2 + 1

12 , 6 + 2
12 + 6 , 2
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1.2 Order of operations 9 1

Insert an appropriate mathematical operation
as indicated in order to make the given
expression correct:
(a) 11 -  (5 ? 3) * 2 = 7

2 (b)

(c)
5 + (14 ? 2)

4
= 3

12 * (15 ? 5) + 9 = 45

Solutions to exercises

(a) 36 (b) 36 (c) 1 (d) 36 (e) 15
(f) 4 (g) 2 (h) 1

1 (a) (b) (c) ,,-2

End of block exercises

Find
(a) the product of 11 and 4
(b) the sum of and 3
(c) the difference of 12 and 9
(d) the quotient of 12 and 

Evaluate the following arithmetical
expressions:
(a)
(b)
(c)
(d)
(e) 10 * (5 + 2)

10 * 5 + 2
10 , 5 + 2
10 -  (5 + 2)
10 -  5 + 2

2

-2

-16

1 Evaluate the following expressions:
(a)
(b)
(c)
(d)
(e)

Evaluate
9 + 3 * 3

10 - 3 , 3

4

(6 -  4 , 2) + 3
(6 -  4) * (2 + 3)
(6 -  4) * 2 + 3
6 -  4 , 2 + 3
6 -  4 * 2 + 3

3

Solutions to exercises

(a) 44 (b) (c) 3 (d) 

(a) 7 (b) 3 (c) 4 (d) 52 (e) 702

-6-131 (a) 1 (b) 7 (c) 7 (d) 10 (e) 7

24

3
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BLOCK 2
Prime numbers and prime factorisation

2.1 Introduction

A prime number is a positive integer, larger than 1, which cannot be written as the
product of two smaller integers. This means that the only numbers that divide exactly
into a prime number are 1 and the prime number itself. Examples of prime numbers
are 2, 3, 5, 7, 11, 13, 17 and 19. Clearly 2 is the only even prime. The numbers 4 and
6 are not primes as they can be written as products of smaller integers, namely

When a number has been written as a product we say that the number has been
factorised. Each part of the product is termed a factor. When writing 
then both 2 and 3 are factors of 6. Factorisation of a number is not unique. For ex-
ample, we can write

All these are different, but nevertheless correct, factorisations of 12.
When a number is written as the product of prime numbers we say that the num-

ber has been prime factorised. Prime factorisation is unique.
Prime numbers have a long history, being extensively studied by the ancient Greek

mathematicians including Pythagoras. There has been significant renewed interest in
prime numbers once it was recognised that they have important applications in cryp-
tography and particularly Internet security. Whilst it is easy to multiply two very
large prime numbers together it is very difficult then to factorise the result to obtain
the original primes. Prime numbers form the basis of systems such as the RSA cryp-
tosystem in which a message is encoded, but can only be decoded by someone who
has knowledge of the original prime numbers.

Example 2.1
Prime factorise the following numbers: (a) 18, (b) 693.

Solution
The technique of prime factorisation entails repeatedly dividing the number and its
factors by prime numbers until no further division is possible.
(a) Starting with the first prime, 2, we note that 18 may be written as

We now consider the factor 9. Clearly 2 is not a factor of 9 so we try the next
prime number, 3, which is a factor.

All the factors are primes: that is, 18 has been prime factorised.

18 = 2 * 3 * 3

18 = 2 * 9

12 = 2 * 6, 12 = 3 * 4, 12 = 2 * 2 * 3

6 = 2 * 3

4 = 2 * 2, 6 = 2 * 3
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2.1 Introduction 11 1

(b) We note that 2 is not a factor of 693 and so try the next prime, 3. We see that 3
is a prime factor and write

Looking at 231, we note that 3 is a factor and write

Looking at 77, we note that 3 is not a factor and so try the next prime, 5. Since 5 is
not a factor we try the next prime, 7, which is a factor. We write

All the factors are now prime and so no further factorisation is possible.

Since ancient times methods have been developed to find prime numbers. The inter-
ested reader is referred, for example, to the sieve of Eratosthenes, which is an effi-
cient method for finding relatively small prime numbers.

The computing packages Maple and Matlab have several built-in commands
for performing prime number calculations. For full details you should refer to the
on-line help.

Example 2.2
(a) Use software to determine whether the integers 1017, 5607 and 787777 are

prime.
(b) Use software to prime-factorise the integers in part (a) that are not prime.

Solution
(a) The Maple command isprime(n) is used to test whether an integer, n, is

prime. It returns true if the integer is prime, and false otherwise. Matlab can
test whether each element in an array, A, is prime or not. It does this in a single
command isprime(A). This returns a corresponding array containing ones
or zeros with 1 corresponding to true (i.e. prime) and 0 corresponding to false
(i.e. not prime).

693 = 3 * 3 * 7 * 11

693 = 3 * 3 * 77

693 = 3 * 231

Maple

> isprime(1017), isprime(5607), isprime(787777);

and Maple outputs
false, false, true

indicating that only 787777 is a prime number.
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12 Block 2 Prime numbers and prime factorisation1

Exercises

Explain why 2 is the only even prime number.

State all prime numbers between 50 and 100.2

1 Prime factorise the following numbers:

(a) 30 (b) 96 (c) 500 (d) 589 (e) 3239

3

Matlab

>> A=[1017 5607 787777]
>> isprime(A)

and Matlab outputs 

A =

1017 5607 787777

ans =

0 0 1

again indicating that 787777 is a prime number.

Maple

> ifactor(1017), ifactor(5607)

and Maple outputs
113 * 32; 7 * 32 * 89

which means 1017 = 3 3 113, and 5607 = 3 3 7 89.*****

Matlab

>> factor(1017)

ans =

3 3 113

from which we can deduce 1017 = 3 3 113.

>> factor(5607)

ans =

3 3 7 89

from which we can deduce 5607 = 3 3 7 89.***

**

(b) The Maple command ifactor(n) produces a prime factorisation of an
integer n. The Matlab command factor(n) lists all the factors of n including
repeated factors from which the prime factorisation can be deduced.
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2.2 Highest common factor 13 1

Solutions to exercises

53, 59, 61, 67, 71, 73, 79, 83, 89, 97

(a)
(b) 2 * 2 * 2 * 2 * 2 * 3

2 * 3 * 53

2 (c)
(d)
(e) 41 * 79

19 * 31
2 * 2 * 5 * 5 * 5

2.2 Highest common factor 

Suppose we prime factorise the numbers 12 and 90. This produces

Some factors are common to both numbers. For example, 2 is such a common factor,
as is 3. There are no other common prime factors. Combining these common factors
we see that is common to both. Thus 6 (i.e. ) is the highest number
that is a factor of both 12 and 90. We call 6 the highest common factor (h.c.f.) of
12 and 90.

2 * 3(2 * 3)

12 = 2 * 2 * 3, 90 = 2 * 3 * 3 * 5

Example 2.3
Find the h.c.f. of 16 and 30.

Solution
We prime factorise each number:

There is only one prime factor common to both: 2. Hence 2 is the h.c.f. of 16 and 30.

Example 2.4
Find the h.c.f. of 30 and 50.

Solution
Prime factorisation yields

The common prime factors are 2 and 5 and so the h.c.f is .2 * 5 = 10

30 = 2 * 3 * 5, 50 = 2 * 5 * 5

16 = 2 * 2 * 2 * 2, 30 = 2 * 3 * 5

Key point Given two or more numbers, the highest common factor (h.c.f.) is the largest (highest)
number that is a factor of all the given numbers.

To put this another way, the h.c.f. is the highest number that divides exactly into each
of the given numbers.
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14 Block 2 Prime numbers and prime factorisation1

Solutions to exercises

(a) 2 (b) 14 (c) 6 (d) 11

2.3 Lowest common multiple

Suppose we are given two or more numbers and wish to find numbers into which all
the given numbers will divide. For example, given 4 and 6 we see that both divide
exactly into 12, 24, 36, 48, and so on. The smallest number into which they both
divide is 12. We say that 12 is the lowest common multiple of 4 and 6.

Key point The lowest common multiple (l.c.m.) of a set of numbers is the smallest (lowest)
number into which all of the given numbers will divide exactly.

Exercises

Calculate the h.c.f. of the following numbers:
(a) 6, 10
(b) 28, 42

1
(c) 36, 60, 90
(d) 7, 19, 31

Example 2.5
Find the h.c.f. of 36, 54 and 126.

Solution
Prime factorisation yields

The common factors are 

Hence the h.c.f. is .
Note that the factor of 3 is included twice because 3 � 3 is common to all

factorisations.

2 * 3 * 3 = 18

2, 3, 3

2 * 3 * 3 * 7126 =

2 * 3 * 3 * 354 =

2 * 2 * 3 * 336 =
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2.3 Lowest common multiple 15 1

Example 2.6
Find the l.c.m. of 6 and 8.

Solution
There are many numbers into which both 6 and 8 divide exactly: for example, 48, 96
and 120. We seek the smallest number with this property. By inspection and trial and
error we see that the smallest number is 24. Hence the l.c.m. of 6 and 8 is 24.

For larger numbers it is not appropriate to use inspection as a means of finding the
l.c.m.; a more systematic method is needed, and this is now explained.

The numbers are prime factorised. The l.c.m. is formed by examining the prime
factorisations. All the different primes that occur in the prime factorisations are
noted. The highest occurrence of each prime is also noted. The l.c.m. is then formed
using the highest occurrence of each prime. Consider the following example.

Example 2.7
Find the l.c.m. of 90, 120 and 242.

Solution
Each number is prime factorised to yield

The different primes are noted: these are 2, 3, 5 and 11. The highest occurrence of
each prime is noted:

242 = 2 * 11 * 11
120 = 2 * 2 * 2 * 3 * 5
90 = 2 * 3 * 3 * 5

Prime 2 3 5 11
Highest occurrence 3 2 1 2

The highest occurrence of 2 is 3 since 2 occurs three times in the prime factorisation
of 120. The highest occurrence of 3 is 2 since 3 occurs twice in the prime factorisa-
tion of 90.

The l.c.m. is then 2 � 2 � 2 � 3 � 3 � 5 � 11 � 11, which is 43560. Hence
43560 is the smallest number into which 90, 120 and 242 will all divide exactly.

Example 2.8
Find the l.c.m. of 25, 35 and 45.

Solution
Prime factorisation of each number yields

3 * 3 * 545 =

5 * 735 =

5 * 525 =
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16 Block 2 Prime numbers and prime factorisation1

Solutions to exercises

(a) 48 (b) 240 (c) 300 (d) 15840 (e) 3927001

End of block exercises

Find the h.c.f. of the following sets of numbers:
(a) 20, 30, 40, 50 (b) 60, 108, 180 (c) 18, 126,
198, 324 (d) 105, 147, 210, 273

Find the l.c.m. of the following:
(a) 5, 8, 12 (b) 6, 8, 9, 10 (c) 15, 18, 20, 25
(d) 20, 22, 30, 35

2

1 Prime factorise the following numbers:
(a) 315 (b) 2695 (c) 988 (d) 16905

3

Hence the primes are 3, 5 and 7.

The highest occurrence of 3 is 

The highest occurrence of 5 is 

The highest occurrence of 7 is 

Hence in its prime factorised form the l.c.m. is

The l.c.m. is 1575.

Example 2.9
Find the l.c.m. of 4, 8 and 24.

Solution
Each number is prime factorised: , and 

. The l.c.m. is formed using the highest occurrence of each prime and is then
. Note from this example that the l.c.m. of a set of numbers

can be one of the numbers in the set.
2 * 2 * 2 * 3 = 24
2 * 3

24 = 2 * 2 *8 = 2 * 2 * 24 = 2 * 2

3 * 3 * 5 * 5 * 7

1

2

2

Exercises

Find the l.c.m. of
(a) 6, 16
(b) 6, 16, 20
(c) 20, 30, 75

1
(d) 22, 32, 45, 72
(e) 11, 17, 21, 100
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End of chapter exercises 17 1

End of chapter exercises

Evaluate
(a)
(b)
(c)
(d)
(e)
(f)

Prime factorise the following numbers:
(a) 15 (b) 16 (c) 50 (d) 91 (e) 119
(f) 323 (g) 682

2

2 * 6 , 3
(2 * 6) , 3
2 * (6 , 3)
12 -  3 , 3
(12 -  3) , 3
12 -  (3 , 3)

1 Calculate the h.c.f. of the following sets of
numbers:
(a) 6, 21 (b) 16, 24, 72 (c) 30, 45, 60
(d) 18, 30, 42, 100

Find the l.c.m. of the following:
(a) 4, 10 (b) 16, 30, 40 (c) 15, 16, 25, 32

4

3

Solutions to exercises

(a) 10 (b) 12 (c) 18 (d) 21

(a) 120 (b) 360 (c) 900 (d) 46202

1 (a)
(b)
(c)
(d) 3 * 5 * 7 * 7 * 23

2 * 2 * 13 * 19
5 * 7 * 7 * 11
3 * 3 * 5 * 73

Solutions to exercises

(a) 11 (b) 3 (c) 11 (d) 4 (e) 4 (f) 4

(a) (b) 
(c) (d) (e) 
(f) (g) 2 * 11 * 3117 * 19

7 * 177 * 132 * 5 * 5
2 * 2 * 2 * 23 * 52

1 (a) 3 (b) 8 (c) 15 (d) 2

(a) 20 (b) 240 (c) 24004

3
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Chapter 2
Fractions

The methods used to simplify, add, subtract, multiply and divide
numerical fractions are exactly the same as those used for algebraic
fractions. So it is important to understand and master those methods
with numerical fractions before moving on to apply them to algebraic
fractions.

Block 1 introduces basic terminology and the idea of equivalent
fractions. Fractions that are equivalent have the same value. Using
prime factorisation a fraction may be expressed in its simplest form.

Block 2 illustrates how to add and subtract fractions. Key to these
operations is the writing of all fractions with a common denominator.
Mixed fractions – those fractions that have a whole number part as
well as a fractional part – are introduced. Finally multiplication and
division of fractions are explained and illustrated.
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Chapter 2 contents

Block 1 Introducing fractions

Block 2 Operations on fractions

End of chapter exercises
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BLOCK 1
Introducing fractions

1.1 Introduction

In this block we introduce some terminology. Fractions can be classed as either
proper or improper and this classification is explained. We introduce the idea of
equivalent fractions. Using the prime factorisation technique of Chapter 1 we
explain how to write a fraction in its simplest form.

A fraction is a number of the form , where p and q are whole numbers. So, for
example, and are all fractions.

The number p (the ‘top’ of the fraction) is called the numerator. The number q
(the ‘bottom’ of the fraction) is called the denominator.

100
4

2
3, 59, 11

3

p

q

Key point Fraction =

p

q
=

numerator

denominator
 

Note that the denominator is never zero because division by 0 is not permissible.
Fractions can be classified as either proper fractions or improper fractions.

When determining whether a fraction is proper or improper we ignore any negative
signs in the numerator and denominator.

If the numerator, p, is less than the denominator, q, then the fraction is proper. If p
is equal to or greater than q then the fraction is improper. Examples of proper frac-
tions are and . Examples of improper fractions are and .100

99
3
2, 55

2
5

1
2, 99

100

Exercises

Classify each fraction as either proper or improper:

(a) (b) (c) (d) (e) (f ) - 3
2

6
- 11-

5
7

5
5

5
2

7
9

1

Solutions to exercises

(a) proper (b) improper (c) improper
(d) proper (e) proper (f) improper

1
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1.2 Simplest form of a fraction 21 2

1.2 Simplest form of a fraction

Every fraction can be expressed in different forms. For example, you may know that
and all have the same value. These are examples of equivalent fractions.

Equivalent fractions have the same value.
We note that multiplying or dividing both numerator and denominator of a frac-

tion by the same number produces an equivalent fraction: that is, a fraction with the
same value as the original fraction. Consider the following example.

Starting with the fraction we

1 multiply both numerator and denominator by 2 to obtain 

2 multiply both numerator and denominator by 10 to obtain 

3 divide both numerator and denominator by 4 to obtain 

4 divide both numerator and denominator by 8 to obtain .

Hence and are all equivalent fractions. They all have exactly the same
value.

A fraction in its simplest form is one that has no factors common to both numer-
ator and denominator. This means that it is not possible to divide both numerator and
denominator exactly. For example, is in its simplest form; there is no number
which can divide exactly into both 17 and 49. However, is not in its simplest form:
6 is a factor of both numerator and denominator. It is thus possible to divide both
numerator and denominator by 6 to obtain . This is an equivalent fraction and is in
its simplest form.

Example 1.1
Express in its simplest form.

Solution
We seek factors that are common to both numerator and denominator. By using
prime factorisation we can find the h.c.f. of 36 and 120 to be 12. Dividing numerator
and denominator by this h.c.f. yields . Hence in its simplest form is .

An alternative way to find the simplest form is to prime factorise numerator and
denominator: thus

We note all of the factors common to both numerator and denominator: these are
. These factors are cancelled.

Cancelling all the common factors is equivalent to dividing numerator and denomi-
nator by the h.c.f., 12, so these two approaches, while appearing different, are in fact
the same.

2 * 2 * 3 * 3

2 * 2 * 2 * 3 * 5
=

2 * 2 * 3 * 3

2 * 2 * 2 * 3 * 5
=

3

2 * 5
=

3

10

2 * 2 * 3

36

120
=

2 * 2 * 3 * 3

2 * 2 * 2 * 3 * 5

3
10

36
120

3
10

36
120

3
8

18
48

17
49

2
3

16
24, 32

48, 160
240, 46

2
3

4
6

160
240

32
48

16
24

3
6

1
2, 24
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Example 1.2
Express in its simplest form.

Solution
Prime factorising numerator and denominator yields

The factors common to both numerator and denominator are

Cancelling the common factors yields

Hence in its simplest form is .

Sometimes we need to write a fraction in an equivalent form with a specified denomi-
nator. The following example illustrates the technique.

Example 1.3
Express as an equivalent fraction with a denominator of 24.

Solution
The original denominator is 4; the desired denominator is 24. Thus the original
denominator must be multiplied by 6. To produce an equivalent fraction, then, both
numerator and denominator must be multiplied by 6. Thus

Recall that multiplying both numerator and denominator by the same number does
not change the value of the fraction.

Example 1.4 Mechanical Engineering – Force on a bar

The force on a metal bar is increased by N. Express the increase in force as a
fraction in its simplest form.

Solution
By prime factorising both numerator and denominator and then cancelling common
factors we find

In its simplest form, the increase in force is N.

Example 1.5 Thermodynamics – Temperature of a cooling liquid
Experiments are conducted to measure the rate at which the temperature of a liquid
cools. The reduction in temperature over a measured time is noted. In the first
20 minutes the temperature drops by 6 ºC. The average rate of fall of temperature is
therefore ºC per minute.

Express this rate of decrease in temperature as a fraction in its simplest form.

6
20

3
5

15

25
=

3 * 5

5 * 5
=

3

5

15
25

3

4
=

3 * 6

4 * 6
=

18

24

3
4

3
7

90
210

3
7
 

2, 3, 5

2 * 3 * 3 * 5
2 * 3 * 5 * 7

90

210
 =

90
210

22 Block 1 Introducing fractions2
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1.2 Simplest form of a fraction 23 2

Solution

The rate of decrease in temperature is ºC per minute.

Example 1.6 Reliability Engineering – Quality control
A quality control officer tests 300 items taken from a production line and finds that
15 of the items are faulty.
(a) Express the number of faulty items as a fraction of those tested.
(b) Express this fraction in its simplest form.

Solution
(a) There are 15 faulty items from a total of 300. So the fraction of items that are

faulty is .

(b)
15

300
=

3 * 5

2 * 2 * 3 * 5 * 5
=

1

20

15
300

3
10

6

20
=

2 * 3

2 * 2 * 5
=

3

10

Time (min) 0 5 10 15 20
Temp (°C) 21 27 31 33 35

Exercises

Express each fraction in its simplest form:

(a) (b) (c) (d) (e) (f) 

(a) Express as an equivalent fraction with a
denominator of 40.

(b) Express as an equivalent fraction with a
denominator of 10.

(c) Express 6 as an equivalent fraction with a
denominator of 4.

Express each fraction as an equivalent fraction
with a denominator of 32:

(a) (b) (c) 

Consider the fractions and .
(a) Calculate the l.c.m. of their denominators.
(b) Express each fraction as an equivalent

fraction with the l.c.m. found in (a) as the
denominator.

Reliability Engineering – Quality control.
(a) Quality control checks find six faulty items

from 200 that were tested. Express the
number of faulty items as a fraction, in its
simplest form, of the total number tested.

5

7
8

2
3, 564

1
4

3
8

1
16

3

9
30

3
52

- 20
- 45-

30
42

72
96

20
16

16
20

9
12

1
(b) Improvements to the production process

mean that the number of faulty items is
halved. Express the number of faulty items
now as a fraction of the total number tested.

Thermodynamics – Temperature of a metal
bar. A metal bar is heated and its temperature
is measured every 5 minutes. The table records
the temperature readings.

6

Calculate the rate of increase of temperature in
units of °C per minute
(a) in the first 5 minutes
(b) in the first 10 minutes
(c) in the first 15 minutes
(d) in the first 20 minutes
(e) in the last 5 minutes
(f) in the last 10 minutes
In each case express your answer as a fraction
in its simplest form.
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24 Block 1 Introducing fractions2

Solutions to exercises

(a) (b) (c) (d) (e) (f) 

(a) (b) (c) 

(a) (b) (c) 8
32

12
32

2
323

24
4

3
10

24
402

4
9-

5
7

3
4

5
4

4
5

3
41 (a) 24 (b) 

(a) (b) 

(a) (b) 1 (c) (d) (e) (f) 25
2
5

7
10

4
5

6
56

3
200

3
1005

16
24, 20

24, 21
244

End of block exercises

Classify each of the following fractions as
proper or improper:

(a) (b) (c) (d) (e) 

Express the fraction in three different
equivalent forms.

2
72

3
1

21
22

6
6

7
6

6
7

1 Express each fraction in its simplest form:

(a) (b) (c) (d) (e) 56
16

22
24

9
45

16
60

20
100

3

Solutions to exercises

(a) proper (b) improper (c) improper
(d) proper (e) improper

Several possible solutions, for example 4
14, 8

28, 20
702

1 (a) (b) (c) (d) (e) 72
11
12

1
5

4
15

1
53
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BLOCK 2
Operations on fractions

2.1 Introduction

This block explains and illustrates how to perform the four arithmetic operations on
fractions. Writing fractions in equivalent forms so that they all have the same
denominator is a crucial first step when adding and subtracting fractions. Mixed
fractions comprise a whole number component as well as a fractional component.
They can be written as improper fractions and vice versa. The block concludes with
multiplication and division of fractions.

2.2 Addition and subtraction of fractions

To add and subtract fractions we must rewrite each fraction so that they have the
same denominator. This denominator is called the common denominator as it is
common to each fraction.

The common denominator is the l.c.m. of the original denominators. Once each
fraction has been written in equivalent form with the common denominator, the
numerators are then added or subtracted as required. In summary:

1 Calculate the l.c.m. of the original denominators to find the common denominator.
2 Express each fraction in equivalent form with the common denominator.
3 Add/subtract numerators and divide the result by the l.c.m.

Example 2.1

Find .

Solution
The original denominators are 6 and 8. Their l.c.m. is 24. Each fraction is written in
equivalent form with 24 as the denominator:

is equivalent to is equivalent to 

So

 =

29

24
 

 =

9 + 20

24
 

 
3

8
+

5

6
=

9

24
+

20

24
 

20

24

9

24
; 

5

6

3

8

3
8 +

5
6
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26 Block 2 0perations on fractions2

Example 2.2
Find .

Solution
The original denominators are 3, 4 and 6.

Their l.c.m. is 

Each fraction is written in equivalent form with the l.c.m. as denominator:

So

 =

1

4
 

3
12=

 
1

3
-

1

4
+

1

6
=

4

12
-

3

12
+

2

12
 

2
12

1

6
 is equivalent to 

3
12

1

4
 is equivalent to 

4
12

1

3
  is equivalent to 

12

1
3 -

1
4 +

1
6

Exercises

Find

(a) (b) (c) (d) 

(e) (f) (g) 14 -
9

102 -
3
4

7
9 -

2
3 +

5
6

5
6 -

1
12 +

1
3

1
2 -

2
5

9
10 -

3
5

2
3 +

1
6

1

(h) (i) 

(j) 1
12 +

1
6 -

1
3 -

1
4

7
6 -

2
3 +

5
9

3
8 +

2
5 +

3
10

Solutions to exercises

(a) (b) (c) (d) (e) (f) (g) 

(h) (i) (j) -1
3

19
18

43
40

-
13
20

5
4

17
18

13
12

1
10

3
10

5
61
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2.3 Mixed fractions 27 2

2.3 Mixed fractions

We have already met proper and improper fractions. We now examine mixed fractions.
The number is an example of a mixed fraction. We note that there is a whole

number part, 4, and a proper fraction part, . The mixed fraction may be written in an
equivalent form as an improper fraction:

Hence is equivalent to .

Example 2.3
(a) Express as an improper fraction.

(b) Find .

Solution

(a)

(b)

Example 2.4
Express as a mixed fraction.

Solution
Dividing 47 by 12 results in 3, with a remainder of 11. So

 = 3
11

12

 
47

12
= 3 +

11

12

47
12

=

47

12

33

12
+

14

12
=

7

6
 2

3

4
+ 1

1

6
=

11

4
+

11

4
=

8

4
+

3

4
=

 2
3

4
= 2 +

3

4

23
4 + 11

6

23
4

14
342

3

 =

14

3

 =

12

3
+

2

3

4
2

3
= 4 +

2

3

2
3

42
3
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28 Block 2 0perations on fractions2

2.4 Multiplication of fractions

To multiply two fractions we multiply their denominators to form the denominator
of the answer, and multiply their numerators to form the numerator of the answer.

Example 2.5
Find .

Solution

Note that the new numerator of 8 is formed by multiplying the two original numer-
ators. Similarly the new denominator is the product of the two original denominators.
Sometimes it is possible to simplify the result.

Example 2.6
Calculate .

Solution

Writing in its simplest form is .7
36

42
216

3

8
*

14

27
 =

3 * 14

8 * 27
 =

42

216

3
8 *

14
27

2

3
*

4

7
 =

2 * 4

3 * 7
 =

8

21

2
3 *

4
7

Exercises

Express the following mixed fractions as
improper fractions:

(a) (b) (c) (d) (e) 

Express the following improper fractions as
mixed fractions:

(a) (b) (c) (d) (e) -62
7

47
3

12
5

6
5

5
4

2

-102
532

531
421

311
2

1 Calculate the following, expressing your
answer as an improper fraction:

(a) (b) (c) 

(d) (e) 

Express the solutions to question 3 as mixed
fractions.

4

31
3 -  4

4
961

2 -  3
3
4 + 21

5

24
5 -  1

2
341

3 + 63
712

5 + 23
4

3

Solutions to exercises

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) -86
7152

322
511

511
42

-
52
5

17
5

13
4

7
3

3
21 (a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) -11
9419

201 2
151016

214 3
204

-
10
9

99
20

17
15

226
21

83
203
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2.4 Multiplication of fractions 29 2

The cancelling of common factors can take place at an earlier stage in the calculation.
For example, we could have written

Example 2.7
Calculate .

Solution
The fraction can be simplified to . Similarly can be simplified to . Hence

Example 2.8
Calculate (a) , (b) .

Solution

(a)

(b)

We are sometimes asked to calculate quantities such as ‘ of 96’ or ‘ of 60’. Note
the use of the word ‘of’ in these expressions. When we are given such an expression
we treat the ‘of’ as we would a multiplication sign. So when calculating, for exam-
ple, of 96 we calculate

which results in 32.

Example 2.9
Calculate of 60.2

5

1

3
* 96

1
3

2
5

1
3

5

108

3

8
*

10

81
 =

27

80

3

8
*

9

10
 =

3
8 *

10
81

3
8 *

9
10

 =

1

12

 =

1

4
*

1

1
*

1

3
 cancelling a factor of 3

 =

3

4
*

1

1
*

1

9
 cancelling a factor of 5

 
9

12
*

1

5
*

20

36
=

3

4
*

1

5
*

5

9

5
9

20
36

3
4

9
12

9
12 *

1
5 *

20
36

 =

7

36

 =

7

4 * 9
 by cancelling a factor of 2

 
3 * 14

8 * 27
=

14

8 * 9
 by cancelling a factor of 3
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30 Block 2 0perations on fractions2

Solution

So of 60 is 24.

Example 2.10
(a) Find of 100.
(b) Given 1 m is 100 cm, express m in cm.

Solution
(a)

(b) of 1 m is the same as of 100 cm which, using the result from (a), is 12 cm.

Example 2.11 Mechanical Engineering – Extension of a metal wire
A metal wire stretches by of its original length when heavy weights are applied.
If the original length of the wire is 4 m calculate (a) the length by which the wire
stretches, (b) the resulting length of the stretched wire.

Solution
(a) The wire stretches by of 4 m.

The wire stretches by m.

(b) The resulting length of the wire is

Using Example 2.10 this may be expressed as 4 m 12 cm.

Example 2.12
Calculate .

Solution
Mixed fractions are converted into their equivalent improper form. The multipli-
cation is then performed.

 = 4
7

8

 =

39

8

 1
1

2
* 3

1

4
=

3

2
*

13

4

11
2 * 31

4

4 +

3

25
= 4

3

25

3
25

3

100
* 4 =

3

25
 (cancelling a factor of 25)

3
100

3
100

3
25

3
25

3

25
* 100 = 12 (cancelling a factor of 25)

3
25

3
25

2
5

 = 24

2

5
* 60 = 2 * 12 (cancelling a factor of 5)
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2.5 Division of fractions 31 2

2.5 Division of fractions

Division of one fraction by another is a similar process to multiplication of fractions.
When dividing one fraction by another there is one additional step involved: the
second fraction is inverted and then the calculation continues as a multiplication. To
invert a fraction we interchange numerator and denominator.

Example 2.13
Calculate .

Solution
The second fraction, , is inverted to . The calculation is now carried out as a
multiplication.

 =

9

20

 
3

8
,

5

6
=

3

8
*

6

5

6
5

5
6

3
8 ,

5
6

Exercises

Calculate

(a) (b) (c) 

(d) (e) 34 *
2
3

3
4 *

1
4

3
4 *

1
3

1
2 *

2
3

1
2 *

1
3

1 Calculate the following, expressing your
answer as a mixed fraction:

(a) (b) (c) 

(d) (e) 32
5 * 12

343
4 * 62

3

52
3 * 1 1

1741
3 * 21

211
2 * 31

2

4

Solutions to exercises

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 3
10

4
15

3
4

8
21

2
52

1
2

3
16

1
4

1
3

1
61 (a) (b) (c) (d) (e) 

(a) (b) (c) 6 (d) (e) 52
3312

3105
651

44

35
324

1
2

25
44

9
65

1
43

Calculate

(a) (b) (c) 

(d) (e) 

Calculate

(a) (b) (c) 

(d) (e) 23 *
5
6 *

7
9 *

1
4

6
7 *

8
9 *

21
32

3
4 *

5
6 *

10
11

2
5 *

9
20 *

10
13

1
2 *

2
3 *

3
4

3

5
8 *

12
25

7
9 *

12
35

5
6 *

9
10

4
5 *

10
21

3
7 *

14
15

2
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32 Block 2 0perations on fractions2

Example 2.14
Calculate .

Solution

Example 2.15
Calculate (a) , (b) .

Solution

(a)

(b)

22
9=

 =

20

9

4

9
 = 5 *

9

4
5 , 2

1

4
= 5 ,

9=

21

2
 
6

7
,

2

21
=

6

7
*

5 , 21
4

6
7 ,

2
21

 = 2
2

7

 =

16

7

 =

8

3
*

6

7

 2
2

3
, 1

1

6
=

8

3
,

7

6

22
3 , 11

6

Exercises

Calculate

(a) (b) (c) 

(d) (e) 7
12 ,

49
50

10
13 ,

5
39

7
10 ,

14
15

16
17 ,

8
9

8
9 ,

5
6

1 Calculate the following, expressing your
answer as a mixed fraction:

(a) (b) (c) 

(d) (e) 142
3 , 62

782
5 , 51

4

91
5 , 111

262
3 , 11

451
2 , 31

2

2
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End of chapter exercises 33 2

Solutions to exercises

(a) (b) (c) (d) 6 (e) 25
42

3
4

18
17

16
151 (a) (b) (c) (d) (e) 21

313
5

4
551

314
72

End of block exercises

Evaluate

(a) (b) (c) (d) 

Evaluate, expressing your answer as a mixed
fraction:

(a) (b) (c) 

(d) 51
6 , 21

4

23
4 * 31

342
3 - 11

213
4 + 21

2

2

3
4 ,

9
8

5
6 *

8
15

7
8 -

1
3

4
5 +

3
10

1 Evaluate

11
2 + 31

3

42
5 - 11

3

3

Solutions to exercises

(a) (b) (c) (d) 

(a) (b) (c) (d) 2 8
2791

631
641

42

2
3

4
9

13
24

11
101 153

923

End of chapter exercises

Express each of the following fractions in their
simplest form:

(a) (b) (c) (d) (e) 

Express each of the following mixed fractions
as an improper fraction:

(a) (b) (c) (d) (e) 

Express each of the following improper
fractions as mixed fractions:

(a) (b) (c) (d) (e) 

Calculate

(a) (b) (c) 

(d) (e) 47 +
1
2 -

2
3

10
11 -

1
2

5
6 -

1
3

1
2 +

3
5

3
4 +

1
3

4

120
11

102
50

60
9

32
7

20
3

3

104
7-93

471
252

532
3

2

377
390

6
92

27
81

9
36

12
60

1 Calculate the following, expressing your
answer as a mixed fraction:

(a) (b) (c) 

(d) (e) 

Calculate

(a) (b) (c) 

(d) (e) 

Calculate the following, expressing your
answer as a mixed fraction:

(a) (b) (c) 

(d) (e) 43
4 * 1-24

5231
3 * 31

3

1-31
42 * 25

661
3 * 12

523
4 * 21

2

7

16
21 * 1-3

421-4
52 * 1-3

42
8
9 *

18
25

7
10 *

4
5 *

30
49

6
7 *

14
27

6

9
10 +

6
7 - 12

55 - 42
7 +

1
3

52
3 - 11

2 + 21
524

5 - 12
321

4 + 31
3

5
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Calculate

(a) (b) (c) 

(d) (e) 

Calculate the following, expressing your
answer as a mixed fraction:

(a) (b) (c) 

(d) (e) 

Calculate

(a) of 60 (b) of 75 (c) of 64 (d) of 

(e) of 

expressing each answer as a fraction in its
simplest form.

Evaluate

(a) (b) 

(c) 

(d) (e) 
21

2 + 11
3

62
3 - 21

4

16 -  21
32 * 141

2 -  1
3
42

112 +
1
32 , 123 +

1
52

10 , 21
362

3 , 4

11

20
21

3
4

15
16

2
5

3
8

2
3

1
4

10

105
6 , 1-41

22-122
5 , 31

4

103
4 , 21

561
4 , 22

332
3 , 11

2

9

12
13 ,

6
7

6
11 ,

7
12

9
10 ,

9
20

8
15 ,

4
5

7
9 ,

2
3

8 Thermodynamics – Cooling  of a liquid.
The temperature of a liquid is measured every
20 minutes and the results recorded in the table
below.

12

Time (min) 0 20 40 60 80 100 120
Temp (°C) 96 88 81 76 72 70 68

Calculate the rate of decrease of temperature
in units of °C per minute:
(a) in the first 20 minutes
(b) in the first 40 minutes
(c) in the first 60 minutes
(d) in the last 60 minutes
(e) in the last 20 minutes

In each case express your answer as a fraction
in its simplest form.

Dynamics – Pressure in a vessel.
The pressure in a vessel is 30 N cm�2. If the
pressure is reduced by of its original value,
calculate (a) the decrease in pressure, (b) the
resulting pressure in the vessel.

7
100

13

Solutions to exercises

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) -13 3
10111

9-9 5
24813

1567
87

-
4
7

3
5

16
25

12
35

4
96

5
141 1

21611
301 2

155 7
125

17
42

9
22

1
2

11
10

13
124

1010
112 1

2562
344

762
33

74
7-

39
4

15
2

27
5

11
32

29
30

3
46

1
3

1
4

1
51 (a) (b) (c) 2 (d) (e) 

(a) (b) (c) (d) (e) 

(a) 15 (b) 50 (c) 24 (d) (e) 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 

(a) (b) 27 9
10 N cm-22 1

10 N cm-213

1
10

2
15

1
3

3
8

2
512

46
53

121
12

25
26

30
7

5
311

5
7

3
810

-211
27-353

65439
44211

3224
99

14
13

72
77

2
3

7
68

34 Block 2 0perations on fractions2
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Chapter 3
Decimal numbers

In Chapter 2 we saw how to write both proper and improper fractions.
This chapter introduces an alternative way of writing fractions using
decimal notation.

It is often necessary to write a number to a given accuracy. This is
usually denoted by stating the number of decimal places to be used
or the number of significant figures to be used. Both of these are
explained in this chapter.

M03_CROF5939_04_SE_C03.QXD  9/22/18  6:59 AM  Page 35



Chapter 3 contents

Block 1 Introduction to decimal numbers

Block 2 Significant figures

End of chapter exercises
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BLOCK 1
Introduction to decimal numbers

1.1 Introduction

This section gives a quick overview of the decimal system by way of revision. Recall
that our number system is based on 10. The number 5276 means

or, to write it another way,

This reminds us of the ‘thousands’, ‘hundreds’, ‘tens’ and ‘units’ from early school
days.

To deal with fractions we extend this system to include ‘tenths’, ‘hundredths’,
‘thousandths’, and so on. We separate the whole number part and fractional part by
using a decimal point ‘.’.

Consider 37.92. There is a whole number part, 37, and a fractional part, .92. This
number represents

The 9 is referred to as being in the first decimal place; the 2 is in the second
decimal place. Similarly 2.1006 represents

Note that the 6 is in the fourth decimal place.

Example 1.1
Express (a) 0.2, (b) 0.25, (c) 0.624 as fractions in their simplest form.

Solution
(a) 0.2 is equivalent to . So

(b)

 =

2

10
+

5

100
 

 0.25 = 2 * a 1

10
b + 5 * a 1

100
b  

0.2 = 2 * a 1

10
b =

2

10
=

1

5
 

2 *
1
10

(2 * 1) + a1 *

1

10
b + a0 *

1

100
b + a0 *

1

1000
b + a6 *

1

10000
b

(3 * 10) + (7 * 1) + a9 *

1

10
b + a2 *

1

100
b

(5 * 1000) + (2 * 100) + (7 * 10) + (6 * 1)

5000 + 200 + 70 + 6
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38 Block 1 Introduction to decimal numbers3

(c)

From the above example we note that

We can similarly deduce, for example, that

Example 1.2
Express (a) 5.156, (b) 3.045 as mixed fractions in their simplest form.

Solution
(a)

(b)

Example 1.3
Write the following as decimal numbers: (a) , (b) , (c) , (d) .

Solution
The easiest way to convert a fraction to a decimal number is to use a calculator.
Check that you can obtain the following using a calculator.
(a) 0.75 (b) 0.375 (c) 0.444 . . . (d) 6.4

62
5

4
9

3
8

3
4

3 9
200     =

9

200
     = 3 +

45

1000
3.045 = 3 +

 = 5 +

39

250
= 5

39

250
 

5.156 = 5 +

156

1000
 

0.3049 =

3049

10000
, 0.12348 =

12348

100000
 

0.2 =

2

10
, 0.25 =

25

100
, 0.624 =

624

1000
 

 =

624

1000
=

78

125
 

0.624 =

6

10
+

2

100
+

4

1000
 

=

1

4
 

=

25

100
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1.1 Introduction 39 3

Example 1.4 Materials Engineering – Strain experienced by a stressed
material

In materials engineering, testing techniques include subjecting a specimen to a force
which causes an extension. An important quantity is strain, , defined as

where is the original length of the specimen, and is the length once the force is
applied.

It is important to be able to test materials for their tensile strength – this is the
amount of stress the material is able to stand before it breaks. In carrying out such a
test an engineer will need to calculate the strain.

Engineers also use the strain when mathematically modelling the extension or
compression of an elastic material that is subjected to tensile or compressive forces.

Suppose a block of material of length 0.5 m is subject to a force which causes the
material to extend to a length of 0.51 m. Calculate the strain in the material and
express it as both a proper fraction and a decimal fraction.

Solution
Here is the original length and so Once the force is applied, the length
becomes Then

The strain is then

As a proper fraction this is 2
100 =

1
50.

P =

/ - /0

/0
=

0.01

0.5
= 0.02

/ - /0 = 0.51 - 0.5 = 0.01

/ = 0.51.
/0 = 0.5./0

//0

P =

/ - /0

/0

P

Exercises

Express the following decimal numbers as
proper fractions in their simplest form:

(a) 0.8 (b) 0.80 (c) 0.08 (d) 0.080
(e) 0.800

Express the following decimal numbers as
proper fractions in their simplest form:

(a) 0.2 (b) 0.25 (c) 0.225 (d) 0.025
(e) 0.2025

2

1 Express the following decimal numbers as
proper fractions in their simplest form:

(a) 0.16 (b) 0.88 (c) 0.108 (d) 0.555
(e) 0.965

Write each of the following as a decimal
number:

(a) (b) (c) (d) (e) 110
20

21
84

7
40

3
20

1
5

4

3

Solutions to exercises

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 81
400

1
40

9
40

1
4

1
52

4
5

2
25

2
25

4
5

4
51 (a) (b) (c) (d) (e) 

(a) 0.2 (b) 0.15 (c) 0.175 (d) 0.25 (e) 5.54

193
200

111
200

27
250

22
25

4
253
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40 Block 1 Introduction to decimal numbers3

1.2 Writing to a given number of decimal places

We are often required to write a number to a given number of decimal places (d.p.),
usually 2, 3 or 4.

When asked to write to 1 d.p. we need to consider the first two decimal places,
when writing to 2 d.p. we need to consider the first three decimal places, and so on.

If the final digit is less than 5, we simply ignore it. This is called rounding down. If the
final digit is 5 or more we increase the previous digit by 1. This is called rounding up.

Example 1.5
Write 6.38623 to (a) 4 d.p., (b) 3 d.p., (c) 2 d.p., (d) 1 d.p.

Solution
(a) When writing to 4 d.p. we need to consider the first five decimal places: in this

case that is 6.38623. The final digit is 3. Since this is less than 5 we simply ignore
it and are left with 6.3862. Thus to 4 d.p. the number 6.38623 is 6.3862. Note that
6.3862 is less than 6.38623 and so we have rounded down. The number 6.3862 is
closer to 6.38623 than any other number with four decimal places.

(b) To write to 3 d.p. we consider the first four d.p.: that is, we consider 6.3862.
The final digit is a 2. This is less than 5 and so is simply ignored, leaving 6.386.
So, to 3 d.p., the number 6.38623 is 6.386.

Since 6.386 is less than 6.38623 we have rounded down. The number 6.386
is closer to 6.38623 than any other number with 3 d.p.

(c) To write to 2 d.p. we consider the first 3 d.p.: that is, 6.386. The final digit is 6.
Since this is greater than or equal to 5 the previous digit, 8, is increased by 1 to
9. So to 2 d.p. we have 6.39.

Since 6.39 is greater than 6.38623 we have rounded up. The number 6.39 is
closer to 6.38623 than any other number with 2 d.p.

(d) Writing to 1 d.p. we consider the first 2 d.p.: that is, 6.38. The final digit is 8
and so the previous digit, 3, is rounded up to 4. Thus to 1 d.p. we have 6.4.

Example 1.6
Write 1.9751 to (a) 2 d.p., (b) 1 d.p.

Solution
(a) We consider the first 3 d.p.: that is, 1.975. The final digit is 5 and so the

previous digit, 7, is rounded up to 8. This results in 1.98.
(b) To write to 1 d.p. we consider the first 2 d.p.: that is, 1.97. The final digit is 7

and so the 9 must be increased. Clearly the 9 cannot be increased to 10 and so
we increase the 1.9 to 2.0. Thus to 1 d.p. we have 2.0. Note that it is important to
write 2.0 and not simply 2. The 2.0 signifies that the number is written to 1 d.p.

Exercises

Write 2.152637 to (a) 5 d.p., (b) 4 d.p.,
(c) 3 d.p., (d) 2 d.p., (e) 1 d.p.

Write 9.989 to (a) 2 d.p., (b) 1 d.p.2

1 Write 9.999 to (a) 2 d.p., (b) 1 d.p.3
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1.2 Writing to a given number of decimal places 41 3

Solutions to exercises

(a) 2.15264 (b) 2.1526 (c) 2.153
(d) 2.15 (e) 2.2

(a) 9.99 (b) 10.02

1 (a) 10.00 (b) 10.03

End of block exercises

Write the following numbers to 3 d.p.:
(a) 7.6931 (b) �2.0456 (c) 0.0004
(d) 3.9999

To 1 d.p. a number, X, is 4.3. State (a) the
smallest, (b) the largest possible value of X.

2

1 Convert the following decimal numbers to
fractions in their simplest form:
(a) 0.80 (b) 0.55 (c) 0.12 (d) 0.125 (e) 0.625

Express the following fractions as decimal
numbers to 3 d.p.:

(a) (b) (c) (d) -2
9

3
5

2
11

4
7

4

3

Solutions to exercises

(a) 7.693 (b) �2.046 (c) 0.000 (d) 4.000

(a) 4.25 (b) 4.34999 . . .2

1 (a) (b) (c) (d) (e) 

(a) 0.571 (b) 0.182 (c) 0.600 (d) �0.2224

5
8

1
8

3
25

11
20

4
53
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BLOCK 2
Significant figures

2.1 Introduction

We have seen how a number can be written to so many decimal places. Similar to,
but nevertheless distinct from, writing to so many decimal places is writing to so
many significant figures (s.f.).

2.2 Writing to a given number of significant figures

When writing to so many significant figures we consider digits both before and after
the decimal point. When writing to 2 s.f. we consider the first three digits, when writ-
ing to 3 s.f. we consider the first four digits, and so on. We always consider one more
digit than the number of significant figures required.

To write a number to 2 s.f. we can use at most two non-zero digits, to write to 3 s.f.
we use at most three non-zero digits, and so on. Rounding up and rounding down fol-
low the same rules as detailed in the previous block.

Example 2.1
Write 86.97529 to (a) 5 s.f., (b) 4 s.f., (c) 3 s.f., (d) 2 s.f., (e) 1 s.f.

Solution
(a) Writing to 5 s.f. we consider the first six digits: that is, 86.9752. The final digit

is 2 and so this is ignored: that is, we round down. Hence to 5 s.f. the number is
86.975. Note that there are no more than five non-zero digits in the final answer.
The number 86.975 is closer to 86.97529 than any other five-digit number.

(b) We consider the first five digits: that is, 86.975. The final digit is 5 and so the
previous digit, 7, is rounded up to 8. Thus to 4 s.f. we have 86.98.

(c) The first four digits are 86.97. The final digit is 7 and so the previous digit is
rounded up. We cannot round up a 9 to a 10 and so 86.9 is rounded up to 87.0.

(d) Writing to 2 s.f. we consider the first three digits, namely 86.9. The final digit,
9, means that the 6 is rounded up to 7, producing 87.

(e) Writing to 1 s.f. we consider the first two digits: 86. The final digit, 6, means the
8 is rounded to 9, producing 90. Note that although the number has been written
to 1 s.f. there are two digits in the final answer. However, there is only one non-
zero digit.

Example 2.2
Write 99.99 to (a) 3 s.f., (b) 2 s.f., (c) 1 s.f.

Solution
(a) The first four digits are considered: that is, 99.99. The final digit is 9 and so

there must be rounding up. Here 99.99 is rounded up to 100.0.
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(b) The first three digits are considered: that is, 99.9. The final digit is a 9 and so
rounding up takes place to produce 100.

(c) The first two digits are considered: that is, 99. When rounded up this becomes
100. Note that, although we are writing to 1 s.f., there are three digits in the
final answer. However, there is only one non-zero digit.

Zeros at the beginning of a number are ignored when counting digits. For example,
to write 0.000164 to 1 s.f. we consider the number 0.00016. The leading 0s have not
been counted. The 1 is rounded up to 2 producing 0.0002 to 1 s.f. Note that there is
only one non-zero digit. 

End of block exercises

Write 28.403951 to (a) 6 s.f., (b) 5 s.f.,
(c) 4 s.f., (d) 3 s.f., (e) 2 s.f., (f) 1 s.f.

Write 9.0046 to (a) 3 s.f., (b) 2 s.f., (c) 1 s.f.

Written to 2 s.f. a number is 86. Calculate
(a) the maximum value, (b) the minimum value
of the original number.

3

2

1 Write 0.550 to (a) 2 s.f., (b) 1 s.f.

Write 5.5550 to (a) 2 s.f., (b) 1 s.f.5

4

Solutions to exercises

(a) 28.4040 (b) 28.404 (c) 28.40 (d) 28.4
(e) 28 (f) 30

(a) 9.00 (b) 9.0 (c) 9

(a) 86.4999 . . . (b) 85.53

2

1 (a) 0.55 (b) 0.6

(a) 5.6 (b) 65

4

Write each of the following as a proper
fraction in its simplest form:
(a) 0.12 (b) 0.125 (c) 0.1250 (d) 0.85
(e) 0.76

Write the following fractions as decimals:

(a) (b) (c) (d) (e) 3
100

3
40

3
20

3
10

3
5

2

1 Write the following fractions as decimals,
giving your answer to 3 d.p.:

(a) (b) (c) (d) (e) 

Write 19.919 to (a) 2 d.p., (b) 1 d.p.

Write 19.99 to (a) 3 s.f., (b) 2 s.f., (c) 1 s.f.5

4

6
7

4
11

1
9

2
3

1
3

3

End of chapter exercises
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44 Block 2 Significant figures3

Solutions to exercises

(a) (b) (c) (d) (e) 

(a) 0.6 (b) 0.3 (c) 0.15 (d) 0.075 (e) 0.03

(a) 0.333 (b) 0.667 (c) 0.111 (d) 0.364
(e) 0.857

(a) 19.92 (b) 19.9

(a) 20.0 (b) 20 (c) 205

4

3

2

19
25

17
20

1
8

1
8

3
251 (a) 0.098 (b) 0.10 (c) 0.1 (d) 0.098

(e) 0.1

(a) 9.91904999 . . . (b) 9.91895

3.604999 . . . , 3.595

0.34524999 . . . , 0.34515

1

30
, 0.033310

9

8

7

6

Write 0.0982 to (a) 3 d.p., (b) 2 d.p.,
(c) 1 d.p., (d) 2 s.f., (e) 1 s.f. 

To 4 d.p. a number is 9.9190. State
(a) the maximum possible value,
(b) the minimum possible value of the original
number.

To three significant figures a number is 3.60.
State the maximum and minimum possible
values of the number.

8

7

6 To four significant figures a number is 0.3452.
State the maximum and minimum possible
values of the number.

A block of material of length 0.9 m is subject
to a force which causes the material to extend
to a length of 0.93 m. Calculate the strain in
the material and express it as both a proper
fraction and a decimal fraction stating your
answer to four decimal places.

10

9
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This chapter examines percentages and ratio.

Percentages, explained in Block 1, are simply fractions with a
denominator of 100. Writing fractions as percentages is a useful way
of making comparisons. For example, if a student receives 19 out of 
a possible 30 marks in a first test, and 27 out of a possible 40 marks 
in a second test, is the student improving or getting worse? Once the
scores are written in their equivalent percentage form, the question is
easy to answer.

In Block 2, we look at ratio. Ratio provides a concise method of
describing the relative sizes of each component when some entity is
divided into various parts.

Chapter 4
Percentage and ratio
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Chapter 4 contents

Block 1 Percentage

Block 2 Ratio

End of chapter exercises
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BLOCK 1
Percentage

1.1 Introduction

Percentages are simply fractions with a denominator of 100. Writing fractions as
percentages is a useful way of making comparisons. In this block we remind you of
how to convert a fraction with an arbitrary denominator into a percentage, and how
to calculate the percentage of a given quantity. These are basic numerical skills with
which all engineers and technologists should be familiar.

1.2 Calculating percentages

A percentage is a fraction with a denominator of 100. The symbol % is used to
denote a percentage. For example, we may write as 23%.

We often need to convert a fraction into a percentage: that is, write it as an equiv-
alent fraction with a denominator of 100.

Example 1.1
Write as a percentage.

Solution
We express as an equivalent fraction with a denominator of 100.

An alternative method is to multiply the given fraction by 100 and then label the
result as a percentage. For example,

and so is 28%.

We may be asked to calculate a percentage of a number – for example, calculate 23%
of 160. The following examples illustrate how to do this.

Example 1.2
Calculate (a) 23% of 160, (b) 117% of 240, (c) 100% of 20.

Solution
(a)

23% of 160 =

23

100
* 160 = 36.8

7
25

7

25
* 100 = 28

7

25
=

7 * 4

25 * 4
=

28

100
= 28%

7
25

7
25

23
100
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48 Block 1 Percentage4

(b)

(c)

We note from (c) that 100% of a number is simply the number itself.

Example 1.3 Electrical Engineering – Voltage across a resistor
The voltage across a resistor is 240 volts to within . Calculate the maximum
and minimum possible voltages.

Solution
The maximum voltage is 240 plus 5% of 240: that is, 105% of 240.

volts

The minimum voltage is 240 less 5% of 240: that is, 95% of 240.

volts

Example 1.4 Electrical Engineering – Resistor tolerance bands
A resistor often has its resistance value defined by a tolerance band. This is an inter-
val in which the actual value of the resistance is known to lie. For example, a resistor
might be described as having a resistance . Find the maximum and min-
imum values of such a resistance.

Solution
The maximum value is 80 plus 5% of 80, that is

The minimum value is

Example 1.5 Reliability Engineering
Manufactured components are checked by a quality assurance system to ensure their
compliance with a manufacturing specification. Out of 450 components tested, 438
were acceptable.
(a) Calculate the percentage of components that were acceptable.
(b) If 6000 components are manufactured, estimate the number that will be

rejected (i.e. are not acceptable).

 = 76 Æ

 80 - a 5

100
* 80b = 80 - 4

 = 84 Æ

80 + a 5

100
* 80b = 80 + 4

80 Æ ;  5%

95% of 240 =

95

100
* 240 = 228

105% of 240 =

105

100
* 240 = 252

;5%

100% of 20 =

100

100
* 20 = 20

117
100 * 240 = 280.8117% of 240 =
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Solution
(a) 438 components out of 450 are acceptable. As a percentage this is

Hence 97.33% of the components tested are acceptable.
(b) From (a), 97.33% of the sample tested are acceptable. So the percentage not

acceptable is which is 2.67%. So 2.67% of the sample are
rejected.

We assume that 2.67% of the entire production of 6000 components is also
rejected.

We estimate that 160 components out of the 6000 manufactured will be rejected.

Often a physical characteristic of an item will change. For example, the volume of
gas in a cylinder can change as pressure is applied; the length of a metal bar can
increase (decrease) when the bar is heated (cooled). Sometimes we are asked to
calculate the percentage change of such a physical characteristic.

Percentage change is calculated using the formula

If the change is positive then there has been an increase in the measured quantity; if
the change is negative then there has been a decrease in the quantity.

percentage change =

new value - original value

original value
* 100

2.67% of 6000 =

2.67

100
* 6000 = 160

100 - 97.33

438

450
* 100 = 97.33%

1.2 Calculating percentages 49 4

Key point
Percentage change =

new value - original value

original value
* 100

Example 1.6 Mechanical Engineering – Extension of a spring
A spring is stretched from 25 cm to 27 cm. Calculate the percentage change in the
length of the spring.

Solution
The original length of the spring is 25 cm. The new length of the spring is 27 cm. So

The length of the spring has been increased by 8%.

 = 8

 =

27 - 25

25
* 100

percentage change in the length of the spring =

new value - original value

original value
* 100
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50 Block 1 Percentage4

End of block exercises

Express the following fractions as percentages:
(a) (b) (c) (d) (e) 3

Calculate the following:
(a) 80% of 75 (b) 37% of 250 (c) 125% of 550

The pressure inside a vessel is 
atmospheres. Calculate the maximum and
minimum pressures inside the vessel.

Electrical Engineering – Maximum and
minimum values of a resistor. Resistors are
manufactured so that their resistance lies
within a tolerance band. Calculate the
maximum and minimum values of the
resistances given by:
(a)
(b)
(c)

Mechanical Engineering – Expansion of
metal with rise in temperature. A steel track
measures 25 m at 20 °C. At 70 °C it measures

5

3 MÆ ; 0.1%
29 kÆ ; 5%
10 Æ ; 3%

4

17.5 ; 10%3

2

27
25

21
80

7
20

3
10

1 25.01 m. Calculate the percentage change in
the length of the track as its temperature
changes from 20 °C to 70 °C.

Mechanical Engineering – Compression
of a gas. The volume of gas in a cylinder is

. Pressure is increased and the
volume changes to . Calculate the
percentage change in the volume of gas.

Electrical Engineering – Power loss during
transmission. Transmission lines have a
nominal power rating of 30000 watts. If there
are transmission losses of 9% calculate the
actual power transmitted.

Production Engineering – Quality control.
Quality control systems on a production line
ensure that 98.5% of components
manufactured are of an acceptable standard.
During a day’s production, 12000 components
are made. Calculate the number that are not of
an acceptable standard.

8

7

936 cm3
1098 cm3

6

Solutions to exercises

(a) 30% (b) 35% (c) 26.25% (d) 108%
(e) 300%

(a) 60 (b) 92.5 (c) 687.5

(a) (b) 
(c) 2.997 MÆ, 3.003 MÆ

27.55 kÆ, 30.45 kÆ9.7 Æ, 10.3 Æ4

15.75 atmospheres
minimum =Maximum = 19.25 atmospheres,3

2

1 Increase of 0.04%

Decrease of 14.75%

27300 W

1808

7

6

5
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BLOCK 2
Ratio

2.1 Introduction

Ratios are often used to describe the relative sizes of parts that result when some quan-
tity is divided up. For example, we might be interested in a current that branches into
two parts with one part taking of the initial current and the other part taking . This
division can be expressed as a ratio, as we shall explain in this block, and we write
the ratio using a colon as 3:7. Essentially ratios are a way of describing two (or
more) fractions whose sum is 1.

2.2 Calculating ratios

Suppose a number is divided in the ratio 3:2. We note that . We can think
of the number being divided into two parts. The first part is of the original; the
second part is of the original.

As another example, suppose a quantity is divided in the ratio 4:5:3. We note that
. We can think of the quantity being divided into three parts. The

first part is of the original, the second part is of the original, and the third part is
of the original.
The following examples illustrate how calculations with ratio are performed.

Example 2.1 Electrical Engineering – Branch currents
A branch in a circuit divides the current of 30 amps in the ratio of 3:7. Calculate the
current in each branch.

Solution
A ratio of 3:7 means that for every 3 amps in one branch there are 7 amps in the other
branch. So we can think of every 10 amps as being split into 3 amps in one branch
and 7 amps in the other branch. In other words, one branch receives of the current;
the other branch receives the remaining of the current. Now

So the current is split into 9 amps in one branch and 21 amps in the other branch.

Note from the above example that a ratio of 3:7 is equivalent to splitting a number
into two parts: of the number in one part and of the number in the other part.

In general, we can split a number, x, in the ratio m:n. The first part will be 

; the second part will be .
n

m + n
* x

m

m + n
* x

7
10

3
10

3

10
 of 30 =

3

10
* 30 = 9; 

7

10
 of 30 =

7

10
* 30 = 21

7
10

3
10

3
12

5
12

4
12

4 + 5 + 3 = 12

2
5

3
5

3 + 2 = 5

7
10

3
10
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Example 2.2
Divide 108 in the ratio (a) 5:7, (b) 2:3.

Solution
(a) The first number is

The second number is

(b) The first number is

The second number is

Just as a fraction can be written in many equivalent ways, so can a ratio. The next
example illustrates this.

Example 2.3
Divide 90 in the ratio (a) 4:5, (b) 8:10.

Solution
(a) The first part is

The second part is

(b) The first part is

The second part is

We see that dividing 90 in the ratios 4:5 and 8:10 produces the same result. The
ratios 4:5 and 8:10 are equivalent.

10

8 + 10
 * 90 =

10

18
 * 90 = 50

8

8 + 10
 * 90 =

8

18
 * 90 = 40

5

4 + 5
 * 90 =

5

9
 * 90 = 50

4

4 + 5
 * 90 =

4

9
 * 90 = 40

3
2 + 3 * 108 =

3
5 * 108 = 64.8

2
2 + 3 * 108 =

2
5 * 108 = 43.2

7

5 + 7
 * 108 =

7

12
 * 108 = 63

5

5 + 7
 * 108 =

5

12
 * 108 = 45

52 Block 2 Ratio4

Key point The ratios m:n and km:kn are equivalent. Note that the constant k may be integer or
fractional.
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From the key point we immediately see that the ratios 4:5 and 8:10 (Example 2.3)
are equivalent.

Example 2.4
Divide 132 in the ratio .

Solution
When presented with a ratio involving fractions, it is usually best to write an equiva-
lent ratio which involves only integers. From the key point above we see that 
is equivalent to . Choosing k to be 12 we see that is equivalent to 8:3.
Hence the question is equivalent to dividing 132 in the ratio 8:3.

The first number is of 132: that is, of 132, which is 96. The second
number is of 132: that is, 36.

The idea of a ratio can be extended to three or more parts.

Example 2.5
Divide 160 in the ratio 1:2:5.

Solution
The first number is of 160: that is, of 160, which is 20.

The second number is of 160. This is of 160, which is 40.

The third number is of 160, which is 100.

Example 2.6 Materials Engineering – Composition of an alloy
A metal alloy is made of copper, zinc and nickel in the ratio 3:5:7. Calculate the
weight of copper in 100 kg of the alloy.

Solution
The alloy can be considered as comprising parts. Three of the 
15 parts are copper, that is of the alloy is copper.

So 100 kg of the alloy contains 20 kg of copper.

Example 2.7 Chemical Engineering – Composition of a gas
Gas X comprises oxygen, nitrogen and hydrogen in the ratio 1:2:1. Gas Y comprises
oxygen, nitrogen and hydrogen in the ratio 2:1:3.
(a) If equal volumes of gases X and Y are mixed, calculate the ratio of oxygen,

nitrogen and hydrogen in the resulting gas.
(b) If gas X and gas Y are mixed in the ratio 3:4 find the ratio of oxygen, nitrogen

and hydrogen in the resulting gas.

Solution
(a) In 4 units of gas X, there is 1 unit of oxygen, 2 units of nitrogen and 1 unit of

hydrogen.
In 6 units of gas Y, there are 2 units of oxygen, 1 unit of nitrogen and 3 units

of hydrogen.
Equal volumes of gases X and Y are mixed together. Noting that the l.c.m.

of 4 and 6 is 12, we consider adding 12 units of gas X and 12 units of gas Y:

 = 20

3

15
 of 100 =

1

5
* 100

3
15

3 + 5 + 7 = 15

5
8

2
8

2
1 + 2 + 5

1
8

1
1 + 2 + 5

3
11

8
11

8
8 + 3

2
3 : 14k2

3 : k1
4

2
3 : 14

2
3 : 14

2.2 Calculating ratios 53 4
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12 units of gas X comprise 3 units of oxygen, 6 units of nitrogen and 3 units of
hydrogen; 12 units of gas Y comprise 4 units of oxygen, 2 units of nitrogen and
6 units of hydrogen.

So adding 12 units of gas X to 12 units of gas Y results in 24 units of the
mixture. This mixture comprises

The mixture contains oxygen, nitrogen and hydrogen in the ratio 7:8:9.
(b) Gas X and gas Y are mixed in the ratio of 3:4. We will consider mixing

units of gas X with units of gas Y: 36 units of gas
X contains 9 units of oxygen, 18 units of nitrogen and 9 units of hydrogen; 48
units of gas Y contain 16 units of oxygen, 8 units of nitrogen and 24 units of
hydrogen.

So the resulting mixture has units of oxygen, 
units of nitrogen and units of hydrogen.

The resulting mix contains oxygen, nitrogen and hydrogen in the ratio 
25:26:33.

9 + 24 = 33
18 + 8 = 269 + 16 = 25

4 * 12 = 483 * 12 = 36

3 + 6 = 9 units of hydrogen
 6 + 2 = 8 units of nitrogen
 3 + 4 = 7 units of oxygen

54 Block 2 Ratio4

Example 2.8 Materials Engineering – Poisson ratio
In Chapter 3, Example 1.4, we introduced the concept of strain P caused when a 

material is stretched. Strain is defined by where is the original length 

of the specimen, and is the length after a tensile or stretching force is applied. The
same formula is used when a material is compressed, but this time the final length
will be smaller than the original, leading to a negative strain. 

Suppose a material such as a metal bar is stretched along its length, the so-called
axial direction. It will then tend to contract in the sideways or transverse direc-
tions. The contraction in the transverse directions gives rise to transverse strains.
Figure 2.1 shows a plan view of a metal bar before and after stretching it. 

Suppose the strain in the axial direction is labelled Paxial and that in the transverse
direction is labelled Ptrans. (Here we have assumed that the strain in both transverse
directions is the same.) Then an important quantity used in materials engineering is
called the Poisson ratio, v, defined by

Note the minus sign in this definition, which ensures that the Poisson ratio is positive
because Ptrans is negative when Paxial is positive since the bar is stretched. 

A metal bar of length 1 m is stretched in the axial direction so that it extends by
6 cm. At the same time, its width contracts from 20 mm to 19.5 mm. Calculate Paxial,
Ptrans and hence find the Poisson ratio for this metal. Convert any quantities to 
SI units before performing the calculations. 

Solution

Paxial =

1.06 - 1

1
= 0.06, Ptrans =

0.0195 - 0.020

0.020
= -0.025

v = -  

Ptrans

Paxial

/

/0P =

/ - /0

/0
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2.2 Calculating ratios 55 4

End of block exercises

Divide 250 in the ratio 1:9.

Divide 1 in the ratio 6:3.

Divide 108 in the ratio .

Express the following ratios in their simplest
form: (a) 6:3 (b) 5:15 (c) 8:6:10 (d) 
(e) 

Materials Engineering – Composition of an
alloy. Brass is a mixture of copper and zinc in

5

1
2 : 13 :1

1
2 : 14

4

1
2 : 

1
4 : 353

2

1
the ratio 8:3. Calculate the weight of zinc in
20 kg of brass.

Materials Engineering – Composition of an
alloy. A metal alloy is made from copper, zinc
and steel in the ratio 3:4:1.
(a) Calculate the amount of copper in a 30 kg

block of the alloy.
(b) 10 kg of copper is added to an existing

40 kg block of the alloy to form a new
alloy. Calculate the ratio of copper, zinc
and steel in the new alloy.

6

Then 

Usually the Poisson ratio of a material lies between 0 and 0.5. Some materials,
though, have a negative Poisson ratio. This happens when stretching in the axial
direction causes an expansion in the transverse directions too because then both
strains are positive. Materials with this property can be naturally occurring or syn-
thetic and are described as auxetic. Auxetic materials have many important applica-
tions, for example in shock absorbers. 

Poisson ratio = v = -

-0.025

0.06
= 0.42 (to 2 d.p.)

Stretching in the
axial direction

Contraction in the
transverse direction

After stretching

Figure 2.1
A plan view of a
metal bar before
and after
stretching.

Solutions to exercises

25, 225

40, 20, 483

2
3, 13 2

1 (a) 2:1 (b) 1:3 (c) 4:3:5 (d) 2:1 (e) 3:2:6

5.45 kg

(a) 11.25 kg (b) 5:4:16

5

4

M04_CROF5939_04_SE_C04.QXD  9/20/18  2:47 PM  Page 55



4

End of chapter exercises

Calculate 84% of 560.

Express as a percentage, giving your answer
to 2 d.p.

Calculate 220% of .

The pressure in a vessel is increased by 12% to
. Calculate the original pressure.

Divide 315 in the ratio 6:7:8.

A mass of 176 kg is divided in the ratio 4:5:7.
Calculate the mass of each portion.

Express the ratio using only integers.

The temperature of a chemical is reduced
by 6% to 130 °C. Calculate the original
temperature to 2 d.p.

The percentage change is defined as

= a new value - original value

original value
 b * 100

percentage change

9

8

11
2 : 31

47

6

5

130 N m-2
4

-753

7
92

1 The voltage in a circuit is increased from
220 volts to 270 volts. Calculate the
percentage change.

When a number X is increased by 10% its
value becomes Y. When a number Z is
decreased by 10% its value becomes Y. By
what percentage must X be increased so its
value equals Z?

Chemical Engineering – Composition of a
fluid. Liquid A is made of water, alcohol and
bleach in the ratio of 3:1:2. Liquid B is made
of water, alcohol and bleach in the ratio 4:2:1.
(a) If equal volumes of liquids A and B are

mixed, calculate the ratio of water, alcohol
and bleach in the new liquid.

(b) If liquid A and liquid B are mixed in the
ratio 2:1, calculate the ratio of water,
alcohol and bleach in the resulting mix.

11

10

Solutions to exercises

470.4

77.78%

90, 105, 120

44, 55, 776

5

116.07 N m-24

-1653

2

1 6:13

138.30 °C

22.73%

22.22%

(a) 45:19:20 (b) 33:13:1711

10

9

8

7

56 Block 2 Ratio
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Chapter 5
Basic algebra

In order to be able to apply mathematics to solve engineering
problems it is necessary to introduce symbols to represent physical
quantities. Algebra is used to manipulate these symbols. This chapter
explains how symbols are used and how they can be combined
in various ways. A firm understanding of algebraic techniques is
essential for all further mathematical development. This chapter
provides the necessary foundation and gives you the opportunity
to revise and practise these techniques.

Computer software packages such as Maple and Matlab, which are
commonly available for use in academic and industrial settings, can
compute not just with numbers but also with algebraic symbols.
Moreover, they have very powerful built-in capability for simplifying
algebraic expressions, evaluating and graphing functions, solving
equations and much more. These mathematical topics are discussed in
Chapters 5–7. As you work through these chapters, you are advised to
explore and experiment with the software to which you have access.
Doing so will cement your knowledge of the mathematical techniques
and enable you to tackle more diverse problems than would otherwise
be possible.

M05_CROF5939_04_SE_C05.QXD  9/22/18  7:07 AM  Page 57



Chapter 5 contents

Block 1 Mathematical notation and symbols

Block 2 Indices

Block 3 Simplification by collecting like terms

Block 4 Removing brackets

Block 5 Factorisation

Block 6 Arithmetic of algebraic fractions

Block 7 Formulae and transposition

End of chapter exercises
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BLOCK 1
Mathematical notation and symbols

1.1 Introduction

This introductory block reminds you of important notations and conventions used
throughout engineering mathematics. We discuss the arithmetic of numbers, the
plus or minus sign, , the modulus notation , and the factorial notation !. Sym-
bols are introduced to represent physical quantities in formulae and equations. The
topic of algebra deals with the manipulation of these symbols. The block closes
with an introduction to algebraic conventions. In what follows, a working knowl-
edge of the addition, subtraction, multiplication and division of numerical fractions
is essential.

1.2 Numbers and common notations

A knowledge of the properties of numbers is fundamental to the study of engineering
mathematics. These properties are an essential foundation. Students who master
them will be well prepared for the study of algebra. Much of the terminology used
throughout the rest of the book can be most easily illustrated by applying it to num-
bers. It is for this reason that we strongly recommend that you work through this
block even if you think that the material is familiar.

The number line

A useful way of picturing numbers is to use a number line. Figure 1.1 shows part
of this line. Positive numbers are on the right-hand side of this line; negative num-
bers are on the left-hand side. Any whole or fractional number can be represented by
a point on this line. It is also called the real number line, or simply the real line.
Study Figure 1.1 and note that a minus sign is always used to indicate that a number
is negative, whereas the use of a plus sign is optional when describing positive
numbers.

ƒ ƒ;

–5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8

2.5 π– 3
2

Figure 1.1
Numbers can be
represented on a
number line.
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60 Block 1 Mathematical notation and symbols5

The line extends indefinitely both to the left and to the right. Mathematically we
say that the line extends from minus infinity to plus infinity. The symbol for infinity
is .

The symbol means ‘greater than’: for example, . Given any number, all
numbers to the right of it on the number line are greater than the given number. The
symbol means ‘less than’: for example, . We also use the symbols
meaning ‘greater than or equal to’ and meaning ‘less than or equal to’. For ex-
ample, and are both true statements.

Sometimes we are interested in only a small section, or interval, of the real line.
We write [1, 3] to denote all the real numbers between 1 and 3 inclusive: that is, 1 and
3 are included in the interval. Thus the interval [1, 3] consists of all real numbers x,
such that . The square brackets [,] mean that the end-points are included
in the interval, and such an interval is said to be closed. We write (1, 3) to represent
all real numbers between 1 and 3, but not including the end-points. Thus (1, 3) means
all real numbers x such that , and such an interval is said to be open. An
interval may be closed at one end and open at the other. For example, (1, 3] consists
of all numbers x such that . Intervals can be represented on a number line.
A closed end-point is denoted by ; an open end-point is denoted by . The inter-
vals , and (3, 4] are illustrated in Figure 1.2.[-1, 2](-6, -4)

~�

1 6 x … 3

1 6 x 6 3

1 … x … 3

7 … 77 … 10
…

Ú-3 6 196

6 7 47

q

–5 –4 –3 –2–6 –1 0 1 2 3 4 5 6 7 8

Figure 1.2
The intervals

, 
and (3, 4] are
depicted on the
real line.

[-1, 2](-6, -4)

The plus or minus sign 

In engineering calculations we often use the notation plus or minus, . For example,
we write to mean the two numbers and : that is, 20 and 4.
If we say a number lies in the range we mean that the number can lie
between 4 and 20 inclusive.

The reciprocal of a number

If the number is inverted we get . The reciprocal of a number is found by invert-
ing it. So, for example, the reciprocal of is . Note that the old denominator has
become the new numerator, and the old numerator has become the new denominator.
Because we can write 4 as , the reciprocal of 4 is .

Example 1.1
State the reciprocal of (a) , (b) , (c) 7.

1

5

6

11

1
4

4
1

7
2

2
7

3
2

2
3

12 ; 8
12 -  812 + 812 ; 8

;

;

M05_CROF5939_04_SE_C05.QXD  9/21/18  7:25 AM  Page 60



1.2 Numbers and common notations 61 5

Solution
(a) The reciprocal of a number is found by inverting it. Thus the reciprocal of is

(b) The reciprocal of is 

(c) The reciprocal of 7 is 

The modulus notation 

We shall make frequent use of the modulus notation . The modulus of a number is
the size of the number regardless of its sign. It is denoted by vertical lines around the
number. For example, is equal to 4, and is equal to 3. The modulus of a
number is never negative.

Example 1.2

State the modulus of (a) , (b) , (c) .

Solution
(a) The modulus of a number is found by ignoring its sign. Thus the modulus of

is 

(b) The modulus of is 

(c) The modulus of is 

Factorials !

Another commonly used notation is the factorial, !. The number 5!, read ‘five factor-
ial’, or ‘factorial five’, means , and the number 7! means

. Note that 1! equals 1, and by convention 0! is defined
to equal 1 as well. Your scientific calculator is probably able to evaluate factorials.
7 * 6 * 5 * 4 * 3 * 2 * 1

5 * 4 * 3 * 2 * 1

1

7    
-

1

7

1

5    
1

5

17    -17

-

1

7

1

5
-17

ƒ -3 ƒƒ 4 ƒ

ƒ ƒ

ƒ ƒ

1

7    

5

1
 or simply 5

    
1

5

11

6    

6

11

Key point Factorial notation
If n is a positive whole number then

n! = n * (n - 1) * (n - 2) *
# # #

* 5 * 4 * 3 * 2 * 1
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Example 1.3
(a) Evaluate without using a calculator 4! and 5!.
(b) Use your calculator to find 10!.

Solution
(a) . Similarly, .

Note that .
(b) From your calculator check that .

Example 1.4
Find the factorial button on your calculator and hence state the value of 11!.

Solution
The button may be marked !. Refer to the manual if necessary. Check that

Example 1.5 Coding Theory – Arrangements
In coding theory the letters of a word can be arranged in different ways in order to
disguise their meaning. The number of different arrangements of n different letters is
n!. This is because there are n choices available for the first position, for the
second position, and so on.

For example, the four-letter word NATO has 4! � 24 different rearrangements:

If some of the letters in the word are the same we divide the letters into groups of
identical letters and count the number of letters in each group. For example, suppose
there are k distinct groups of letters with identical letters in the first group, in
the second, in the third, and so on, with in the group. The total number of
letters is still n so that . The number of different
arrangements of the n letters is

For example, the four-letter word NASA can be divided into three groups of identi-
cal letters, N, A and S, and the number of letters in these groups is 1, 2, 1 respec-
tively. The number of arrangements of the word NASA is

4!

1!2!1!
= 12

n!

n1! * n2! * n3! *
# # #

* nk!

n1 + n2 + n3 +
# # #

+ nk = n
k thnkn3

n2n1

ATON, TOAN, OATN, AOTN, OTAN, TAON.

ATNO, TONA, OANT, AONT, OTNA, TANO;

ANTO, TNOA, ONAT, ANOT, ONTA, TNAO;

NATO, NTOA, NOAT, NAOT, NOTA, NTAO;

n -  1

39916800    11! =

10! = 3628800
5! = 5 * 4!

5! = 5 * 4 * 3 * 2 * 1 = 1204! = 4 * 3 * 2 * 1 = 24

For example,

 = 720
6! = 6 * 5 * 4 * 3 * 2 * 1
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1.2 Numbers and common notations 63 5

These are

In this context the word permutation is often used as an alternative to the word
‘arrangement’.

ASAN, SAAN, AASN.
ASNA, SANA, AASN;
ANSA, SNAA, ANAS;
NASA, NSAA, NAAS;

Exercises

Draw a number line and on it label points to
represent , , , 
and 5.

Evaluate (a) (b) (c) 

(d) (e) (f) 2!,

(g) (h) 

State the reciprocal of (a) 8, (b) 

Evaluate (a) , (b) ,

(c) , (d) ,

(e) , (f) .|-2| ; 8|-8| ; 13

-16 ; 0.05-15 ;
1
2

16 ; 77 ; 34

9

13
.3

9!

8!
.8! - 3!,

|0.01 - 0.001|,|0.25|,

|-0.001|,|4|,|-18|,2

-
5
6, -1

2, 0,22, p-p-3.8-5
1 Which of the following statements are true?

(a) (b) (c) 

(d) (e) 

(f) (g) 

Calculate the number of permutations of the
letters in the words:
(a) submarine (b) satellite

6

8! … 10!9! … 8!

ƒ -8 ƒ … -8|-8| 6 8

-8 … ƒ 8 ƒ-8 … -8-8 … 8

5

Solutions to exercises

1

(a) 18 (b) 4 (c) 0.001 (d) 0.25 (e) 0.009
(f) 2 (g) 40314 (h) 9

(a) (b) 

(a) 4, 10 (b) 9, 23 (c) 

(d) (e) , 21

(f) , 10-6

-5-16.05, -15.95

-151
2, -141

24

13

9

1

8
3

2 (a), (b), (c), (g) are true.

(a) (b) 
9!

2!2!2!
= 453609! = 3628806

5

–5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8

–3.8 2
5
6

1
2

–p p–

–
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64 Block 1 Mathematical notation and symbols5

1.3 Using symbols

Mathematics provides a very rich language for the communication of engineering
concepts and ideas, and a set of powerful tools for the solution of engineering prob-
lems. In order to use this language it is essential to appreciate how symbols are used
to represent physical quantities, and to understand the rules and conventions that
have been developed to manipulate them.

The choice of which letters or other symbols to use is largely up to the user,
although it is helpful to choose letters that have some meaning in any particular con-
text. For instance, if we wish to choose a symbol to represent the temperature in a
room we might choose the capital letter T. Usually the lowercase letter t is used to
represent time. Because both time and temperature can vary we refer to T and t as
variables. In a particular calculation some symbols represent fixed and unchanging
quantities and we call these constants, although constants can vary from one calcu-
lation to the next. Often we reserve the letters x, y and z to stand for variables and use
the earlier letters of the alphabet, such as a, b and c, to represent constants. The
Greek letter pi, written , is used to represent the constant 3.14159 . . . , which
appears in the formula for the area of a circle. Other Greek letters are frequently
used, and for reference the Greek alphabet is given in Table 1.1.

p

alpha l iota rho
beta K kappa sigma
gamma lambda T tau
delta M mu upsilon

E epsilon N nu phi
zeta xi chi
eta omicron psi
theta pi omegavÆpßu™

c°oOhH
xXj�zZ
f£ne

y�md¢

tl¶g≠

s©kbB
rPIaA

Table 1.1
The Greek
alphabet.

Mathematics is a very precise language and care must be taken to note the exact
position of any symbol in relation to any other. If x and y are two symbols, then the
quantities xy, xy, xy can all mean different things. In the expression xy you will note
that the symbol y is placed to the right of and slightly higher than the symbol x. In
this context y is called a superscript. In the expression xy, y is placed lower than and
to the right of x, and is called a subscript.

Example 1.6 The temperature in a room
The temperature in a room is measured at four points as shown in Figure 1.3. Rather
than use different letters to represent the four measurements we can use one symbol,
T, together with four subscripts to represent the temperature. Thus the four measure-
ments are T1, T2, T3 and T4.
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1.3 Using symbols 65 5

Addition 

If the letters x and y represent two numbers, then their sum is written as x � y. Note
that is the same as just as is equal to .

Subtraction 

Subtracting y from x yields . This quantity is also called the difference of x and
y. Note that is not the same as just as is not the same as .

Multiplication 

The instruction to multiply x and y together is written as . Usually the multipli-
cation sign is missed out altogether and we write simply xy. An alternative and
acceptable notation is to use a dot to represent multiplication, and so we could write
x.y. The quantity xy is called the product of x and y. Note that xy is the same as yx
just as is the same as . Because of this we say that multiplication is
commutative. Multiplication is also associative. This means that when we multiply
three quantities together, such as , it does not matter whether we evaluate

first and then multiply the result by z, or evaluate first and then multiply
the result by x. Thus

When mixing numbers and symbols it is usual to write the numbers first. Thus
.

Example 1.7
Simplify (a) 9(2y), (b) (5z), (c) 4(2a), (d) .

Solution
(a) Note that 9(2y) means . Because of the associativity of multipli-

cation means the same as , that is 18y.
(b) (5z) means . Because of associativity this is the same as

, that is .
(c) 4(2a) means . We can write this as , that is 8a.(4 * 2) * a4 * (2 * a)

-15z(-3 * 5) * z
-3 * (5 * z)-3

(9 * 2) * y9 * (2 * y)
9 * (2 * y)

2x * (2y)-3

3 * x * y * 4 = 3 * 4 * x * y = 12xy

 = x * y * z
 (x * y) *  z = x * ( y * z)

y * zx * y
x * y * z

3 * 44 * 3

x * y

(* )

7 - 1111 - 7y - xx - y
x - y

(- )

7 + 44 + 7y + xx + y

(+ )

T1

T3

T4

T2

Figure 1.3
The temperature is
measured at four
points.
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66 Block 1 Mathematical notation and symbols5

(d) Because of the associativity of multiplication, the brackets are not needed and
we can write , which equals

Example 1.8
What is the distinction between and ?

Solution
The expression means . Because of associativity of multiplication
we can write this as which equals . On the other hand 
means subtract 2y from 9. This cannot be simplified.

Division 

The quantity means x divided by y. This is also written as or and is

known as the quotient of x and y. In the expression the top line is called the

numerator and the bottom line is called the denominator. Note that is not the

same as Division by 1 leaves a quantity unchanged so that is simply x. Div-

ision by 0 is never allowed.

Algebraic expressions

A quantity made up of symbols and the operations , , and is called an
algebraic expression. One algebraic expression divided by another is called an
algebraic fraction. Thus

are algebraic fractions. The reciprocal of an algebraic fraction is found by inverting
it so that the old numerator becomes the new denominator, and the old denominator 

becomes the new numerator. Thus the reciprocal of is . The reciprocal of 

is .

Example 1.9
State the reciprocal of each of the following expressions:

(a) (b) (c) 3y (d) (e) 

Solution
(a) The reciprocal of is .

(b) The reciprocal of is .
a - b

x + z

x + z

a - b

z

y

y

z

1
y

1

a + 2b

x + z

a - b

y

z

x - 3

x + 7

x + 7

x - 3

x

2

2
x

x + 7

x - 3
 and 

3x - y

2x + z
 

>*-+

x

1
y>x.

x>y
x

y

x

y
x>yx , y

(, )

9 - 2y-18y9 * (-2) * y
9 * (-2y)9(-2y)

9 - 2y9(-2y)

 = 4xy
 2 * x * 2 * y = 2 * 2 * x * y

2x * (2y) = 2x * 2y
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1.3 Using symbols 67 5

(c) 3y is the same as . The reciprocal of 3y is .

(d) The reciprocal of is or simply .

(e) The reciprocal of is or simply y.

Finding the reciprocal of a complicated expression can cause confusion. Study the
following example carefully.

Example 1.10
State the reciprocal of:

(a) (b) 

Solution

(a) Because can be thought of as its reciprocal is

Note in particular that the reciprocal of is not . This distinction is 

important and a common cause of error. To avoid an error, carefully identify the
numerator and denominator in the original expression before inverting.

(b) The reciprocal of is

To simplify this further requires knowledge of the addition of algebraic
fractions, which is dealt with in Block 6. It is important to note that the 

reciprocal of is not .

Example 1.11 Electrical Engineering – Conductance and reactance

Reciprocals of physical quantities occur in several engineering contexts. For exam-

ple, if R is the resistance value of a resistor, then its reciprocal, , is known as the

conductance, G, so that

Clearly, when the resistance of a component is large, its conductance will be small,
and vice versa. 

In a.c. circuit theory, if C is the capacitance of a capacitor, the reciprocal 
of C appears in the definition of capacitive reactance, XC. This is defined as 

G =

1

R

1

R

R1 + R2
1

R1 
+

1

R2 

1

1

R1 
+

1

R2 
 

1

R1 
+

1

R2 

1
p

+

1
q

p + q

1

p + q

p + q

1
p + q

1

R1 
+

1

R2 
p + q

y

1

1
y

a + 2b
a + 2b

1

1

a + 2b

1

3y

3y

1
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68 Block 1 Mathematical notation and symbols5

where is the angular frequency of the applied alternating

voltage (see Chapter 9, Block 7, Section 7.4).

Example 1.12 Electrical Engineering – Transfer function
A control engineer often makes use of a mathematical expression called a transfer
function, which tells the engineer how the output of a complicated system is related to
the input or driving force. The transfer function often takes the form of an algebraic
fraction, where the variable used is the letter s. Typical transfer functions may look like

The equals sign,

The equals sign, , is used in several different ways. Firstly, an equals sign is used in
equations. The left-hand side and right-hand side of an equation are equal only
when the variable involved takes specific values known as solutions of the equation.
For example, in the equation , the variable is x. The left-hand side and
right-hand side are equal only when x has the value 8. If x has any other value the two
sides are not equal.

Secondly, the equals sign is used in formulae. Physical quantities are often related
through a formula. For example, the formula for the length, C, of the circumference of a
circle expresses the relationship between the circumference of the circle and its radius, r.
This formula states . When used in this way the equals sign expresses the fact
that the quantity on the left is found by evaluating the expression on the right.

Finally, an equals sign is used in identities. At first sight an identity looks rather
like an equation, except that it is true for all values of the variable. We shall see
shortly that for any value of x whatsoever. This means
that the quantity on the left means exactly the same as that on the right whatever the
value of x. To distinguish this usage from other uses of the equals symbol it is more
correct to write , where means ‘is identically equal to’,
although in practice the equals sign is often used.

The ‘not equals’ sign,

The sign means ‘is not equal to’. For example, it is correct to write ,
.

The notation for the change in a variable

The change in the value of a quantity is found by subtracting its initial value from its
final value. For example, if the temperature of a mixture is initially 13°C and after
some time is found to be 17°C, the change in temperature is . The
Greek letter is often used to indicate such a change. If x is a variable we write 
to stand for a change in the value of x. We sometimes refer to as an incrementdx

dxd

17 - 13 = 4 °C

d

7 Z -7
5 Z 6Z

Z

K(x - 1)(x + 1) K x2
- 1

(x - 1)(x + 1) = x2
- 1

C = 2pr

x - 8 = 0

=

=

1

s2
+ 3s + 4

 or 
1

s2
- 1

vXC =

1
v

*

1

C
=

1

vC
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in x. For example, if the value of x changes from 3 to 3.01 we could write
. It is important to note that this is not the product of and x,

rather the whole quantity x means the increment in x.

Sigma notation,

Sigma notation provides a concise and convenient way of writing long sums. The sum

is written using the capital Greek letter sigma, , as

The stands for the sum of all the values of as k ranges from 1 to 12. Note that
the lowermost and uppermost values of k are written at the bottom and top of the
sigma sign respectively.

Example 1.13
Write out explicitly what is meant by

Solution
We must let k range from 1 to 5:

Example 1.14

Express concisely using sigma notation.

Solution

Each term takes the form where k varies from 1 to 4. Write down the sigma notation:

Example 1.15

Write out explicitly 

Solution
Here k does not appear explicitly in the terms to be added. This means add the num-
ber 1, three times:

In general .a
k = n
k = 1 1 = n

 = 3

 a
k = 3

k = 1

 1 = 1 + 1 + 1

a
k = 3
k = 1 1.

  a
k = 4

k = 1

1

k    

1

k

1

1
+

1

2
+

1

3
+

1

4

a
k = 5

k = 1

 k3
= 13

+ 23
+ 33

+ 43
+ 53

a
k = 5

k = 1

 k3

xk©

a
k = 12

k = 1

 xk or a
k = 12
k = 1  xk

©

x1 + x2 + x3 + x4 +
# # #

+ x11 + x12

©

d

ddx = 3.01 - 3 = 0.01
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1.4 Computer algebra packages

Computer algebra packages are specially designed computer programs with the abil-
ity to manipulate symbols, solve equations, etc. There are several different packages
available but the common ones are Maple and Matlab. You should enquire about the
availability of this software in your college or university.

Exercises

State the reciprocal of (a) x, (b) , (c) xy,

(d) , (e) , (f) .

The pressure p in a reaction vessel changes
from 35 pascals to 38 pascals. Write down the
value of .

Express as simply as possible:
(a) 
(b) 

Simplify (a) , (b) ,
(c) , (d) .

What is the distinction between and
?5x - 2y

5x(2y)5

5x(-8y)5x(8y)
17x(-2y)8(2y)4

9 * x * z * (-5)
(-3) * x * (-2) * y

3

dp

2

2

a + b
a + b

1

xy

1

z
1 The value of x is . The value of y is

. Find the maximum and minimum
values of

(a) (b) xy (c) (d) 

Write out explicitly (a) 

(b) 

By writing out the terms explicitly show that

Write out explicitly .a
3
k = 1 y(xk)dx9

a
k = 5

k = 1

 3k = 3a
k = 5

k = 1

 k

8

a
N
i = 1 fixi.

a
N
i = 1 fi,7

y

x

x

y
x + y

120 ; 5
100 ; 36

Solutions to exercises

(a) (b) z (c) (d) xy (e) (f) 

pascals

(a) 6xy (b) 

(a) 16y (b) (c) 40xy (d) 

cannot be simplified.5x(2y) = 10xy, 5x -  2y5

-40xy-34xy4

-45xz3

dp = 32

a + b

2

1

a + b

1

xy

1

x
1 (a) max 228, min 212 (b) 12875, 11155

(c) 0.8957, 0.7760 (d) 1.2887, 1.1165

(a) 

(b) 

y(x1)dx + y(x2)dx + y(x3)dx9

+ fN-1xN-1 + fNxN

a
N
i = 1  fi xi = f1x1 + f2x2 +

# # #

a
N
i = 1  fi = f1 + f2 +

# # #
+ fN-1 + fN7

6
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Solutions to exercises

1

(a) 3 (b) (c) (d) 3

(a) 4 (b) 4 (c) (d) 24

(a) (b) (c) 

(a) 33.25, 36.75 (b) 423, 517

�2 metres per second

(a) 56xy (b) (c) 24xyz-16ab7

6

5

3y

4x

3

4

1

9
4

-43

-1-112 (a) 15x (b) 8x (c) 

is the product of x and �y. The
expression means subtract y from x.

 + f2(x2 - x )2
+ f3(x3 - x )2

 a
3
i = 1 fi(xi - x)2

= f1(x1 - x)211

x - y
x(-y)9

-56x8

–1 0 11
2

1
2–

End of block exercises

On a number line indicate all numbers greater
than or equal to but less than .

Evaluate (a) ,

(b) , (c) ,

(d) .

Evaluate (a) , (b) ,
(c) , (d) .

State the reciprocal of (a) 9, (b) , (c) .

Calculate the maximum and minimum values
of the following resistances defined by their
tolerance bands:
(a) (b) 

The speed, v, of a vehicle changes from
40 metres per second to 38 metres per second.
Write down the value of .dv

6

470 Æ ; 10%35 Æ ; 5%

5

4x

3y

4

3
4

4 * 3!2! - 3!
3! - 23! - 2!3

ƒ 3 - 2 ƒ + ƒ 5 - 7 ƒ

ƒ 3 - 2 ƒ + 5 - 73 - ƒ 2 + 5 ƒ - 7

3 - 2 + ƒ 5 - 7 ƒ2

3
4-

1
2

1 Express as simply as possible:
(a) 
(b) 
(c) 

Simplify (a) , (b) , (c) .

What is the distinction between and
?

Show that (a) ,

(b) ,

(c) .

Write out explicitly .a
3
i = 1 fi(xi - x )211

n!

(n + 1)!
=

1

n + 1

(n + 1)!

(n - 1)!
= n(n + 1)

n!

(n - 1)!
= n10

x - y
x(-y)9

8(-7x)4(2x)5(3x)8

2 * x * 3 * y * 4z
-8 * 2 * a * b
7 * x * 4 * 2 * y

7
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BLOCK 2
Indices

2.1 Introduction

Indices, or powers, provide a convenient notation when we need to multiply a num-
ber by itself several times. In this block we explain how indices are written, and state
the rules or laws that are used for manipulating them.

Expressions built up using non-negative whole number powers of a variable and
known as polynomials occur frequently in engineering mathematics. We introduce
some common polynomials in this block.

Scientific notation is used to express very large or very small numbers concisely.
This requires the use of indices. We explain how to use scientific notation towards
the end of the block.

2.2 Index notation

When we wish to multiply a number by itself several times we make use of index or
power notation. The number is written as 43 and read ‘4 raised to the
power 3’ or ‘4 cubed’. Note that the number of times ‘4’ occurs in the product is
written as a superscript. In this context we call the superscript 3 an index. Similarly
we could write

and

More generally, in the expression xy, x is called the base and y is called the index or
power. The plural of index is indices. The process of raising to a power is also
known as exponentiation because yet another name for a power is an exponent.
When dealing with numbers your calculator is able to evaluate expressions involving
powers, probably using the xy button.

Example 2.1
Use a calculator to evaluate .

Solution
Using the button on the calculator check that you obtain .312

= 531441xy

312

7 * 7 * 7 * 7 * 7 = 75, a * a * a = a3, m * m * m * m = m4

5 * 5 = 52, read ‘5 to the power 2’ or ‘5 squared’

4 * 4 * 4
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Example 2.2
Identify the index and base in the following expressions:
(a) (b) (c) (d) 

Solution
(a) In the expression , 8 is the base and 11 is the index.
(b) In the expression is the base and 5 is the index.
(c) In the expression is the base and m is the index.
(d) In the expression is the base and is the index. The interpretation of a

negative index will be given in Section 2.5.

Recall from Chapter 1 that when several operations are involved we can make use of
the BODMAS rule for deciding the order in which operations must be carried out.
The BODMAS rule makes no mention of exponentiation. Exponentiation should
be carried out once any brackets have been dealt with. Consider the following
examples.

Example 2.3
Evaluate .

Solution
There are two operations involved here, exponentiation and multiplication. The expo-
nentiation should be carried out before the multiplication, so .

Example 2.4
Write out fully (a) 3m4, (b) .

Solution
(a) In the expression the exponentiation is carried out before the multiplication

by 3, so

that is

(b) Here the bracketed expression is raised to the power 4 and so should be
multiplied by itself four times:

Because of the associativity and commutativity of multiplication we can write
this as

or simply .

Note the important distinction between and and in particular the way that
the power is applied.

3m4(3m)4

81m4

3 * 3 * 3 * 3 * m * m * m * m

(3m)4
= (3m) * (3m) * (3m) * (3m)

3 * m * m * m * m

3m4 means 3 * (m * m * m * m)

3m4

(3m)4

7 * 32
= 7 * 9 = 63

7 * 32

-qp-q, p
zm, z
(-2)5, -2
811

p-qzm(-2)5811
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Care must be taken when using your calculator to find powers of negative numbers.
For example, means . Check that your calculator gives the
correct answer. It may be necessary to enclose the �2 in brackets.

(-2) * (-2) = +4(-2)2

Exercises

Evaluate, without using a calculator:
(a) (b) (c) 

Evaluate, without using a calculator:
(a) (b) 

Evaluate using a calculator:
(a) (b) 

Write each of the following using index
notation:
(a) (b) t * t * t * t7 * 7 * 7 * 7 * 7

4

(14)3.273
3

1520.22
2

253433
1 (c) 

Evaluate without using a calculator:

(a) (b) (c) (d) 

(e) 

Explain what is meant by . How would
you write the expression if you wanted the
multiplication by 5 carried out first?

5 * 346

0.13

a1

2
b3a1

2
b2a2

5
b3a2

3
b2

5

1

2
*

1

2
*

1

7
*

1

7
*

1

7

Solutions to exercises

(a) 27 (b) 81 (c) 32

(a) 0.04 (b) 225

(a) 343 (b) 4651.7

(a) (b) (c) a 1

2
b2

 a1

7
b3

t4754

3

2

1 (a) (b) (c) (d) (e) 0.001

means . If the intention
is to carry out the multiplication first we would
write .(5 * 3)4

5 * 81 = 4055 * 346

1

8

1

4

8

125

4

9
5

2.3 Laws of indices

There are a number of rules that enable us to manipulate expressions involving
indices. These rules are known as the laws of indices, and they occur so commonly
that it will be worthwhile to memorise them.

Key point The laws of indices state:

first law: 

second law: 

third law: 

In each case note that the base must be the same throughout.

(am)n
= amn

am 

an 
= am-n

am
* an

= am + n
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In words, these state that to multiply two numbers having the same base and possibly
different indices, the indices are added. To divide, the indices are subtracted. If a
number is raised to a power and the result itself is raised to a power, the two powers
are multiplied together. Consider the following examples.

Example 2.5
Simplify (a) , (b) .

Solution
In each case we are required to multiply expressions involving indices. The bases are
the same and we can use the first of the given laws.
(a) The indices must be added: thus .
(b) Because of the associativity of multiplication we can write

The first law extends in an obvious way when more terms are involved.

Example 2.6
Simplify .

Solution
The indices are added. Thus .

Example 2.7
Simplify .

Solution
All quantities have the same base. To multiply the quantities together, the indices are
added:

Example 2.8

Simplify (a) , (b) .

Solution
In each case we are required to divide expressions involving indices. The bases are
the same and we can use the second of the given laws.

(a) The indices must be subtracted: thus 

(b) Again the indices are subtracted, and so .

Example 2.9

Simplify (a) , (b) .
y5

y2

59

57

x18
, x7

= x18-7
= x11

84

82
= 84 - 2

= 82.

x18
, x784

82

y9    y4y2y3
=

y4y2y3

b5
* b4

* b7
= b5 + 4 + 7

= b16

b5
* b4

* b7

 = 2x8
 = 2x5 + 3

  2x5(x3) = 2(x5x3)

a5
* a4

= a5 + 4
= a9

2x5(x3)a5
* a4
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Solution
(a) The bases are the same, and the division is carried out by subtracting the

indices:

(b)

Example 2.10
Simplify (a) , (b) .

Solution
We use the third of the given laws.
(a) 
(b) 

Example 2.11
Simplify .

Solution
Apply the third law.

Example 2.12
Simplify .

Solution
Again, using the third law, the two powers are multiplied:

Two important results that can be derived from the laws state:

e x * y
= e xy    (ex)y

=

(ex)y

 x2 * 5
= x10    (x2)5

=

(x2)5

(z3)4
= z3 * 4

= z12
(82)3

= 82 * 3
= 86

(z3)4(82)3

y5-2
= y3    

y5 

y2 
=

59-7
= 52    

59 

57 
=

Key point Any number raised to the power 0 is 1, that is .

Any number raised to the power 1 is itself, that is .a1
= a

a0
= 1

A generalisation of the third law states:

Key point (a mbn)k
= a mkb nk

Example 2.13
Remove the brackets from (a) , (b) .

Solution
(a) Noting that and then

 = 9x2
 = 32x2
 = 31 * 2x1 * 2

  (3x)2
= (31x1)2

x = x13 = 31

(x3y7)4(3x)2
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Alternatively

(b)

 = x12y28

  (x3y7)4
= x3 * 4y7 * 4

 =  9x2
  (3x)2

= (3x) * (3x)

Exercises

Show that is equivalent to .

Show that is equivalent to .

Write each of the following expressions with a
single index:

(a) (b) (c) (x4)367 

619 
67 69

3

-x3y3(-xy)32

x2y2(-xy)21 Remove the brackets from (a) ,

(b) , (c) , (d) , (e) .

Simplify (a) , (b) ,

(c) .

Simplify (a) , (b) , (c) ,

(d) , (e) .5x2(3x9)2x8(x11)

3x7(x4)4x2(x3)5x(x3)6

18x-1(3x4)

3x2(5x)15x2(x3)5

(6x)4y(6xy)47(ab)3(7ab)3

(8a)24

Solutions to exercises

(a) (b) (c) 

(a) (b) (c) 

(d) (e) 1296x4y1296x4y4

7a3b3343a3b364a24

x126-126163 (a) (b) (c) 

(a) (b) (c) (d) (e) 15x112x193x114x55x46

54x315x315x55

2.4 Polynomial expressions

An important group of mathematical expressions that use indices are known as
polynomials. Examples of polynomials are

Notice that they are all constructed using non-negative whole number powers of the
variable. Recall that and so the number appearing in the first example can be
thought of as . Similarly the 17 appearing in the third example can be read .17t0-7x0

-7x0
= 1

4x3 + 2x 2 + 3x - 7, x 2 + x, 17 - 2t + 7t 4, z - z3 

Key point A polynomial expression takes the form

where a0, a1, a2, a3, . . . are all constants called the coefficients of the polynomial.
The number a0 is also called the constant term. The highest power in a polynomial

a0 + a1x + a2x2
+ a3 x3

+ . . .

M05_CROF5939_04_SE_C05.QXD  9/21/18  7:25 AM  Page 77



78 Block 2 Indices5

Example 2.14
Which of the following expressions are polynomials? Give the degree of those that are.

(a) (b) (c) (d) 

Solution
Recall that a polynomial expression must contain only terms involving whole
number powers of the variable.

Give your answers:

(a) ,

(b) , 

(c) , 

(d) , polynomial of degree 1    2t + 4

not a polynomial    2x

not a polynomial    
1

x + 1

polynomial of degree 2    3x2
+ 4x + 2

2t + 42x
1

x + 1
3x2

+ 4x + 2

is called the degree of the polynomial. Polynomials with low degrees have special
names:

Polynomial Degree Name

3 cubic
2 quadratic
1 linear

a 0 constant
ax + b

ax2
+ bx + c

ax3
+ bx2

+ cx + d

Exercises

State which of the following are linear polyno-
mials, which are quadratic polynomials, and
which are constants:
(a) x (b) (c) (d) 

(e) (f) (g) (h) 

State which of the following are polynomials:

(a) (b) (c) (d) 19
1

x
x1>2

- 7x2
-a2

- a - 1

2

3 -
1
2x21

2x +
3
4

1
27x - 2

3 - xx2
- 1x2

+ x + 3

1 Which of the following are polynomials?

(a) (b) (c) 15

(d) (e) 

State the degree of each of the following
polynomials. For those of low degree, give
their name.
(a) (b) (c) 

(d) (e) (f) 422 - 3x - x2x2
+ 3x + 2

7x + 27t7 + 14t3 - 2t22t3 + 7t2

4

1

t2 
+

1

t
+ 7t2 - 3t + 7

1
2 -  12t4t + 17

3

Solutions to exercises

(a), (d), (e) and (g) are linear; (b), (c) and (h)
are quadratic; (f) is a constant.

(a) is a polynomial, (d) is a polynomial of
degree 0, (b) and (c) are not polynomials.

2

1 (a), (b), (c) and (d) are polynomials.

(a) 3, cubic, (b) 7, (c) 1, linear, (d) 2,
quadratic, (e) 2, quadratic, (f) 0, constant.

4

3
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2.5 Negative indices

Sometimes a number is raised to a negative power. This is interpreted as follows:

Key point
negative powers: a-m

=

1

am , am =

1

a-m 

Thus a negative index can be used to indicate a reciprocal.

Example 2.15
Write each of the following expressions using a positive index and simplify if possible.

(a) (b) (c) (d) (e) 

Solution

(a) 

(b) 

(c) 

(d) 

(e) 

Example 2.16
Write each of the following using a positive index:

(a) (b) (c) (d) 

Solution
Use the previous key point.

(a) 

(b) 

(c) 

(d) 
1

102 
 which equals 

1

100
 or 0.01

    
10-2

=

1
y    

y-1
=

1

173     
17-3

=

t4    
1

t-4 
=

10-2y-117-31

t-4 

10-1
=

1

101 
=

1

10
 or 0.1

x-2
=

1

x2 

x-1
=

1

x1 
=

1
x

1

4-3 
= 43

= 64

2-3
=

1

23 
=

1

8

10-1x-2x-11

4-3 
2-3
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Example 2.17

Simplify (a) , (b) .

Solution
(a) Use the first law of indices to simplify the numerator:

Then use the second law to simplify the result:

(b) First simplify the numerator using the first law of indices:

Then use the second law to simplify the result:

m7-(-3)
= m10    

m7 

m-3     
m9

* m-2 

m-3 
=

a11    

a15 

a4     
a8

* a7 

a4 
=

m9
* m-2 

m-3 

a8
* a7 

a4 

Exercises

Write the following numbers using a positive
index and also express your answers as
decimal fractions:
(a) (b) (c) 10-410-310-1

1 Simplify as much as possible:

(a) (b) (c) 
y-2 

y-6 

t4 

t-3 
x3x-2

2

Solutions to exercises

(a) (b) 

(c) 
1

104 
= 0.0001

1

103 
= 0.001

1

10
= 0.11 (a) (b) (c) y-2 + 6

= y4t4 + 3
= t7x1

= x2

2.6 Fractional indices

So far we have used indices that are whole numbers. We now consider those that
are fractions. Consider the expression . Using the third law of indices,

, we can write

 = 16
 = 161

 (161>2)2
= 161>2 * 2

(am)n
= amn

1161>222
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So 161�2 is a number that when squared equals 16, that is 4 or . In other words
161�2 is a square root of 16, that is . There are always two square roots of a non-
zero number, and we write

In general

161>2
= ;4

216
-4

Key point is a square root of aa1>2

Similarly

so that is a number that when cubed equals 8. Thus is the cube root of 8, that
is , namely 2. Each number has only one cube root, and so

81>3
= 2

23 8
81>381>3

 = 8
 = 81

  (81>3)3
= 81>3 * 3

Key point is the cube root of aa1>3

In general we have

Key point is the nth root of x, that is 2n xx1/n

Your calculator will be able to evaluate fractional powers, and roots of numbers.
Check that you can obtain the results of the following examples.

Example 2.18
Evaluate (a) , (b) .

Solution
(a) is a square root of 144, that is .
(b) Noting that , we see that .

Example 2.19
Evaluate (a) , (b) , (c) .

Solution
(a) is the fifth root of 32, that is . Now and so .
(b) Using the third law of indices we can write . Thus

 = 4
 = 22

 322>5
= (321>5)2

322>5
= 322 * 1>5

= (321>5)2
25 32 = 225

= 3225 32321>5

82>3322>5321>5

1251>3
= 23 125 = 553

= 125
;121441>2

1251>31441>2
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(c) Note that . Then

Note the following alternatives:

Example 2.20
Write the following with a single index:

(a) (b) 

Solution
(a) . Then using the third law of indices we can write this as

.

(b) . Using the third law we can write this as .

Example 2.21

Show that .

Solution

Example 2.22

Simplify .

Solution
Rewrite using an index and simplify the denominator using the first law of
indices:

Finally, use the second law to simplify the result:

Example 2.23
The generalisation of the third law of indices states that . By taking

, and show that .2ab = 2a 2bk =
1
2n = 1m = 1

(ambn)k
= amkbnk

z 0.5-2.5
= z-2 or 

1

z2     

z1>2 
z2.5     

2z 

z3z-1>2 =

2z

2z 

z3z-1>2 

 =

1

2z 

  z-1>2
=

1

z1>2 

z-1>2
=

1

2z 

x 3 * 1>4
= x 3>424 x3

= (x3)1>4
x5 * 1>2

= x5>22x 5 = (x 5)1>2

24 x 3 2x 5 

 = (82)1>3 82>3
= (81>3)2

 = 4
 = 22
 = (81>3)2

 82>3
= 82 * 1>3

81>3
= 2
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Solution
Taking m � 1, n � 1 and gives (ab)1�2 � a1�2b1�2, and the required result fol-
lows immediately.

k =
1
2

Key point 2ab = 1a 1b

This result often allows answers to be written in alternative forms. For example, we

may write as .23 * 16 = 23  216 = 423248

Exercises

Evaluate using a calculator (a) , (b) ,
(c) , (d) .

Evaluate using a calculator (a) , (b) .

Simplify (a) , (b) .

Simplify (a) , (b) , (c) .
25 z

z1>2
23 a

22 a

z-5>2 
2z  

4

2z  

z3>2 
a11 a3>4 
a-1>2 3

15- 2>715- 52

811>4853
15- 1>331>21 From the third law of indices show that

. Deduce that the square root
of a product is equal to the product of the
individual square roots.

Write each of the following expressions with a
single index:

(a) (b) (c) 
x1>2 
x1>4 x1>2x1>4(x-4)3

6

(ab)1>2
= a1>2 b1>25

Solutions to exercises

(a) 1.7321 (b) 0.4055 (c) 614125 (d) 3

(a) (b) 

(a) (b) z-1a12.253

0.4613 (4 s.f.)1.317 * 10-6 (4 s.f.)2

1 (a) (b) (c) 

(a) x�12 (b) x3�4 (c) x1�46

z-3>10a-1>6z-34

2.7 Scientific notation

It is often necessary to use very large or very small numbers such as 78000000 or
0.00000034. Scientific notation can be used to express such numbers in a more con-
cise form. Each number is written in the form

a * 10n
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where a is usually a number between 1 and 10. We can make use of the following facts:

and

Furthermore, to multiply a number by 10n the decimal point is moved n places to the
right if n is a positive integer, and n places to the left if n is a negative integer. If nec-
essary, additional zeros are inserted to make up the required number of decimal
places. Then, for example,

Example 2.24
Write the number 0.00678 in scientific notation.

Solution

Example 2.25 Engineering constants
Many constants appearing in engineering calculations are expressed in scientific
notation. For example, the charge on an electron equals coulombs.
Avogadro’s constant is equal to and is the number of atoms in 1 kilo-
mole of an element. Clearly the use of scientific notation avoids writing lengthy
strings of zeros.

Your scientific calculator will be able to accept numbers in scientific notation. Often
the E button is used, and a number such as will be entered as 4.2E7. Note
that 10E4 means , that is . To enter the number , say, you would key
in 1E3. Entering powers of 10 incorrectly is a common cause of error. You must
check how your particular calculator accepts numbers in scientific notation.

Example 2.26
Use your calculator to find .

Solution
This exercise is designed to check that you can enter numbers given in scientific
notation into your calculator. Check that

1.512 * 10-6    4.2 * 10-3
* 3.6 * 10-4

=

4 .2 * 10-3
* 3.6 * 10-4

10310510 * 104
4 .2 * 107

6 .022 * 1026
1 .6 * 10- 19

0.00678 = 6.78 * 10-3    

 the number 0.009 can be written 9 * 0.001 = 9 * 10-3

 the number 403 can be written 4.03 * 100 = 4.03 * 102

 the number 5000 can be written 5 * 1000 = 5 * 103

0.1 = 10-1,  0.01 = 10-2,  0.001 = 10-3, and so on

10 = 101, 100 = 102, 1000 = 103, and so on

Exercises

Express each of the following numbers in
scientific notation:
(a) 45 (b) 456 (c) 2079 (d) 7000000 (e) 0.1
(f) 0.034 (g) 0.09856

1 Simplify .6 * 1024
* 1.3 * 10-162
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2.8 Powers and number bases

We are used to counting in the base 10 or decimal system in which we use the 10
digits 0,1,2,3,4,5,6,7,8 and 9. In Chapter 3, Block 1 we reminded you that the num-
ber 5276 means

or, to write it another way,

This reminds us of the ‘thousands’, ‘hundreds’, ‘tens’ and ‘units’ from early school
days. It is helpful in what follows to note that we can also think of this representation as

Note that the ‘thousands’, ‘hundreds’, ‘tens’ and ‘units’ are simply powers of the
number base 10. In the remainder of this section we shall indicate the number base
being used by a subscript, as in .

In several applications, particularly in digital computing, it is essential to use
bases other than 10. In base 2 we use only the two digits 0 and 1. Numbers in the
base 2 system are called binary numbers, and we call 0 and 1 binary digits or
simply bits.

To evaluate the decimal equivalent of a binary number such as we note that
powers of 2 are now used to determine the place value:

So

Note that using two binary digits we can represent the four (i.e. ) decimal numbers,
0, 1, 2, 3:

002 = 010 012 = 110 102 = 210 112 = 310

22

 = 1310

 = 8 + 4 + 0 + 1

 11012 = (1 * 23) + (1 * 22) + (0 * 21) + (1 * 20)

23

1

  22

1

  21

0

  20

1

11012

527610

103

5

  102

2

  101

7

  100

6

(5 * 1000) + (2 * 100) + (7 * 10) + (6 * 1)

5000 + 200 + 70 + 6

Solutions to exercises

(a) (b) 

(c) (d) 

(e) (f) 

(g) 9.856 * 10-2

3.4 * 10-21.0 * 10-1

7.0 * 1062.079 * 103

4.56 * 1024.5 * 1011 7.8 * 1082
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With three binary digits we can represent eight (i.e. ) decimal numbers, 0, 1, 2, 3,
4, 5, 6, 7:

In general, with n binary digits we can represent the decimal numbers 0, 1, 2, . . . ,
.

Example 2.27
Find which decimal numbers can be represented using (a) 8 binary digits, (b) 16
binary digits.

Solution
(a) With 8 binary digits we can represent the decimal numbers 0, 1, 2, . . .

255. Note that a base 2 number having 8 binary digits is often referred to as a
byte.

(b) With 16 binary digits we can represent the decimal numbers 0, 1,
2, . . . , 65535.

Example 2.28 Music Technology – Powers of 2 and compact disc
technology

In digital audio technology an analogue signal (e.g. a voltage from a microphone) is
sampled at 44100 times each second. The value of each of these samples must be
recorded. To do this digitally it is necessary to quantise the sample. This means to
approximate its value by one of a set of predetermined values. Compact discs usually
use 16-bit technology, which means that each sample value is recorded using a 16-bit
number. In turn, this means that we can store whole numbers in the range 0 to 65535
to represent the sample values. So, we need 2 bytes of storage for each sample, and
44100 samples each second. A stereo signal will require twice as much storage. This
means we need 176400 bytes for each second of music stored on a CD. In fact, ad-
ditional storage is required because other quantities are built in to reduce errors, and
additional data are stored (track length, title, etc.). A simple calculation will show that
a 4-minute audio track will require in excess of 42336000 bytes of storage – that is, a
massive 42 megabytes. You will see why a standard CD-R (recordable CD) that has
700 megabytes of storage capacity will hold well under 16 tracks. To try to download
a 42 MB file over the Internet using a domestic modem (56 kilobytes per second)
would take over 12 minutes. Whilst a broadband connection would do this much
more quickly, this is not a practical way of obtaining music files. Mathematicians
have developed compression techniques (e.g. MP3) which can vastly reduce the size
of the audio file and thus make Internet transmission a realistic possibility.

65536 (=216)

256 (=28)

2n
- 1

2n

  100 2 = 410 1012 = 510 1102 = 610 1112 = 710

 000 2 = 010 0012 = 110 010 2 = 210 0112 = 310

23

Exercises

Find the decimal equivalent of the binary
number 110011001.

1 Find which decimal numbers can be
represented using a 6-bit binary number.

2
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2.8 Powers and number bases 87 5

Base 8, or octal, is used by computer
scientists. Here the place values are powers of
8, and we can use the digits 0, 1, 2, 3, 4, 5, 6,
7. Find the decimal equivalent of the octal
number .7568

3 Estimate the capacity needed to store a 
20-minute stereo CD recording of a piece of
classical music.

4

Solutions to exercises

409

0, 1, 2, . . . , 63.2

1 494

Well in excess of 200 MB.4

3

End of block exercises

Write down the three laws of indices and give
a numerical example illustrating each.

In the expression state which number is the
index and which is the base.

Simplify each of the following:

(a) (b) 

Remove the brackets from the expression
.

Write using a positive index.

Simplify

a7
* a-13

a-5

6

1

x-1>25

(4x3)5
4

(ab)4a11

a4

3

542

1 Rewrite using a single index.

Express the numbers 4320 and 0.0065 in
scientific notation.

Remove the brackets from .

Simplify

Simplify
(a) (b) 

(c) (d) 

(e) (e2x)y

(-2y) (-3y2) (-4y-2)xx2x3

(a4b3) (7a-2b-1)(3a2b) (2a3b2)
11

y6y-3y0.5

y-2y7

10

(7x2)-39

8

2a57

Solutions to exercises

For example, 
.

index 4, base 5

(a) (b)

x1>25

45x154

a4ba73

2

(57)2
= 514

23
* 27

= 210, 
36

32
= 34,1

(a) (b) (c) (d) (e) e2xy
-24yx67a2b26a5b311

y-1.510

7-3x-69

4.320 * 103, 6.5 * 10-38

a5>27

a-16
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BLOCK 3
Simplification by collecting like terms

3.1 Introduction

In this block we explain what is meant by the phrase ‘like terms’ and show how like
terms are collected together and simplified.

3.2 Addition and subtraction of like terms

Like terms are multiples of the same quantity. For example, 5y, 17y and are all
multiples of y and so are like terms. Similarly, and are all multiples of

and so are like terms.
Further examples of like terms are:

• kx and lx, which are both multiples of x;
• , which are all multiples of ;
• , which are all multiples of .

Like terms can be collected together and added or subtracted in order to simplify
them.

Example 3.1
Simplify .

Solution
All three terms are multiples of x and so are like terms. The expression can be
simplified to 14x.

Example 3.2
Simplify .

Solution
5z and 2x are not like terms. They are not multiples of the same quantity. This
expression cannot be simplified.

Example 3.3
Simplify .

Solution
-2a - 7b    5a + 2b - 7a - 9b =

5a + 2b - 7a - 9b

5z + 2x

5x - 13x + 22x

abc2abc2, -7abc2, kabc2
x2yx2y, 6x2y, -13x2y, -2yx2

x2

1
4x23x2, -5x2

1
2y
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Example 3.4
Simplify .

Solution
, both being multiples of , can be collected together and added to give

. Similarly, and x are like terms and these can be added to give . We find

which cannot be simplified further.

Example 3.5
Simplify .

Solution

Example 3.6
Simplify .

Solution
Note that and are both multiples of and so are like terms. There are no
other like terms. Therefore

3a2b - 7a2b - 2b2
+ a2

= -4a2b - 2b2
+ a2

a2b7a2b3a2b

3a2b -  7a2b -  2b2
+ a2

5
4x - 2y    

1
2x +

3
4x - 2y =

1
2x +

3
4x - 2y

2x2
- 7x + 11x2

+ x = 13x2 -  6x

-6x-7x13x2
x22x2 and 11x2

2x2
- 7x + 11x2

+ x

Exercises

Simplify, if possible:

(a) (b) 
(c) (d) 
(e) 

Simplify, if possible:

(a) (b) 
(c) 

Simplify, if possible:
(a) 
(b) 
(c) 
(d)
(e) 
(f) 
(g) s3

+ 3s2
+ 2s2

+ 6s + 4s + 12
3x2

+ 4x + 6x + 8
a2

+ ba + ab + b2
4q2

-
 4r2

+ 11r + 6q
-5x2

- 3x2
+ 11x + 11

2x2
- 3x + 6x - 2

7x + 2 + 3x + 8x - 11
3

6w2
+ w2

- 3w2
5w2

+ w + 15w + 3r - 2w + r

2

5p + 3q
-11v2

+ 2v27x2
+ 11x2

3q - 2q + 11q5x + 2x + 3x

1 Explain the distinction, if any, between each of
the following expressions, and simplify if
possible:

(a) (b) (c) 
(d) (e) 

Explain the distinction, if any, between each of
the following expressions, and simplify if
possible:

(a) (b) (c) 
(d) (e) (f) 

Simplify, if possible:

(a) (b) 

(c) (d) 

where and are constantsba

-4ax2
+ bx23x3

- 11x + 3yx + 11

0.5x2
+

3
4x2

-
11
2 x2

3x2
+

1
3x2

6

(4x)(2x)-4x - 2x-4x(2x)
4x(2x)4x(-2x)4x - 2x

5

-18x(9x)-18x - 9x
18x(-9x)18x(9x)18x - 9x

4
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90 Block 3 Simplification by collecting like terms5

Solutions to exercises

(a) 10x (b) 12q (c) (d) 
(e) cannot be simplified

(a) (b) cannot be simplified
(c) 

(a) (b) 
(c) (d) cannot be simplified
(e) (f) 
(g) s3

+ 5s2
+ 10s + 12

3x2
+ 10x + 8a2

+ 2ab + b2
-8x2

+ 11x + 11
2x2

+ 3x - 218x - 93

4w2
3w + 4r2

-9v218x21 (a) 9x (b) (c) (d) 
(e) 

(a) (b) 
(c) (d) 
(e) (f) 

(a) (b) 

(c) cannot be simplified (d) (b - 4a)x2

1.25x2
-

11
2  xx26

(4x)(2x) = 8x2
-4x - 2x = -6x

-4x(2x) = -8x24x(2x) = 8x2
4x(-2x) = -8x24x - 2x = 2x5

-162x2
-27x-162x2162x24

End of block exercises

In each case, simplify the given expression, if possible.

ab -  ba5

ab + ba4

1

3
x +

1

2
x3

5x2
+ 3x + 12

3x -  2y + 7x -  11y1

7a -  3b + 2g -  7a + 11b10

4y + 2x -  3xy9

0.01x + 0.35x8

ab + abc7

8pq + 11pq -  9pq6

Solutions to exercises

cannot be simplified

05

2ab4

5x

6
3

2

10x -  13y1

cannot be simplified

cannot be simplified

8b + 2g10

9

0.36x8

7

10pq6
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BLOCK 4
Removing brackets

4.1 Introduction

In order to simplify an expression that contains brackets it is often necessary to
rewrite the expression in an equivalent form but without any brackets. This process
of removing brackets must be carried out according to particular rules, which are
described in this block.

4.2 Removing brackets from expressions of the form a(b � c) and a(b � c)

In an expression such as it is intended that the 5 multiplies both x and y to
produce . Thus the expressions and are equivalent. In
general we have the following rules known as distributive laws:

5x + 5y5(x + y)5x + 5y
5(x + y)

Key point
 a (b - c) = ab - ac
 a (b + c) = ab + ac

Note that when the brackets are removed both terms in the brackets are multiplied by
a. If you insert numbers instead of letters into these expressions you will see that
both left- and right-hand sides are equivalent. For example,

and

Example 4.1
Remove the brackets from: (a) , (b) 9(2y).

Solution
(a) In the expression the 9 must multiply both terms in the brackets:

(b) Recall that 9(2y) means and that when multiplying numbers
together the presence of brackets is irrelevant. Thus 9(2y) = 9 * 2 * y = 18y.

9 * (2 * y)

 = 18 + 9y
 9(2 + y) = 9(2) + 9(y)

9(2 + y)

9(2 + y)

7(8 - 3) has the same value as 7(8) - 7(3), that is 35

4(3 + 5) has the same value as 4(3) + 4(5), that is 32
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92 Block 4 Removing brackets5

The crucial distinction between the role of the factor 9 in the two expressions
and 9(2y) should be noted.

Example 4.2
Remove the brackets from .

Solution
In the expression the 9 must multiply both the x and the 2y in the brackets.
Thus

Example 4.3
Remove the brackets from .

Solution
The number must multiply both the 5x and the z. Thus

Example 4.4
Remove the brackets from .

Solution

Example 4.5
Remove the brackets from .

Solution
Although unwritten, the minus sign outside the brackets stands for . We must
consider the expression .

Example 4.6
Remove the brackets from .

Solution
means . Thus

 = -5x + 3y
 -1(5x - 3y) = (-1)(5x) - (-1)(3y)

-1(5x - 3y)- (5x - 3y)

-(5x - 3y)

 = -3x - 1
 = -3x + (-1)

 -1(3x + 1) = (-1)(3x) + (-1)(1)

-1(3x + 1)
-1

-(3x + 1)

 = 18x2
- 12xy

 6x(3x - 2y) = 6x(3x) - (6x)(2y)

6x(3x - 2y)

 = -15x + 3z
 -3(5x - z) = (-3)(5x) - (-3)(z)

-3

-3(5x - z)

 = 9x + 18y
 9(x + 2y) = 9x + 9(2y)

9(x + 2y)

9(x + 2y)

9(2 + y)
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4.2 Removing brackets from expressions of the form a(b � c) and a(b � c) 93 5

Example 4.7
Remove the brackets from
(a) (b) 

Solution
(a) The 9 must multiply both the term 2x and the term 3y. Thus

(b) In the expression the first m must multiply both terms in the brackets.
Thus

Example 4.8
Remove the brackets from the expression and simplify the result by
collecting like terms.

Solution
The brackets in were removed in Example 4.5. Thus

Example 4.9

Show that are all equivalent.

Solution

Consider . Removing the brackets we obtain and so is

equivalent to .

A negative quantity divided by a positive quantity will be negative. Hence 

is equivalent to .

Study all three expressions carefully to recognise the variety of equivalent ways in
which we can write an algebraic expression.

Sometimes the bracketed expression can appear on the left, as in . To
remove the brackets here we use the following rules:

(a + b)c

-

x + 1

4

- (x + 1)

4

- (x + 1)

4

-x - 1

4
-x - 1- (x + 1)

-x - 1

4
 , 

- (x + 1)

4
  and -  

x + 1

4

 = 2x - 1
 = 5x - 3x - 1

  5x - (3x + 1) = 5x - 1(3x + 1)

- (3x + 1)

5x - (3x + 1)

m2
+ mn    m(m + n) =

m(m + n)

18x + 27y    9(2x + 3y) =

m(m + n)9(2x + 3y)

Key point
  (a - b)c = ac - bc
  (a + b)c = ac + bc

Note that when the brackets are removed both the terms in the brackets multiply c.
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94 Block 4 Removing brackets5

Example 4.10
Remove the brackets from ( )x.

Solution
Both terms in the brackets multiply the x outside. Thus

Example 4.11
Remove the brackets from
(a) (b) 

Solution
(a) Both terms in the brackets must multiply the .

(b) -2x + 6    (x - 3) (-2) =

-2x - 6    (x + 3) (-2) =

-2

(x - 3) (-2)(x + 3) (-2)

 = 2x2
+ 3xy

  (2x + 3y)x = 2x(x) + 3y(x)

2x + 3y

Exercises

Remove the brackets from each of the
following expressions:
(a) (b) (c) 
(d) (e) (f) 
(g) (h) (i) 
(j) (k) (l) 
(m) (n) (o) 8(2p + q)7(x - y)7(x + y)

7(xy)5(p - q)5(p + q)
5(pq)(a - m)n(a + m)n
(am)na(m - n)a(m + n)

a(mn)2(m + n)2(mn)

1 (p) (q) (r) 
(s) (t) 

Remove the brackets from each of the
following expressions:
(a) (b) (c) 9(x - y)2(m - n)4(a + b)

2

5(3pq)5(p + 3q)
5(p - 3q)8(2p - q)8(2pq)

Solutions to exercises

(a) (b) (c) 
(d) (e) (f) 
(g) (h) (i) 
(j) (k) (l) 
(m) (n) (o) 16p + 8q7x - 7y7x + 7y

7xy5p - 5q5p + 5q
5pqan - mnan + mn
amnam - anam + an

amn2m + 2n2mn1 (p) (q) (r) 
(s) (t) 

(a) (b) (c) 9x - 9y2m - 2n4a + 4b2

15pq5p + 15q
5p - 15q16p - 8q16pq
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4.3 Removing brackets from expressions of the form (a � b) (c � d)

Sometimes it is necessary to consider two bracketed terms multiplied together. In an
expression such as , by regarding the first bracket as a single term we
can use the result in Section 4.2 to write . Removing the brack-
ets from each of these terms produces

(a + b)c + (a + b)d
(a + b)(c + d)

Key point
 = ac + bc + ad + bd

 (a + b)(c + d ) = (a + b)c + (a + b)d

Alternatively, we see that each term in the first bracket multiplies each term in the
second. To remind us of this we can use the picture in Figure 4.1.

Example 4.12
Remove the brackets from .

Solution
We find

Example 4.13
Remove the brackets from and simplify your result.

Solution

Example 4.14
Remove the brackets from and simplify your result.

Solution
When a quantity is squared it must be multiplied by itself. Thus

 = a2
+ 2ab + b2

 = a2
+ ba + ab + b2

 = (a + b)a + (a + b)b
  (a + b)2

= (a + b)(a + b)

(a + b)2

 = 3x2
+ 10x + 8

 = 3x2
+ 4x + 6x + 8

 (3x + 4)(x + 2) = (3x + 4)(x) + (3x + 4)(2)

(3x + 4)(x + 2)

 = 6 + 2x + 3y + xy
 = (3)(2) + (x)(2) + (3)(y) + (x)(y)

 (3 + x)(2 + y) = (3 + x)(2) + (3 + x)(y)

(3 + x)(2 + y)

(a + b) (c + d ) = ac + bc + ad + bd
Figure 4.1
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96 Block 4 Removing brackets5

Example 4.15
Remove the brackets from the following expressions and simplify the results:
(a) (b) (c) 

Solution
(a) Remove the brackets to obtain

Simplify the result to obtain

(b) Remove the brackets to obtain

Simplify the result to obtain

(c) Remove the brackets and simplify to find

Example 4.16
Explain the distinction between and .

Solution
In the first case, on removing the brackets we find

In the second case we have

Note that in the second case the term is only multiplied by 3 and not by x.

Example 4.17
Remove the brackets from .

Solution
Each term in the first set of brackets must multiply each term in the second. Working
through all combinations systematically we have

Example 4.18 Reliability Engineering – Reliability in communication
networks

Some communication networks are designed with built-in redundancy, so that in the
event of certain components failing, the network can still function. For example,

 = s3
+ 5s2

+ 10s + 12
 = s3

+ 2s2
+ 4s + 3s2

+ 6s + 12
  (s2

+ 2s + 4)(s + 3) = (s2
+ 2s + 4)(s) + (s2

+ 2s + 4)(3)

(s2
+ 2s + 4)(s + 3)

(x + 2)

x + 3(x + 2) = x + 3x + 6 = 4x + 6

 = x2
+ 5x + 6

  (x + 3)(x + 2) = x2
+ 3x + 2x + 6

x + 3(x + 2)(x + 3)(x + 2)

6 + x - x2     =  

(3 - x)(x + 2) = (3 - x)x + (3 - x)2

 x2
+ x - 6    (x + 3)(x - 2) =

x2
+ 3x - 2x -  6     =  

(x + 3)(x - 2) = (x + 3)(x) + (x + 3)(-2)

x2
+ 10x + 21    (x + 7)(x + 3) =

 x2
+ 7x + 3x + 21    (x + 7)(x + 3) =

(3 - x)(x + 2)(x + 3)(x - 2)(x + 7)(x + 3)

M05_CROF5939_04_SE_C05.QXD  9/21/18  7:25 AM  Page 96



4.3 Removing brackets from expressions of the form (a � b) (c � d ) 97 5

consider the parallel network shown in Figure 4.2. Communication traffic can pass
along either route from left to right, so that in the event that one of the components
fails the network can still function. Clearly the network will fail to function if both
components fail. The reliability of a component, or collection of components, is the
probability or likelihood that it will function normally during a given period of time.
It is a number between 0 and 1 where 0 represents sure failure, and 1 represents guar-
anteed success.

Component 1
has reliability R1

Component 2
has reliability R2

Figure 4.2
The network will
fail only if both
components fail.

If the two components in Figure 4.2 have reliability and , respectively, it can
be shown that the reliability, , of the combined system is

Remove the brackets from the right-hand side of this expression and simplify the
result.

Solution
Consider first the bracketed terms on the right:

This expression must be subtracted from 1 to give :

We shall see the significance of this result in Block 7 – Formulae and transposition.

 = R1 + R2 - R1R2

R = 1 - (1 - R1 - R2 + R1R2)

R

 = 1 - R1 - R2 + R1R2

(1 - R1)(1 - R2) = (1 - R1) * 1 - (1 - R1) * R2

R = 1 - (1 - R1)(1 - R2)

R
R2R1

Exercises

Remove the brackets from each of the
following expressions and simplify where
possible:
(a) (b) 
(c) (d) (x + 5)(x - 3)(x + 3)(x + 3)

(x + 1)(x + 2)(2 + a)(3 + b)

1 Remove the brackets from each of the
following expressions:
(a) (b) 
(c) (d) 
(e) (f) (3x + 1)x(x + 2)x

(x + 11)(x - 7)(x + 9)(x - 2)
(9 + x)(2 + x)(7 + x)(2 + x)

2
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(g) (h) 
(i) (j) 
(k) (l) (2 - x)(1 - x)(5 - 3x)(x + 1)

(3x + 5)(2x - 1)(3x + 5)(2x + 7)
(3x + 1)(2x + 1)(3x + 1)(x + 1) Remove the brackets from

(s + 1)(s + 5)(s - 3).
3

Solutions to exercises

(a) (b) 
(c) (d) 

(a) (b) 
(c) (d) x2

+ 4x - 77x2
+ 7x - 18

18 + 11x + x214 + 9x + x22

x2
+ 2x - 15x2

+ 6x + 9
x2

+ 3x + 26 + 3a + 2b + ab1 (e) (f) 
(g) (h) 
(i) (j)
(k) (l) 

s3
+ 3s2

- 13s - 153

x2
- 3x + 2-3x2

+ 2x + 5
6x2

+ 7x - 56x2
+ 31x + 35

6x2
+ 5x + 13x2

+ 4x + 1
3x2

+ xx2
+ 2x

End of block exercises

In questions 1–12 remove the brackets from the
given expression:

(x + 2)(x - 2)6

(x - 1)(x + 2)5

(2 + x)(4 + x)4

(-2)(a + b)3

7(2x + y)2

15(x + y)1

15(x + 3)xy12

3
4 112x + 7211

(x + 1)(x - 3)(x - 1)10

(x + 1)(x - 3)x9

(x + 1)(x - 3)8

(x2
+ 2)(3x)7

Solutions to exercises

x2
- 46

x2
+ x - 25

8 + 6x + x24

-2a - 2b3

14x + 7y2

15x + 15y1

15x2y + 45xy12

3
8x +

21
411

x3
- 3x2

- x + 310

x3
- 2x2

- 3x9

x2
- 2x - 38

3x3
+ 6x7
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BLOCK 5
Factorisation

5.1 Introduction

In Block 4 we showed the way in which brackets were removed from algebraic
expressions. Factorisation, which can be considered as the reverse of this process, is
dealt with in this block. It is essential that you have had a lot of practice removing
brackets before you attempt this block.

5.2 Factorisation

A number is said to be factorised when it is written as a product. For example, 21
can be factorised into . We say that 7 and 3 are factors of 21. Always remem-
ber that the factors of a number are multiplied together.

Algebraic expressions can also be factorised. Consider the expression .
Removing the brackets we can rewrite this as

Thus is equivalent to . We see that has factors 7 and
. The factors 7 and multiply together to give . The

process of writing an expression as a product of its factors is called factorisation.
When asked to factorise we write

and so we see that factorisation can be regarded as reversing the process of removing
brackets in that we are now inserting them.

Always remember that the factors of an algebraic expression are multiplied
together.

Example 5.1
Factorise the expression .

Solution
Both terms in the expression are examined to see if they have any factors in
common. Clearly 20 can be factorised as (4)(5) and so we can write

4x + 20 = 4x + (4)(5)

4x + 20

4x + 20

14x + 7 = 7(2x + 1)

14x + 7

14x + 7(2x + 1)(2x + 1)
14x + 77(2x + 1)14x + 7

 = 14x + 7
  7(2x + 1) = 7(2x) + (7)(1)

7(2x + 1)

7 * 3

M05_CROF5939_04_SE_C05.QXD  9/21/18  7:25 AM  Page 99



100 Block 5 Factorisation5

The factor 4 is common to both terms on the right; it is called a common factor. The
common factor is placed at the front and outside the brackets to give

Note that the solution can and should be checked by removing the brackets again.

Example 5.2
Factorise .

Solution
Note that since we can write

so that there is a common factor of . Hence

Example 5.3
Factorise .

Solution
By observation we note that there is a common factor of 3. Thus

Example 5.4
Identify the factor common to both 14z and 21w. Hence factorise .

Solution
The factor common to both 14z and 21w is

We can then write

Example 5.5
Factorise .

Solution
First identify any common factors. In this case there are two,

and 

Then we can write

If there is any doubt, check your answer by removing the brackets again.

6x (1 - 2y)6x - 12xy =

6 and x

6x - 12xy

7(2z + 3w)14z + 21w =

7

14z + 21w

         = 3(2x - 3y)
  6x - 9y = 3(2x) - 3(3y)

6x - 9y

 = z(z - 5)
  z2

- 5z = z(z) - 5z

z

z2
- 5z = z(z) - 5z

z2
= z * z

z2
- 5z

4x + 20 = 4(x + 5)
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5.3 Factorising quadratic expressions 101 5

5.3 Factorising quadratic expressions

Exercises

Factorise (a) , (b) ,
(c) , (d) ,

(e) .
In each case check your answer by removing
the brackets again.

Factorise (a) , (b) ,
(c) .9x2

- 12x
xy + xyza2

+ 3ab2

1
2x +

1
4y

4x + 32z + 16y2x + 12y
3x - 9y5x + 15y1 Explain why a is a factor of but b is

not. Factorise .

Explainwhy isafactorof
but y is not. Factorise .4x2

+ 3yx3
+ 5yx4

4x2
+ 3yx3

+ 5yx4x24

a + ab
a + ab3

Solutions to exercises

(a) (b) (c) 

(d) (e) 

(a) (b) (c) 3x(3x - 4)xy(1 + z)a(a + 3b)2

1
21x +

1
2y24(x + 8z + 4y)

2(x + 6y)3(x - 3y)5(x + 3y)1

x2(4 + 3yx + 5yx2)4

a(1 + b)3

Key point An expression of the form where a, b and c are numbers is called a
quadratic expression.

ax2
+ bx + c

The numbers b or c may be zero but a must not be zero. The number a is called the
coefficient of , b is the coefficient of x and c is called the constant term.

Consider the product . Removing brackets yields .
We see that the factors of are and . However, if we
were given the quadratic expression first, how would we factorise it? The following
examples show how to do this but note that not all quadratic expressions can be
factorised.

To enable us to factorise a quadratic expression in which the coefficient of 
equals 1, note the following expansion:

So, given a quadratic expression we can think of the coefficient of x as and
the constant term as mn. Once the values of m and n have been found the factors can
be easily stated.

m + n

 = x2
+ (m + n)x + mn

(x + m)(x + n) = x2
+ mx + nx + mn

x2

(x + 2)(x + 1)x2
+ 3x + 2

x2
+ 3x + 2(x + 2)(x + 1)

x2
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Example 5.6
Factorise .

Solution
Writing we seek num-
bers m and n so that and . By trial and error it is not difficult
to find that and . So we can write

The answer can be checked easily by removing brackets.

Example 5.7
Factorise .

Solution
The coefficient of is 1. We can write

so that and . Try various possibilities for m and n until you find
values that satisfy both of these equations.

Finally factorise the quadratic:

When the coefficient of is not equal to 1 it may be possible to extract a numerical
factor. For example, note that can be written as 
and then factorised as in Example 5.7. Sometimes no numerical factor can be found
and a slightly different approach may be taken. We shall demonstrate a technique
that can always be used to transform the given expression into one in which the coef-
ficient of the squared variable equals 1.

Example 5.8
Factorise .

Solution
First note the coefficient of , in this case 2. Multiply the whole expression by this
number and rearrange as follows:

If we now introduce a new variable such that we find that the coefficient of
the squared term equals 1. Thus we can write

This can be factorised to give . Returning to the original variable by
writing we find

2(2x2
+ 5x + 3) = (2x + 3)(2x + 2)

z = 2x
(z + 3)(z + 2)

(2x)2
+ 5(2x) + 6 as z2

+ 5z + 6

z = 2x

 = (2x)2
+ 5(2x) + 6

2(2x2
+ 5x + 3) = 2(2x2) + 2(5x) + 2(3)

x2

2x2
+ 5x + 3

3(x2
+ 6x + 8)3x2

+ 18x + 24
x2

(x + 4)(x + 2)x2
+ 6x + 8 =

4 and 2, or 2 and 4n =m =

mn = 8m + n = 6

 = x2
+ (m + n)x + mn

x2
+ 6x + 8 = (x + m)(x + n)

x2

x2
+ 6x + 8

x2 + 4x - 5 = (x + 5)(x - 1)

n = -1m = 5
mn = -5m + n = 4

(x + n) = x2
+ (m + n)x + mnx2

+ 4x - 5 = (x + m)

x2
+ 4x - 5
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5.3 Factorising quadratic expressions 103 5

A factor of 2 can be extracted from the second bracket on the right so that

so that

As an alternative to the technique of Example 5.8, experience and practice can often
help us to identify factors. For example, suppose we wish to factorise .
We write

In order to obtain the term we can place terms and x in the brackets to give

In order to obtain the constant 2, we consider the factors of 2. These are 1, 2 or ,
. By placing these factors in the brackets we can factorise the quadratic expression.

Various possibilities exist: we could write , ,
or , only one of which is correct. By removing

brackets from each in turn we look for the factorisation that produces the correct
middle term, 7x. The correct factorisation is found to be

With practice you will be able to carry out this process quite easily.

Example 5.9
Factorise the quadratic expression .

Solution
Write

To obtain the quadratic term , insert 5x and x in the brackets:

Now examine the factors of . These are

Use these factors to find which pair, if any, gives rise to the middle term, , and
complete the factorisation.

Example 5.10
On occasions you will meet expressions of the form . Such an expression is
known as the difference of two squares. Note that here we are finding the difference
between two squared terms. It is easy to verify by removing brackets that this
factorises as

x2
- y2

= (x + y)(x - y)

x2
- y2

(5x + 3)(x - 2)5x2
- 7x - 6 =

-7x

3, -2; -3, 2; -6, 1; 6, -1

-6

5x2
- 7x - 6 = (5x + ?)(x + ?)

5x2

5x2
- 7x - 6 = ( )( )

5x2
- 7x - 6

3x2
+ 7x + 2 = (3x + 1)(x + 2)

(x - 2)(3x - 1)(x - 1)(3x - 2)
(x + 2)(3x + 1)(x + 1)(3x + 2)

-2
-1

3x2
+ 7x + 2 = (3x + ?)(x + ?)

3x3x2

3x2
+ 7x + 2 = ( )( )

3x2
+ 7x + 2

2x2
+ 5x + 3 = (2x + 3)(x + 1)

2(2x2
+ 5x + 3) = 2(2x + 3)(x + 1)
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So, if you can learn to recognise such expressions it is an easy matter to factorise
them. Factorise
(a) (b) (c) 

Solution
In each case we are required to find the difference of two squared terms.
(a) Note that . This factorises as .
(b) Here . This factorises as .
(c) .a2

- 1 = (a + 1)(a - 1)
(5x + 3z)(5x - 3z)25x2

- 9z2
= (5x)2

- (3z)2
(x + 6z)(x - 6z)x2

- 36z2
= x2

- (6z)2

a2
- 125x2

- 9z2x2
- 36z2

Exercises

Factorise
(a) (b) 
(c) (d) 
(e) 

Factorise
(a) (b) 
(c) (d) 
(e) (f) (g) -2x2

+ x + 3-x2
+ 116x2

- 1
5x2

- 4x - 13x2
- 3x - 6

2x2
+ 4x + 22x2

+ 3x + 1
2

x2
+ 5x + 6

x2
- 6x + 9x2

+ 7x + 10
x2

+ 6x - 7x2
+ 8x + 7

1 Factorise
(a) (b) 
(c) (d) 
(e) (f) 
(g) (h) 
(i) (j) 
(k) (l) 

Factorise
(a) (b) (c) s2

-
1
9z2

-
1
4z2

- 144
4

x2
- 3x + 2-3x2

+ 2x + 5
6x2

+ 7x - 56x2
+ 31x + 35

6x2
+ 5x + 13x2

+ 4x + 1
3x2

+ xx2
+ 2x

x2
+ 4x - 77x2

+ 7x - 18
x2

+ 11x + 18x2
+ 9x + 14

3

Solutions to exercises

(a) (b) 
(c) (d) 
(e) 

(a) (b) 
(c) (d) 
(e) (f) 
(g) (x + 1)(3 - 2x)

(x + 1)(1 - x)(4x + 1)(4x - 1)
(5x + 1)(x - 1)3(x + 1)(x - 2)
2(x + 1)2(2x + 1)(x + 1)2

(x + 3)(x + 2)
(x - 3)(x - 3)(x + 2)(x + 5)
(x + 7)(x - 1)(x + 7)(x + 1)1 (a) (b) 

(c) (d) 
(e) (f) 
(g) (h) 
(i) (j) 
(k) (l) 

(a) (b) 

(c) 1s +
1
321s -

1
32

1z +
1
221z -

1
22(z + 12)(z - 12)4

(2 - x)(1 - x)(5 - 3x)(x + 1)
(3x + 5)(2x - 1)(3x + 5)(2x + 7)
(3x + 1)(2x + 1)(3x + 1)(x + 1)

(3x + 1)x(x + 2)x
(x + 11)(x - 7)(x + 9)(x - 2)
(9 + x)(2 + x)(7 + x)(2 + x)3

End of block exercises

Factorise (a) , (b) ,
(c) .

Factorise (a) , (b) ,
(c) , (d) .4zx + 20yz11pq - 3qr

3pq - 2pmn + 11m2

1
2x +

1
4

-18 + 3t3z - 121 Factorise (a) , (b) ,
(c) .

Factorise (a) , (b) ,
(c) , (d) ,
(e) .x2

- 7x + 12
x2

+ 7x + 12x2
+ 10x + 9

x2
+ 9x - 22x2

+ 8x - 94

9x2
- 12x

3x2
+ 6xx2

+ x3
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5.3 Factorising quadratic expressions 105 5

Factorise (a) ,
(b) , (c) .

Factorise .3x3
+ 17x2

+ 11x6

6x2
+ 19x - 1145x2

+ 44x + 7
14x2

- 127x - 575 Factorise .

Factorise .144a2
- 49b28

a2
- b27

Solutions to exercises

(a) (b) (c) 

(a) (b) 
(c) (d) 

(a) (b) (c) 

(a) (b) 
(c) (d) 
(e) (x - 4)(x - 3)

(x + 4)(x + 3)(x + 9)(x + 1)
(x + 11)(x - 2)(x + 9)(x - 1)4

3x(3x - 4)3x(x + 2)x(x + 1)3

4z(x + 5y)q(11p - 3r)
p(3q - 2)m(n + 11)2

1
21x +

1
223(-6 + t)3(z - 4)1 (a) 

(b) (c) 

(12a - 7b)(12a + 7b)8

(a + b)(a - b)7

x(3x2
+ 17x + 11)6

(3x + 11)(2x - 1)(5x + 1)(9x + 7)
(2x - 19)(7x + 3)5
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BLOCK 6
Arithmetic of algebraic fractions

6.1 Introduction

Just as one whole number divided by another is a numerical fraction, one algebraic
expression divided by another is called an algebraic fraction. Examples are

The top line is called the numerator of the fraction and the bottom line is called the
denominator:

x

y
, 

3x + 2y

x - y
  and 

x2
+ 3x + 1

x - 4
 

Key point
algebraic fraction =

numerator

denominator

In this block we explain how algebraic fractions can be simplified, added, sub-
tracted, multiplied and divided.

6.2 Cancelling common factors

Consider the fraction . To simplify this we can factorise the numerator and the
denominator and then cancel any common factors. Common factors are those factors
that occur in both the numerator and the denominator. For instance,

Note that the common factor of 5 has been cancelled. It is important to remember
that only common factors can be cancelled. The fractions and have identical
values – they are equivalent fractions – but is in a simpler form than . We apply
the same process when simplifying algebraic fractions.

10
35

2
7

2
7

10
35

 =

2

7

 
10

35
 =

5 * 2

7 * 5 

10
35
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6.2 Cancelling common factors 107 5

Example 6.1

Simplify, if possible, (a) , (b) , (c) .

Solution

(a) In the expression , x is a factor common to both numerator and denominator.

This common factor can be cancelled to give

(b) Note that can be written . The common factor of x can be cancelled to give 

(c) In the expression notice that an x appears in both numerator and

denominator. However, x is not a common factor. Recall that factors of an
expression are multiplied together whereas in the denominator x is added to y.
This expression cannot be simplified.

Example 6.2

Simplify, if possible, (a) , (b) .

Solution
When simplifying remember that only common factors can be cancelled.

(a)

(b)

Example 6.3

Simplify (a) , (b) .

Solution
Factorising and cancelling common factors gives:

(a)

 =

3x2 

2

 
21x3

14x
=

7 * 3 * x * x2 

7 * 2 * x 

36x

12x3

21x3

14x

This cannot be simplified.
3ab

b + a
=

b

3

abc

3ac
=

3ab

b + a

abc

3ac

x

x + y

1.x 
xy

=

1
y

1x

xy

x

xy

yx 

2x 
=

y

2

yx

2x

x

x + y

x

xy

yx

2x
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108 Block 6 Arithmetic of algebraic fractions5

(b)

Example 6.4

Simplify .

Solution
First we factorise the numerator and the denominator to see if there are any common
factors.

The factor is common and can be cancelled. There is also a common factor of
3. Thus

Example 6.5

Simplify .

Solution
Factorise the numerator and denominator, and cancel any common factors.

Example 6.6

Show that and are equivalent.

Solution
The denominator, , can be factorised as so that we can
consider

Note that is a factor common to both the numerator and the denominator. In
this form we see that is a common factor which can be cancelled to leave

. Thus and are equivalent fractions.
3(x + 4)

x2
+ 5x + 4

3

x + 1

3

x + 1

(x + 4)
(x + 4)

3(x + 4)

(x + 1)(x + 4)

(x + 1)(x + 4)x2
+ 5x + 4

3(x + 4)

x2
+ 5x + 4

3

x + 1

6 * 2

2(x + 4)
=

6

x + 4

12

2x + 8
=

12

2x + 8

 =

1

2

3x + 6

6x + 12
 =

3(x + 2)

6(x + 2)

x + 2

3x + 6

6x + 12
=

3(x + 2)

6(x + 2)

3x + 6

6x + 12

 =

3

x2 

 
36x

12x3 
=

12 * 3 * x

12 * x * x2 
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6.2 Cancelling common factors 109 5

Example 6.7

Show that and are equivalent.

Solution
First factorise the denominator :

Identify the factor that is common to both numerator and denominator, and cancel
this common factor.

Hence the two given fractions are equivalent.

Example 6.8

Simplify .

Solution
The factor can be factorised to . Thus

Example 6.9

Simplify .

Solution
First factorise the numerator and the denominator:

Finally cancel any common factors to leave

x + 5

2x + 1

(x + 5)(x - 3)

(2x + 1)(x -  3)

x2
+ 2x - 15

2x2
- 5x - 3

=

x2
+ 2x - 15

2x2
-  5x - 3

= 24(x - 2) 
6(4 - 8x)(x - 2)

1 - 2x
=

(6)(4)(1 - 2x)(x - 2)

(1 - 2x)

4(1 - 2x)4 - 8x

6(4 - 8x)(x - 2)

1 - 2x

1

x - 1

x - 1

(x - 1)(x - 1)
=

(x - 1)(x - 1)

x2
- 2x + 1

x - 1

x2
- 2x + 1

1

x - 1

Exercises

Simplify, if possible, (a) , (b) , (c) ,

(d) , (e) .

Simplify, if possible, (a) , (b) , (c) ,

(d) .52
13

13
52

36
96

14
212

14
56

7
11

35
40

14
28

19
381 Simplify (a) , (b) , (c) , (d) .

Simplify (a) , (b) , (c) , (d) .
21x4 

7x3 

4s

s3 

15x

x2 

4x

3x
4

5z

25z2 

5

25z2 

25z

5z

5z

z
3
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110 Block 6 Arithmetic of algebraic fractions5

6.3 Multiplication and division of algebraic fractions

To multiply two fractions we multiply their numerators together and then multiply
their denominators together. That is:

Simplify, if possible,

(a) (b) 

(c) (d) 

(e) (f) 

Simplify, if possible,

(a) (b) 

(c) (d) 

Simplify

(a) (b)
x2

- 9

x2
+ 4x - 21

x2
+ 10x + 9

x2
+ 8x - 9

7

5x + 15

25x + 1

5x + 15

25

5x + 15

25x

5x + 15

25x + 5

6

5x - 15

x - 3

5x - 15

5

3x + 3

x + 1

2(x + 1)

x + 1

x + 1

2x + 2

x + 1

2(x + 1)

5
(c) (d) 

(e) 

Simplify

(a) (b) (c)

Simplify

(a) (b)
x2

+ 5x + 6

x2
+ x - 6

x2
- 1

x2
+ 5x + 4

9

3x2 

15x3
+ 10x2 

2x

4x2
+ 2x

6

3x + 9

8

5z2
- 20z

2z - 8

3x2
- 4x + 1

x2
- x

2x2
- x - 1

2x2
+ 5x + 2

Solutions to exercises

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) 4

(a) 5 (b) 5 (c) (d) 

(a) (b) (c) (d) 3x

(a) (b) (c) 2 (d) 3 (e) (f) 5

(a) (b) (c) (d) 
5x + 15

25x + 1

x + 3

5

x + 3

5x

x + 3

5x + 1
6

x - 3
1

2

1

2
5

4

s2 

15

x

4

3
4

1

5z

1

5z2 
3

1
4

3
8

2
32

1
4

7
11

7
8

1
2

1
21 (a) (b) (c) (d) 

(e) 

(a) (b) (c) 

(a) (b) 
x + 2

x - 2

x - 1

x + 4
9

3

5(3x + 2)

1

2x + 1

2

x + 3
8

5z

2

3x - 1

x

x - 1

x + 2

x + 3

x + 7

x + 1

x - 1
7

Key point Multiplication

a

b
*

c

d
=

ac

bd
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6.3 Multiplication and division of algebraic fractions 111 5

Any factors common to both numerator and denominator can be cancelled. This can-
cellation can be performed before or after the multiplication.

Division is performed by inverting the second fraction and then multiplying.

Key point Division

a

b
,

c

d
=

a

b
*

d

c
=

ad

bc

Example 6.10

Simplify (a) , (b) , (c) .

Solution

(a)

(b)

(c) Division is performed by inverting the second fraction and then multiplying.

Example 6.11

Simplify (a) , (b) , (c) , (d) , (e) .

Solution
(a) Note that . Then

(b) x can be written as . Then

 = 1

 =

x

x

 
1
x

* x =

1
x

*

x

1

x

1

 =

3

5

 =

3x

5x

 
1

5x
* 3x =

1

5x
*

3x

1

3x =

3x

1

y

x
* xy *

1
x

1
y

* x
1
x

* x
1

5x
* 3x

 =

a

2
 from the result in (b)

 
2a

c
,

4
c

=

2a

c
*

c

4

 =

2a

4
=

a

2

 
2a

c
*

c

4
=

2ac

4c

2a

c
*

4
c

=

8a

c2 

2a

c
,

4
c

2a

c
*

c

4

2a

c
*

4
c
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(c)

(d)

(e)

Example 6.12
Simplify

Solution

We can write the fraction as . Inverting the second fraction and multiplying

we find

Example 6.13

Simplify .

Solution
Factorising the numerator and denominator we find

It is usually better to factorise first and cancel any common factors before multiply-
ing. Do not remove any brackets unnecessarily otherwise common factors will be
difficult to spot.

 =

2(2x + 1)

(x + 1)(7x + 5)

 =

2(2x + 1)(x + 3)

(x + 1)(x + 3)(7x + 5)

 
4x + 2

x2
+ 4x + 3

*

x + 3

7x + 5
 =

2(2x + 1)

(x + 1)(x + 3)
*

x + 3

7x + 5

4x + 2

x2
+ 4x + 3

*

x + 3

7x + 5

 =

4

3

 
2x

y
*

2y

3x
=

4xy

3xy

2x

y
,

3x

2y

2x

y
 

3x

2y

 =  y

 =

yx

x

 
y

x
* x =

y

x
*

x

1

 =

y

x

  y *

1
x

 =

y

1
*

1
x

 =

x

y

 
1
y

* x =

1
y

*

x

1
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Example 6.14

Simplify 

Solution
To divide we invert the second fraction and multiply:

Example 6.15 Control Engineering—Multiplying algebraic fractions
When control engineers analyse engineering systems they often represent different
parts of the system using algebraic fractions in which the variable used is s. This will
become apparent particularly once you have a knowledge of Laplace transforms
(Chapter 22). It is often necessary to multiply such fractions together. So fluency
with manipulation of algebraic fractions becomes important.

Find the product of the fractions and .

Solution

3

s + 2
*

v

s2
+ v2 =

3v

(s + 2)(s2
+ v2)

v

s2
+ v2

3

s + 2

 =

5(2x + 1)

3x - 1

 =

(5)(3)(2x + 1)

3(3x - 1)

 
15

3x - 1
,

3

2x + 1
=

15

3x - 1
*

2x + 1

3

15

3x - 1
,

3

2x + 1
 .

Exercises

Simplify (a) , (b) , (c) ,

(d) .

Simplify (a) , (b) , (c) ,

(d) .

Simplify

(a) (b) 

(c) 

Simplify

(a) (b) 17 * 3(x + 4)3 *

x + 4

7

4

2
3 * (x + y)

1
3 * 2(x + y)2 *

x + y

3

3

4
7 ,

28
3

6
11 ,

3
4

14
3 ,

3
9

5
9 ,

3
22

4
7 *

28
3

6
11 *

3
4

14
3 *

3
9

5
9 *

3
21 (c) (d) 

(e) (f) (g) 

Find (a) , (b) 

Find 

Find .
5

2x + 1
,

x

3x - 1
7

3

x + 2
,

x

2x + 4
 .6

3>4
x - 1

 .
6>7

s + 3
5

Q

pd2>4
pd2 

4
*

Q

pd2 

1

y
*

x2
+ x

y + 1

x

y
*

x + 1

y + 1
3
7 * (x + 4)

M05_CROF5939_04_SE_C05.QXD  9/21/18  7:26 AM  Page 113



114 Block 6 Arithmetic of algebraic fractions5

6.4 Addition and subtraction of algebraic fractions

To add two algebraic fractions the lowest common denominator must be found
first. This is the simplest algebraic expression that has the given denominators as its
factors. All fractions must be written with this lowest common denominator. Their
sum is found by adding the numerators and dividing the result by the lowest common
denominator.

Solutions to exercises

(a) (b) (c) (d) 

(a) (b) 14 (c) (d) 

(a) (b) (c) 

(a) (b) (c) 

(d) (e) (f) (g) 
4Q

pd2 

Q

4

x(x + 1)

y(y + 1)

x(x + 1)

y(y + 1)

3(x + 4)

7

3(x + 4)

7

3(x + 4)

7
4

2(x + y)

3

2(x + y)

3

2(x + y)

3
3

3
49

8
11

10
272

16
3

9
22

14
9

5
61 (a) (b) 

5(3x - 1)

x(2x + 1)
7

6

x
6

3

4(x - 1)

6

7(s + 3)
5

Key point Addition
To add two fractions:

1 Find the lowest common denominator.
2 Express each fraction with this denominator.
3 Add the numerators and divide the result by the lowest common denominator.

To subtract two fractions the process is similar. The fractions are written with the
lowest common denominator. The difference is found by subtracting the numerators
and dividing the result by the lowest common denominator.

Example 6.16
State the simplest expression that has and as its factors.

Solution
The simplest expression is . Note that both and are
factors.

Example 6.17
State the simplest expression that has and as its factors.(x - 1)2x - 1

x + 4x + 1(x + 1)(x + 4)

 x + 4 x + 1
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6.4 Addition and subtraction of algebraic fractions 115 5

Solution
The simplest expression is . Clearly must be a factor of this
expression. Because we can write it follows that 
is a factor too.

Example 6.18
Express as a single fraction

Solution
The simplest expression that has both denominators as its factors is .
This is the lowest common denominator. Both fractions must be written using this
denominator.

Note that is equivalent to and also is equivalent to

. Thus writing both fractions with the same denominator we have

The sum is found by adding the numerators and dividing the result by the lowest
common denominator.

Example 6.19

Express as a single fraction.

Solution

The simplest expression having both denominators as its factors is . We

write both fractions with this denominator. Note that is equivalent to

.

Example 6.20

Find .
3

x + 7
+

5

x + 2

 =

x - 1 + 5

(x - 1)2 
=

x + 4

(x - 1)2 

 
1

x - 1
+

5

(x - 1)2 
=

x - 1

(x - 1)2 
+

5

(x - 1)2 

x - 1

(x - 1)2 

1

x - 1

(x - 1)2

1

x - 1
+

5

(x - 1)2 

 =

5x + 14

(x + 1)(x + 4)

 
3(x + 4)

(x + 1)(x + 4)
+

2(x + 1)

(x + 1)(x + 4)
=

3(x + 4) + 2(x + 1)

(x + 1)(x + 4)

3

x + 1
+

2

x + 4
=

3(x + 4)

(x + 1)(x + 4)
+

2(x + 1)

(x + 1)(x + 4)

2(x + 1)

(x + 1)(x + 4)

2

x + 4

3(x + 4)

(x + 1)(x + 4)

3

x + 1

(x + 1)(x + 4)

3

x + 1
+

2

x + 4

x - 1(x - 1)2
= (x - 1)(x - 1)

(x - 1)2(x - 1)2
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116 Block 6 Arithmetic of algebraic fractions5

Solution
First find the lowest common denominator:

Both fractions are rewritten using this lowest common denominator:

Add the numerators and simplify the result to find the sum of the given fractions:

Example 6.21

Find .

Solution
In this example both denominators are simply numbers. The lowest common denomi-
nator is 14, and both fractions are rewritten with this denominator. Thus

Example 6.22

Find .

Solution
The simplest expression that has x and y as its factors is xy. This is the lowest com-
mon denominator. Both fractions are written using this denominator. Noting that

and that we find

No cancellation is possible because neither x nor y is a factor of the numerator.

 =

y + x

xy

 
1
x

+

1
y

 =

y

xy
+

x

xy

1
y

=

x

xy

1
x

=

y

xy

1
x

+

1
y

 =

28 - 11x

14

 
10x

14
-

7(3x - 4)

14
=

10x - 7(3x - 4)

14

5x

7
-

3x - 4

2

8x + 41

(x + 7)(x + 2)

3

x + 7
+

5

x + 2
=

3(x + 2)

(x + 7)(x + 2)
+

5(x + 7)

(x + 7)(x + 2)

3

x + 7
+

5

x + 2
=

(x + 7)(x + 2)
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Solutions to exercises

(a) (b) (c) 

(d) (e) 

(f) (g) (h) 

(a) (b) 

(c) (d) 

(e) 

3s + 11

21
4

10x + 19

(2x + 3)2 
3

x2
- 3x + 2

(x - 3)2 

2x2
+ 10x + 14

(x + 3)(x + 2)

1

(2x + 1)(3x + 2)

7x + 17

(x + 3)(x + 1)

3x + 7

(x + 2)(x + 3)
2

x

20

9 + 2x - 2x2 

3(2x + 1)

x + 2

6

x2
+ 6x + 2

x(x + 2)

x2
- 2

(x + 1)(x + 2)

-

x

12

23x

45

11x

28
1

(a) (b) 
13x

60

53x

60
11

(Ax + B)(x + 1) + C

x + 1
9

(Ax + B)(x - 1) + C(x2
+ x + 10)

(x - 1)(x2
+ x + 10)

8

A(x + 1) + B

(x + 1)2 
7

A(x - 1)2
+ B(x - 1)(2x + 5) + C(2x + 5)

(2x + 5)(x - 1)2 

6

A(x + 1) + B(2x + 3)

(2x + 3)(x + 1)
5

Exercises

Find (a) , (b) ,

(c) , (d) ,

(e) , (f) ,

(g) , (h) .

Find (a) ,

(b) , (c) ,

(d) , (e) .

Find .

Find .

Express as a single fraction.
A

2x + 3
+

B

x + 1
5

1

7
s +

11

21
4

5

2x + 3
+

4

(2x + 3)2 
3

x - 1

x - 3
+

x - 1

(x - 3)2 

x + 1

x + 3
+

x + 4

x + 2

2

2x + 1
 -  

3

3x + 2

2

x + 3
+

5

x + 1

1

x + 2
+

2

x + 3
2

x

4
-

x

5

x + 3

2x + 1
-

x

3

2x + 1

3
-

x

2

x + 1

x
+

3

x + 2

x

x + 1
-

2

x + 2

2x

3
-

3x

4

2x

5
+

x

9

x

4
+

x

7
1 Express as a

single fraction.

Express as a single

fraction.

Express as a single

fraction.

Express as a single fraction.

Show that

is equal to .

Find (a) , (b) .
3x

4
- a x

5
+

x

3
b3x

4
-

x

5
+

x

3
11

x1x2x3 

x2 - x3 

x1 

1

x3 
-

1

x2 
 

10

Ax + B +

C

x + 1
9

Ax + B

x2
+ x + 10

+

C

x - 1
8

A

x + 1
+

B

(x + 1)2 
7

A

2x + 5
+

B

(x - 1)
+

C

(x - 1)2 
6
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118 Block 6 Arithmetic of algebraic fractions5

End of block exercises

Simplify .

Simplify .

Simplify .

Explain why no cancellation is possible in the

expression .

Find .

Find .

Simplify .
x + 2

x2
+ 9x + 20

*

x + 5

x + 2
7

3 *

x

11(x + y)
6

3

11
*

x

y
5

a + 2b

a - 2b

4

x + 2

x2
+ 3x + 2

3

8r3 

4pr2 
2

5x

25x + 10y
1 Find .

Express as a single fraction

Express as a single fraction

(a) Express as a single fraction.

(b) Hence find the reciprocal of .

Express as a single fraction.

Express as

a single fraction.

-

6

s + 3
-

4

s + 2
+

3

s + 1
+ 213

1

s
+

1

s2 
12

1

u
+

1

v

1

u
+

1

v
11

2x - 1 +

4

x
+

3

2x + 1
 .

10

3

x - 4
-

2

(x - 4)2 
 .

9

5

7y
+

2x

3
8

Solutions to exercises

1

x + 4
7

3x

11(x + y)
6

3x

11y
5

1

x + 1
3

2r
p

2

x

5x + 2y
1

(a) (b) 

2s3
+ 5s2

+ 3s + 6

s3
+ 6s2

+ 11s + 6
13

s + 1

s2 
12

uv

v + u

v + u

uv
11

4x3
+ 10x + 4

2x2
+ x

10

3x - 14

(x - 4)2 
9

15 + 14xy

21y
8
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BLOCK 7
Formulae and transposition

7.1 Introduction

Formulae are used frequently in almost all aspects of engineering in order to relate a
physical quantity to one or more others. Many well-known physical laws are
described using formulae. For example, you may have already seen Ohm’s law,

, or Newton’s second law of motion, In this block we describe the
process of evaluating a formula, explain what is meant by the subject of a formula,
and show how a formula is rearranged or transposed. These are basic skills required
in all aspects of engineering.

7.2 Using formulae and substitution

In the study of engineering, physical quantities can be related to each other using a for-
mula. The formula will contain variables and constants that represent the physical
quantities. To evaluate a formula we must substitute numbers in place of the variables.

Example 7.1 Electrical Engineering – Ohm’s law

F = ma.v = iR

i

v

R

Figure 7.1
v is given by the
formula v = iR.

Ohm’s law provides a formula for relating the voltage, v, across a resistor to the cur-
rent through it, i, and the resistance value, R (Figure 7.1). It states

We can use this formula to calculate v if we know values for i and R. For example, if
, and , then

The voltage is 65 V.

 = 65
 = (13)(5)

  v = iR

R = 5 Æ i = 13 A

v = iR
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120 Block 7 Formulae and transposition5

Note from this example that it is important to pay attention to the units of any physi-
cal quantities involved. Unless a consistent set of units is used a formula is not valid.
The most common set of units is the SI system given in Appendix 1 at the end of the
book. A knowledge of prefix conventions is also useful, and details are also given in
Appendix 1.

Example 7.2 Mechanical Engineering – The kinetic energy of an object
In Figure 7.2 the kinetic energy, E, of an object of mass M moving with speed v can
be calculated from the formula .E =

1
2Mv2

r

d

Figure 7.3
The area, A, is
given by 
or .A =

1
4pd2
A = pr2

Speed v

Mass MFigure 7.2
Kinetic energy,

.E =
1
2Mv2

Calculate the kinetic energy of an object of mass 5000 kg moving with a speed of

Solution
In this example and . Substituting these into the formula we find

In the SI system the unit of energy is the joule. Hence the kinetic energy of the object
is 1000000 joules.

Example 7.3 The area of a circle
The area, A, of the circle of radius r shown in Figure 7.3 can be calculated from the
formula Equivalently, if we know the diameter of the circle, d, we can use
the formula Your calculator will be preprogrammed with the value of .
Find the area of a circle having diameter 0.1 m.

pA =
1
4pd2.

A = pr2.

 = 1000000

 =
1
2(5000)(202)

  E =
1
2Mv2

v = 20M = 5000

20 m s-1.
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7.2 Using formulae and substitution 121 5

Solution
The area of the circle is

Example 7.4 The volume of a cylinder
The volume, V, of the cylinder in Figure 7.4 is equal to its cross-sectional area, A,
times its length, h.

p(0.1)2 

4
= 0.0079 m2A =

h

A

Figure 7.4
The volume, V, is
given by .V = Ah

Find the volume of a cylinder having diameter 0.1 m and length 0.3 m.

Solution
We can use the result of Example 7.3 to obtain the cross-sectional area. Then

The volume is 0.0024 m3.

Example 7.5 Mechanical Engineering – Positive displacement pump
The pump outlined in Figure 7.5 is known as a positive displacement pump. As the
piston is being withdrawn, fluid is sucked into the pump chamber. As the piston
moves forwards, fluid is ejected through the delivery duct. Valves are used to ensure
the correct directions of these flows. The cross-section of the pump chamber is circu-
lar with diameter d. As the piston moves through a distance L, known as its stroke,
the volume of fluid that is pumped through the delivery duct is

This is the volume of fluid ejected in one revolution of the pump. If the pump rotates
at n revolutions per second, the volume of fluid ejected per second, known as the
theoretical pump delivery, QT, can be found from the formula

QT =

pd2Ln

4

cross-sectional area of chamber * stroke =

pd2 

4
* L

 = 0.0024

 =

p(0.1)2 

4
* 0.3

  V =  Ah
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122 Block 7 Formulae and transposition5

The actual delivery will be less than this owing to internal leakage. Calculate the theo-
retical pump delivery of such a pump when revolutions per second,

, .

Solution
Substituting the given values we find

The theoretical pump delivery is therefore .

Example 7.6 Reliability Engineering – Reliability in communication
networks

In Example 4.18 of this chapter we met the formula

for calculating the reliability of two components in parallel when the individual
components have reliabilities R1 and R2. Suppose each component has the same
reliability, . Find the reliability of the whole system.

Solution
Substituting in the given formula:

So the system as a whole has a 96% chance of functioning normally, whereas the indi-
vidual components had only an 80% chance of functioning normally. We see the great
improvement in reliability achieved by including a second component in parallel.

R = 0 .8 + 0 .8 - (0 .8)(0 .8) = 0 .96

R1 = R2 = 0.8

R1 = R2 = 0.8

R = R1 + R2 - R1R2

0.0012 m3 s-1

 = 0.0012

  QT =

p(0.1)2(0.3)(0.5)

4

d = 0.1 mL = 0.3 m
n = 0.5

L

d

n rev s�1

Piston

Fluid outlet/delivery

Fluid 
inlet

Pump chamber

Figure 7.5
A positive
displacement
pump.
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7.2 Using formulae and substitution 123 5

Example 7.7 Materials Engineering – Measuring the hardness of 
a material

One of the ways that materials engineers measure the hardness of a material is by an
indentation test. Typically a tungsten carbide ball of diameter D is pressed for sev-
eral seconds onto the material through the action of a known force F.

The diameter of the resulting indentation is measured after the force is removed
(see Figure 7.6). There are several test standards but one of the most commonly used
is called a Brinell test and the material’s hardness (written HBW) is calculated from
the formula

where D is the diameter of the tungsten carbide ball (in mm), d is the diameter of the
indentation (in mm) at the surface of the material, and F is the applied force (in new-
tons). This formula can be expressed in the equivalent form 

It can be shown that the quantity is the curved surface area of

the spherical indentation. Consequently, the Brinell number is proportional to the 
ratio of the applied force to the curved surface area produced by the indenter. For a
given force, a small Brinell number corresponds to a large surface area and hence a
relatively soft material. Conversely, a large Brinell number corresponds to a small
surface area and hence a material which is relatively hard. 

In an indentation test a tungsten carbide ball of diameter 10 mm is impressed upon
a sheet of steel with a force of 3000g newtons. (Here g is the constant acceleration
due to gravity, 9.81 m s�2.) When the force is removed the diameter of the indenta-
tion is measured as 4 mm. Calculate the Brinell hardness.

Solution
We substitute the given values into the formula: 

Compare this value with a typical hardness value of a much softer metal such as
brass that has a Brinell number of around 60.

 = 229 (3 s.f.)

 = 0.102  
2 * 3000 * 9.81

p * 10(10 - 2102
- 42)

 HBW = 0.102  
2F

pD(D - 2D2
- d2)

pD(D - 2D2
- d2)

2

Brinell hardness = HBW = 0.102  
F

pD(D - 2D2
- d2)

2

Brinell hardness = HBW = 0.102  
2F

pD(D - 2D2
- d2)

d

Figure 7.6 
Diameter of
indentation is used
to measure
hardness.
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The formula for the volume of a cylinder is
. Find V when cm and

cm.

If , find R when (a) ,
(b) .

For the following formulae, find y at the given
values of x:
(a) 
(b) 

If find P if and .

If find y if and .

Evaluate when and

.

To convert a length measured in metres to one
measured in centimetres, the length in metres
is multiplied by 100. Convert the following
lengths to cm: (a) 5 m, (b) 0.5 m, (c) 56.2 m.

To convert an area measured in m2 to one
measured in cm2, the area in m2 is multiplied
by 104. Convert the following areas to cm2:
(a) 5 m2, (b) 0.33 m2, (c) 6.2 m2.

To convert a volume measured in m3 to one
measured in cm3, the volume in m3 is
multiplied by 106. Convert the following
volumes to cm3:
(a) 15 m3, (b) 0.25 m3, (c) 8.2 m3.

If evaluate when ,

, and .n = 2L = 0.1d = 0.05

QP = 0.0003hh =

4QP 

pd2Ln
10

9

8

7

s = -0.2

r = 23.7M =

p

2r + s
6

z = 15.6x = 13.2y = 2x>z5

R = 0.3Q = 15P =

3

QR
4

y = -4x + 7, x = -2, x = 0, x = 1
y = 3x + 2, x = -1, x = 0, x = 1

3

p = 16
p = 10R = 5p22

h = 15
r = 5V = pr2h

1 For the following formulae, find y at the given
values of x:
(a) 

(b) 

Mechanical Engineering – Moment of
inertia. The moment of inertia of an object is a
measure of its resistance to rotation. It depends
upon both the mass of the object and the
distribution of mass about the axis of rotation.
It can be shown that the moment of inertia, J,
of a solid disc rotating about an axis through
its centre and perpendicular to the plane of the
disc is given by the formula

where M is the mass of the disc and a is its
radius. Find the moment of inertia of a disc of
mass 12 kg and diameter 10 m. The SI unit of
moment of inertia is kg m2.

Reliability Engineering. Refer to Example 7.6.
Calculate the percentage improvement
achieved in the reliability of the whole system
if the individual component reliabilities can be
increased to 0.9.

Materials Engineering – Brinell hardness. The

formula 

has been discussed above in connection with
the calculation of the hardness of a material.
(For simplicity, we refer to the Brinell
hardness here as H.) Transpose this formula to
make d2 the subject.

H = 0.102
2F

pD(D - 2D2
- d2)

14

13

J =

1

2
Ma2

12

y = x2, x = -2, x = -1, x = 0, x = 1, x = 2

y = 2 - x, x = -3, x = -1, x = 1, x = 2

11

Solutions to exercises

1178.1 cm3

(a) 500 (b) 12802

1 (a) �1, 2, 5 (b) 15, 7, 3

P = 0.6674

3

M05_CROF5939_04_SE_C05.QXD  9/21/18  7:26 AM  Page 124



7.3 Rearranging a formula 125 5

7.3 Rearranging a formula

In the formula for the area of a circle, , we say that A is the subject of the
formula. A variable is the subject of the formula if it appears by itself on one side of
the formula, usually the left-hand side, and nowhere else in the formula. If we are
asked to transpose the formula for r, or solve for r, then we have to make r the sub-
ject of the formula. When transposing a formula there are five rules that must be
adhered to. You may

A = pr2

(a) 500 cm (b) 50 cm (c) 5620 cm

(a) 50000 cm2 (b) 3300 cm2 (c) 62000 cm2

(a) 15000000 cm3 (b) 250000 cm3

(c) 8200000 cm3
9

8

7

M = 0.0676

y = 0.9205

(a) 5, 3, 1, 0 (b) 4, 1, 0, 1, 4

150 kg m2

The system reliability increases from 0.96 to
0.99. The percentage improvement is 3.125%.

.d2
=

0.408F

pH
- a0.204F

pDH
b2

14

13

12

11

h = 0.76410

Key point 1 Add the same quantity to both sides of the formula.
2 Subtract the same quantity from both sides of the formula.
3 Multiply both sides of the formula by the same quantity.
4 Divide both sides of the formula by the same quantity.
5 Take ‘functions’ of both sides of the formula: for example, square both sides, square

root both sides, find the reciprocal of both sides.

In summary, and loosely speaking, we must do precisely the same to both sides.

Example 7.8
Transpose the formula for t.

Solution
We must try to obtain t on its own on the left-hand side. We do this in stages by using
one or more of the five rules. For example, by adding 17 to both sides of 
we find

so that

By dividing both sides by 5 we obtain t on its own:

so that

t =

p + 17

5

p + 17

5
= t

p + 17 = 5t

p + 17 = 5t - 17 + 17

p = 5t - 17

p = 5t - 17
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Example 7.9
Find the result of squaring both sides of the formula .

Solution
To square the right-hand side we must find (a � b)2. We find

Note that if , then .

Example 7.10
Transpose the formula for q.

Solution
First of all square both sides to remove the square root around 2q. Note that

. This gives

Dividing both sides by 2 gives , which may be written as .

Example 7.11
Transpose the formula for w.

Solution
We must try to obtain w on its own on the left-hand side. We do this in several stages.
First of all square both sides to remove the square root around . This gives

Then subtract t2 from both sides to obtain an expression for w:

Finally, we can write down the formula for w:

Example 7.12

Transpose for y.

Solution
We must try to obtain an expression for y. In the given formula y appears in the form
of a fraction. Multiplying both sides by y has the effect of removing this fraction:

Dividing both sides by x leaves y on its own, .y =

1
x

 so that  yx =  1

 yx = y *

1
y

 multiply both sides of  x =

1
y

  by y to get

x =

1
y

w = v2
- t2

v2
- t2 = w

v2
= t2 + w

t2 + w

v = 2t2 + w

q =

1

2
p2q =

p2 

2

2q = p2

(22q )2
= 2q

22q = p

z2
Z a2

+ b2z = a + b

 =  a2
+ 2ab + b2

 z2 = (a + b)2

z = a + b
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7.3 Rearranging a formula 127 5

Example 7.13
Make R the subject of the formula

Solution
In the given formula R appears in a fraction. Multiplying both sides by we
find

Multiplying both sides by R we find

Finally, dividing both sides by 3 gives

Example 7.14 Electrical Engineering – Resistors in parallel
The net resistance, R, of two resistors, R1 and R2, connected in parallel, can be
obtained from the formula

Make R the subject of the formula.

Solution
The two terms on the right can be added to give

The given formula becomes

Multiplying both sides by R1 R2 we find

and multiplying by R gives

Finally, dividing by (R2 � R1) we find

R =

R1R2 

R2 + R1 

R1R2 = R(R2 + R1)

R1R2 

R
= R2 + R1

1

R
=

R2 + R1 

R1R2 

1

R1 
+

1

R2 
=

R2 + R1 

R1R2 

1

R
=

1

R1 
+

1

R2 

R =

2(x + y)

3

2(x + y) = 3R

2(x + y)

R
= 3

(x + y)

2

R
=

3

x + y
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128 Block 7 Formulae and transposition5

Example 7.15 Mechanical Engineering – Positive displacement pump
Recall the positive displacement pump described in Example 7.5. The actual deliv-
ery, , of such a pump is less than the theoretical value, , owing to leakage. A
relevant quantity is the volumetric efficiency, , defined as

If the actual and theoretical deliveries are equal the volumetric efficiency will be 1. A
designer will try to ensure that the value of is as close to 1 as is possible in practice.

The theoretical delivery was given in Example 7.5 as . Hence

Transpose this formula to make the actual delivery, , the subject of the formula.

Solution
From

multiplying both sides of the formula by we find

Dividing both sides by 4 we find

In this form it is possible to calculate the actual delivery of the pump from know-
ledge of its volumetric efficiency, the physical dimensions of the pump and the pump
speed.

Example 7.16 Mechanical Engineering – The coefficient of restitution
Consider Figure 7.7, which shows two moving masses before and after they have col-
lided. The separation speed is proportional to the approach speed ,
and the constant of proportionality is called the coefficient of restitution, e. That is,

Transpose this formula to make the subject.v1

w2 - w1 = e(v1 - v2)

v1 - v2w2 - w1

QP =

pd2Lnh

4

pd2Lnh = 4QP

pd2Ln

h =

4QP 

pd2Ln

QP

 =

4QP 

pd2Ln

 h =

QP 

1

4
pd2Ln

1

4
pd2Ln

h

 =

QP 

QT 
 

 h =

actual delivery

theoretical delivery
 

h

QTQP
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Solution
We must try to obtain on its own. Divide both sides by e to obtain an expression
for .

Finally, add to both sides to leave on the left.

Example 7.17 Electrical Engineering – Equivalent resistance of a
ladder of resistors

Figure 7.8(a) shows two resistors in series. Figure 7.8(b) shows two resistors in parallel.

v1 = v2 +

w2 - w1 

e

v1v2

 
w2 - w1 

e
v1 - v2 =

v1 - v2

v1

v1 v2 w1 w2

Before collision
v1 > v2

After collision
w2 > w1

Figure 7.7
Two masses before
and after collision.

R1 R2 R1

R2

Figure 7.8
(a) Two resistors in
series;
(b) two resistors in
parallel.

When two resistors, , are placed in series in a circuit the equivalent resis-
tance, R, is . When the two are placed in parallel the equivalent resistance,
R, is given by

So, using Example 7.14 we can write

Consider the circuit shown in Figure 7.9. Find the equivalent resistance of the circuit.

R =

R1R2 

R1 + R2 

1

R
=

1

R1 
+

1

R2 

R1 + R2

R1 and R2

RB

RC

RA

Figure 7.9

(a)

(b)
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Solution
The equivalent resistance of the parallel part of the circuit is

This equivalent resistance is in series with the resistor . Hence the equivalent
resistance of the whole circuit is

This can be written as follows:

Example 7.18 Mechanical Engineering – Heat flow in an insulated pipe
With rising energy costs and increasing awareness of global warming, much 
attention is given to insulation and heat flow in domestic and industrial appliances.
Figure 7.10 depicts a situation in which heat can flow along a metal rod. The rod is
insulated along its length so that no heat can enter or leave the rod through the insu-
lated parts. The two ends of the rod are maintained at temperatures and , respec-
tively, where so that heat flows from left to right as shown.T2 7 T1

T1T2

 =

RARC + RARB + RBRC 

RC + RB 
 

 =

RA(RC + RB) + RBRC 

RC + RB 
 

  R = RA +

RBRC 

RC + RB 

R = RA +

RBRC 

RC + RB 
 

RA

RBRC 

RC + RB 

T2 T1

Cross-section of
rod has area A

Insulation

Insulation

�

Heat flow

Figure 7.10
Heat flows along
the rod from the
warmer to the
cooler end.

If the cross-sectional area of the rod is A and its length is the amount of heat
energy crossing any cross-section parallel to the heated ends, per unit time, is given by

where is a constant called the thermal conductivity of the metal. Observe from
this formula that if is large, then the rate of heat flow, , will be relatively large.Ql

l

Q = lAaT2 - T1

/

b

/

M05_CROF5939_04_SE_C05.QXD  9/21/18  7:26 AM  Page 130
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Similarly if the temperature gradient between the two ends is large,

then so too will be the rate of heat flow. Transpose this formula to make the
subject.

Solution
From

multiplying both sides by and dividing both sides by gives

Adding to both sides gives

This formula enables an engineer to calculate the temperature, for a given heat flow
rate, at which the left-hand end needs to be maintained in order to achieve a temper-
ature of on the right-hand end.T1

T2 =

Q/

lA
+ T1

T1

Q/

lA
= T2 - T1

lA/

Q = lAaT2 - T1

/

b

T2

aT2 - T1

/

b

Exercises

Transpose the given formulae to make the
given variable the subject:
(a) 
(b) 
(c) 
(d) 

Transpose the formula for (a) V,
(b) P, (c) R, (d) T.

Transpose , (a) for x, (b) for y.

Transpose for (a) u,
(b) v and (c) w.

Mechanical Engineering – Coefficient of
restitution. When a ball is dropped from rest
onto a horizontal surface it will bounce before
eventually coming to rest after a time T where

T =

2v

g
 a 1

1 - e
b

5

8u + 4v - 3w = 174

v = 2x + 2y3

PV = RT2

13 - 2x - 7y = 0, for x
8x + 3y = 4, for y
8y + 3x = 4, for x
y = 3x - 7, for x

1
where v is the speed immediately after the first
impact, and g is a constant called the
acceleration due to gravity. Transpose this
formula to make e, the coefficient of
restitution, the subject.

Transpose

for .

Make x the subject of

(a) 

(b) y = A
x - 1

x + 1

y =

r + x

1 - rx

7

A2

q = A 1 A
2gh

(A1>A2)
2

- 1

6
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Solutions to exercises

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 

(a) (b) 

(a) 

(b) 

(c) w =

8u + 4v - 17

3

v =

17 - 8u + 3w

4

u =

17 - 4v + 3w

8
4

y =

v2
- x

2
x = v2

- 2y3

T =

PV

R
R =

PV

T

P =

RT

V
V =

RT

P
2

x =

13 - 7y

2
y =

4 - 8x

3

x =

4 - 8y

3
x =

y + 7

3
1

(a) 

(b) x =

1 + y2 

1 - y2 

x =

y - r

1 + yr
7

A2 = A
A2

1q
2

2A2
1gh + q2

6

e = 1 -

2v

gT
5

End of block exercises

Evaluate when
.

If , find C when
.

For the following formulae, find y at the given
values of x:

(a) , 

(b)

(c) 

Transpose

for t.

Transpose

for N.

L =

mN2A

l

5

p =

c

2t

4

y = 2x3
+ 3x2, x = -4, x = 0, x = 4

x = 0, x = 1, x = 2
y = 2x2

+ 3x + 1, x = -2, x = -1,

x = -2, x = 0, x = 1y =

1

2
x +

1

3

3

A = 30 and B = 60
A + B + C = 1802

r1 = 0.1 and r2 = 0.05
V = r1

2
+ r2

21 Make the specified variable the subject of the
formula:
(a) 

(b) 

(c) 

(d) , for x

Make n the subject of the formula

Transpose the formula

to make the subject./

Q = lAaT2 - T1

/

b
8

J =

nE

nL + m

7

x + y

3
=

x - y

7
+ 2

Q = A
c + d

c - d
, for c

S = 2pr2
+ 2prh, for h

h = c + d + 2e, for e

6
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Solutions to exercises

0.0125

90

(a) (b) 3, 0, 1, 6, 15
(c) , 0, 176

N = A
Ll

mA
5

t = a c

p
b2

4

-80
-

2
3 , 13 , 563

2

1 (a) (b) 

(c) (d) 

or / =

lA

Q
1T2 - T12/ = lAaT2 - T1

Q
b8

n =

Jm

E - JL
7

x =

21 - 5y

2
c =

d(1 + Q2)

Q2
- 1

h =

S - 2pr2 

2pr
e =

h - c - d

2
6

End of chapter exercises

Find the sum and product of 7, 11 and 91.

Simplify (a) (b) 
(c) (d) 

Find the value of .

Find the value of .

Reduce each of the following fractions to its
simplest form:

(a) (b) (c) (d) 

Add and without using a calculator.

Find without using a calculator.

Find of 120.

Simplify, if possible,
(a) (b) 
(c) (d) 
(e) 
(f) (g) (h) 

(i) (j) (k) 

(l) (m) (n) 
(o) -x(x)

x(-x)(x)(-x)x - x

8ab2d

4abc
12x , 38(m - 3q)

8m - 3q8m(-3q)(8m)(-3q)
3x - 2y + 4z - 2x - 3y + 9z

(-2x)(11x)-2x + 11x
9(4x + 5x)(9x)(-3y)

9

8
58

3
8 *

5
77

1
5

2
76

11
12

15
35

15
20

4
13

5

9!

4!
4

5(8 + 3) - 2(-3 - 6)3

(-3)(-14).-3 - 14,
11 - (-11),9 - (-18),2

1 Remove the brackets from the following
expressions and simplify the result if possible:
(a) 
(b) 
(c) 

Write down the reciprocal of

(a) 18 (b) (c) (d) 

Simplify (a) (b) , (c) .

If find the value of V when and
.

Factorise (a) (b) 

(c) (d) (e) .

Remove the brackets from the following and
simplify the result:
(a) (b) 
(c) (d) 

Factorise (a) 
(b) .

Simplify (a) , (b) .
x

4
+

x

5
+

x

6

x

4
+

x

5
17

2x2
+ 13x + 15

2x2
- 11x + 5,16

(5d + 8)(-2d - 1)(3c + 4)(2c - 1)
(2b + 6)(b - 7)(a + 3)(a - 5)

15

s2
- 2csc2

- 2cs,ax2
- bx,

11y + 121,16x2
- 4x,14

h = 26
A = 3V = Ah13

x4 

x5 

x9 

x4 
x2x5x9,12

2x

3y

3

8

1

11

11

2(x + y) + 3(x + 2y)
7(p + q) - 6(p + q)
7(x + 2y) + 8(2x - y)

10
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5

Simplify (a) , (b) ,

(c) .

Transpose each of the following formulae to
make the given variable the subject:

(a) , for y

(b) , for c

(c) , for n

(d) , for R

Simplify each of the following:

(a) (b) 

(c) 

Write down the reciprocal of the following:

(a) (b) (c) (d) 4!

Simplify .

Simplify .

Without using a calculator find the value of

Express the following using single powers:

(a) (b) 

Express as a single fraction

u

(u - v)(u - w)
+

v

(u - v)(u - w)
+

w

u - v

26

2y 23 y24 y 
41>3 48 

4-1>2 

25

3
13

17
+

4 -

1

3
 

3>7

24

3

2x - 5
 ,

4

x - 3
23

2x - 5

10
-

3x - 2

15
22

2R + 1

R - 1

x + y

13

1

3
+

1

2

21

y3
* y-2

* x7
* x5

* x-3

(3ab2c)3m-7 

m-4 

20

T = 2pA
R - L

g
 

k =

2n + 5

n + 3

x =

c

y

x =

c

y

19

2

x
*

3

2x

2

x
+

3

2x

2

x
-

3

2x
18 Simplify

Simplify .

Factorise .

Remove the square brackets from

Express as a single fraction

Express as a single fraction

Express as a single fraction

By multiplying both numerator and denomina-

tor of by show that

Use this approach to show that

1

2 + 23 
= 2 - 23

1

a + b2c 
=

a - b2c 

a2
- b2 c

a - b1c
1

a + b2c

34

1

v2s
-

s

v2(s2
+ v2)

33

s + 2 +

s + 3

(s + 1)(s + 2)

32

a1 

s + p1 
+

a2 

s + p2 

31

1

v
 c sv

s2
+ v2 

- s d
30

A

t0s
-

A

t0s2 
29

A

2z
 

1

s - v
-

A

2z
 

1

s + v
 28

5

x
-

2

x2 
 

x + 1

27

134 Block 7 Formulae and transposition
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Solutions to exercises

109, 7007

(a) 27 (b) 22 (c) (d) 42

73

15120

(a) (b) (c) (d) 

192

(a) (b) 81x (c) 9x (d) 

(e) (f) (g) 

(h) cannot be simplified

(i) cannot be simplified (j) 4x (k) (l) 0

(m) (n) (o) 

(a) (b) (c) 

(a) (b) 11 (c) (d) 

(a) (b) (c) 

78

(a) (b) (c) 

(d) (e) 

(a) (b) 

(c) (d) 

(a) (b) 

(a) (b) 
37x

60

9x

20
17

(x + 5)(2x + 3)(2x - 1)(x - 5)16

-10d2
- 21d - 86c2

+ 5c - 4

2b2
- 8b - 42a2

- 2a - 1515

s(s - 2c)c(c - 2s)

x(ax - b)11(y + 11)4x(4x - 1)14

13

x-1x5x1612

3y

2x

8

3

1

18
11

5x + 8yp + q23x + 6y10

-x2
-x2

-x2

2bd

c

-24mq-24mqx - 5y + 13z

-22x2
-27xy9

8

15

56
7

17

35
6

11

12

3

7

3

4

4

13
5

4

3

-172

1 (a) (b) (c) 

(a) (b) 

(c) (d) 

(a) (b) (c) 

(a) (b) (c) (d) 

(a) (b) 

1

s(s2
+ v2)

33

s3
+ 5s2

+ 9s + 7

(s + 2)(s + 1)
32

a1s + a2s + a1p2 + a2p1 

(s + p1)(s + p2)
31

s

s2
+ v2 

-

s

v
 30

A

t0s
 a1 -

1

s
 b29

Av

z(s + v)(s - v)
28

5x - 2

x2 (x + 1)
27

uw + u + v - w2 

(u - v) (u - w)
26

y13>12453>625

1885

153
24

3 (x - 3)

4(2x - 5)
23

-

11

30
22

1

24

R - 1

2R + 1

13

x + y

6

5
21

yx927a3b6c3m-320

R = L + g a T

2p
b2

n =

5 - 3k

k - 2

c = xyy =

c

x
19

3

x2 

7

2x

1

2x
18
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The study of functions is fundamental to engineering mathematics
because functions provide a way of mathematically describing
relationships between physical variables.

In this chapter we show how to represent functions and describe many
of their properties. Many functions that arise commonly in engineering
applications are introduced. Confidence and competence in the
algebra of functions are essential for further study, and you will have
the opportunity to develop these. Other functions such as
trigonometrical, exponential and logarithmic functions are introduced
in later blocks once the initial foundations have been laid.

Graphs, block diagrams and sets provide visual ways of representing
functions. You will plot and interpret some simple graphs in the
following blocks. If you have access to a graphical calculator or
computer software you will be able to experiment with more
complicated ones. Straight line graphs are particularly important, and
a block is devoted to the study of these.

Chapter 6
Functions and mathematical models
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Chapter 6 contents

Block 1 Basic concepts of functions

Block 2 The graph of a function

Block 3 Composition of functions

Block 4 One-to-one functions and inverse functions

Block 5 Parametric representation of a function

Block 6 Describing functions

Block 7 The straight line

Block 8 Common engineering functions

Block 9 The equation of a circle

End of chapter exercises

M06_CROF5939_04_SE_C06.QXD  9/21/18  9:09 AM  Page 137



BLOCK 1
Basic concepts of functions

1.1 Introduction

In engineering there are many quantities that change their value as time changes. For
example, the temperature of a furnace may change with time as it is heated. Simi-
larly, there are many quantities that change their value as the location of a point of
interest changes. For example, the shear stress in a bridge girder will vary from point
to point across the bridge. A quantity whose value can change is known as a
variable. We use functions to describe how a variable changes as a consequence of
another changing. There are many different types of function that are used by engin-
eers. We shall be examining some of these in later blocks.

1.2 Mathematical modelling

The introduction of functions leads naturally to the concept of mathematical model-
ling. A mathematical model is a mathematical description of a real-life situation. The
mathematical description usually involves several functions and takes the form of a
set of interrelated equations, although a single equation can represent some simple
phenomena.

Consider, for example, the combustion of gas in a piston cylinder. There are sev-
eral quantities of interest. These include the volume, temperature and pressure of the
gas, the velocity of the piston, and so on. As another example, consider an electric
circuit. The relevant quantities could include voltages, currents, resistances, conduc-
tivity, cross-sectional area of the conductor, and so on. Each quantity is assigned a
symbol: R for resistance, v for velocity, p for pressure, V for volume, and so on.
Sometimes the symbols used are Greek letters.

In any particular situation or experiment, the values of some quantities remain
fixed. These are referred to as constants. The cross-sectional area of a wire may be
constant for a particular circuit, or maybe the resistance of a component is constant.
The values of other quantities may change. The volume and pressure of gas in a
cylinder vary as the piston moves up and down. As we have already mentioned,
quantities whose values change are referred to as variables.

Sometimes there are physical laws which relate the various quantities to each other.
In a simple circuit, as we have seen already in Section 7.2 of Chapter 5, if V denotes
voltage, I denotes current and R denotes resistance (a constant) then we may write

This is known as Ohm’s law. We can say that V is a function of I. As another example,
if u denotes the initial velocity of a body, v denotes velocity at any point in time, a

V = IR
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1.2 Mathematical modelling 139 6

denotes acceleration and t denotes the time that has elapsed, then we may establish that

This is a mathematical equation for modelling the velocity of a body that is changing
due to acceleration. In words we would say, ‘The velocity (v) at any particular instant
is its initial velocity (u) plus the product of its acceleration (a) and the time elapsed
(t).’ Note that velocity, v, is changing with time and so is a variable whereas initial
velocity, u, is a fixed quantity and so is a constant.

However, some caution is needed. Both of these equations apply only under very
particular circumstances which are not apparent simply by examining the equations.
These particular circumstances may rarely if ever be achieved in reality and so the
equation is then an approximation to what is really happening. 

So mathematical models are usually an idealised description of the real situation.
In the above example, the equation requires that acceleration, a, is con-
stant. If the acceleration of a body was almost constant, then we may decide that this
equation, which requires constant acceleration, is an adequate model of reality. As
another example, consider again Ohm’s law which describes the relationship
between voltage across a resistor, V, current, I and resistance, R: 

This is, however, based on some assumptions that simplify the situation. The equa-
tion assumes that there is no variation in the current density across the cross-section
of the resistor. For large voltages, the resistor breaks down and so it is assumed that
the voltage is within limits such that the resistance remains constant. So it must be
remembered that a mathematical model is an approximation to real life. 

Sometimes there is no known physical law that relates particular variables. In such
cases, measurements are sometimes made and from this experimental data it may be
possible to construct an equation (or equations) that adequately captures the relation-
ship between the measured quantities. Any assumptions which are made in con-
structing such equations must be clearly stated.

Many situations require more than one equation to describe them. Consider an
electric circuit comprising several meshes (see Chapter 13, Block 6 for details). The
currents in the meshes are modelled by a system of simultaneous equations. These
simultaneous equations need to be solved to determine each individual mesh current.

We now return to the concept of a variable. It is often useful to distinguish
between independent and dependent variables. Dependent variables are dependent
upon the values of the independent variables. The purpose of a mathematical model
is to have a clear mathematical understanding, in the form of a set of equations, of
how the dependent variables change in response to changes in the independent
variables.

Even though mathematical models are approximations of reality, they have many
advantages. By modelling a situation accurately, it is possible to calculate the effects
of changing the values of the physical quantities, without actually conducting real-
life experiments. For example, by modelling the strength of a metal beam it is poss-
ible to see the effects of changing its cross-sectional area or length without having to
manufacture and test a set of actual metal beams. So, although mathematical models
are theoretical constructs of an idealised situation, their ability to predict the effects
of changing values of key characteristics of a situation is widely used.

V = IR

v = u + at

v = u + at
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140 Block 1 Basic concepts of functions6

Note that the set diagram in Figure 1.2 illustrates that for any input we choose we
obtain just one output, because just one arrow leaves each input value.

4

f

12Treble the input

f

3xTreble the inputx

Input Output

4 12

x 3x

f
Figure 1.2
The function with
rule ‘treble the
input’.

Key point A function is a rule that operates on an input and produces a single output from that
input.

Rule
Input

Function

Output

Input OutputFigure 1.1
A function is a rule
operating on an
input to produce an
output.

So how do we know if a mathematical model is a ‘good enough’ description of
reality? Predictions from the model can be compared with actual measurements
made during the experiment. Modelled results are compared with real results and a
judgement is made on whether the fit is good enough. If not, then the model must be
improved. This may necessitate additional equations being added to the model, or
existing equations having terms modified, added or removed. The cycle is then
repeated and the new model tested against reality. 

1.3 The function rule

A function can be thought of as a rule that operates on an input and produces an
output. This can be illustrated pictorially in two ways, as shown in Figure 1.1. The
first way is by using a block diagram, which consists of a box showing the input and
output, and the rule. We often write the rule inside the box. The second way is to use
two sets, one to represent the input and one to represent the output. An arrow shows
the relationship between them.

In order for a rule to be a function it must produce only a single output for any
given input. The function with the rule ‘treble the input’ is shown in Figure 1.2.

Note that with an input of 4 the function would produce an output of 12. With a more
general input, x say, the output will be 3x. It is usual to assign a letter to a function in
order to label it. The trebling function in Figure 1.2 has been given the symbol f.
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1.3 The function rule 141 6

Input, T

Function

OutputAdd 273

Figure 1.4
Block diagram
showing the
function

.f (T) = T + 273

Solution
In each case the function rule instructs us to multiply the input by 7 and then subtract 2.

(a) When the input is 4 the output is 

(b) When the input is �3 the output is 

(c) When the input is x the output is 

Several different notations are used by engineers to describe functions. For the
trebling function in Figure 1.2 it is common to write

This indicates that with an input x, the function, f, produces an output of 3x. The
input to the function is placed in the brackets after the ‘f ’. Do not interpret this as
multiplication. is read as ‘f is a function of x’, or simply ‘f of x’, meaning that the
value of the output from the function depends upon the value of the input x. The
value of the output is often called the value of the function.

Sometimes is abbreviated to simply , and it is then left to the
reader to note that f is a function of x.

Example 1.2 Thermodynamics – Converting centigrade to kelvin
Temperatures can be recorded in either centigrade or kelvin . Temperatures
in centigrade can be converted to their equivalent in kelvin by adding 273. So, for
example, is equivalent to .

This may be expressed diagrammatically as shown in Figure 1.4 where the input,
T, is the temperature in and the output is the temperature in or algebraically as 

f (T) = T + 273

K°C

70 + 273 = 343 K70 °C

(K)(°C)

f = 3xf (x) = 3x

f (x)

f (x) = 3x

7x - 2    

-23    

26    

Example 1.3
State the rule of each of the following functions:
(a) (b) (c) (d) 
(e) p (x) = x3

+ 5
h(t) = t3 + 5g(z) = z2

- 7f (t) = 6t - 1f (x) = 6x

Input

Function

OutputMultiply the input by 7

and then subtract 2

Figure 1.3

Example 1.1
Write down the output from the function shown in Figure 1.3 when the input is
(a) 4, (b) �3, (c) x.
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142 Block 1 Basic concepts of functions6

Exercises

Explain what is meant by a function.

State the rule of each of the following
functions:
(a) (b) f (t) = 5tf (x) = 5x

2

1 (c) (d) 

(e) (f)

(g) f (x) =

1

1 + x

h(t) =

t

3
+

2

3
f (t) = 1 - t

f (t) = 7t - 27f (x) = 8x + 10

Solutions to exercises

(a) multiply the input by 5, (b) same as (a), 
(c) multiply the input by 8 and then add 10,
(d) multiply the input by 7 and then subtract 27,

2 (e) subtract the input from 1, (f) divide the
input by 3 and then add , (g) add 1 to the
input and then find the reciprocal of the result.

2
3

Solution
(a) The rule for f is ‘multiply the input by 6’.
(b) Here the input has been labelled t. The rule for f is ‘multiply the input by 6 and

subtract 1’.
(c) Here the function has been labelled g and the input has been labelled z. The

rule for g is ‘square the input and subtract 7’.
(d) The rule for h is ‘cube the input and add 5’.
(e) The rule for p is ‘cube the input and add 5’.

Note from Example 1.3 parts (d) and (e) that it is the rule that is important when
describing a function and not the letters being used. Both h(t) and p(x) instruct us to
‘cube the input and add 5’.

Example 1.4
Write down a mathematical function that can be used to describe the following rules:
(a) ‘square the input and divide the result by 2’
(b) ‘divide the input by 3 and then add 7’

Solution
(a) Use the letter x for input and the letter f to represent the function. Then

(b) Label the function g and call the input t:

g(t) =

t

3
+ 7

    
g(t) =

f (x) =

x2 

2    
f (x) =
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1.4 The argument of a function 143 6

1.4 The argument of a function

The input to a function is called its argument. It is often necessary to obtain the out-
put from a function if we are given its argument. For example, given the function

we may require the value of the output when the argument is 2. We
write this as or more usually and compactly as . In this case the value of

is .

Example 1.5
Given the function find
(a)
(b)
(c)

Solution
(a) State the function rule:

When the argument is 2, we find

(b) Here the argument is .

(c)

Example 1.6 Dynamics – Constant acceleration
A body has an initial velocity of u and a constant acceleration of a .
Then, after t seconds, the velocity, v, of the body is given by 

Note that velocity, v, is a function of time t. The argument of the function v is t.

Example 1.7 Dynamics – Constant acceleration
A body has an initial velocity of and a constant acceleration of .
Calculate the velocity after 14 seconds.

Solution

The velocity after 14 seconds is .34 m s-1

v(14) = 6 + 2(14) = 34
= 6 + 2t

v(t) = u + at

2 m s-26 m s-1

v(t) = u + at

m s-2m s-1

3(6) + 1 = 19    f (6) =

3 * (-1) + 1 = -2    f (-1) =

-1

 = 7
  f (2) = 3 * 2 + 1

multiply input by 3 and add 1    

f (6)
f (-1)
f (2)

f (x) = 3x + 1

3 * 2 + 2 = 8g(2)
g(2)g(t = 2)

g(t) = 3t + 2

M06_CROF5939_04_SE_C06.QXD  9/21/18  9:09 AM  Page 143



144 Block 1 Basic concepts of functions6

Exercises

Explain what is meant by the ‘argument’ of a
function.

Given the function find
(a) (b) (c)
(d) 

Given the function find
(a) (b) (c) (d) 

(e) (f) (g) (h) f a t

a
bf (t - l)f (l)f (3t + 5)

f (4x + 2)f (-x)f (2x)f (x)
f (t) = 2t2 + 43

g(-0.11)
g(-0.5)g(2)g(7)

g(t) = 8t + 32

1 Given find
(a) (b) (c) 
(d) 

Calculate when

(a) (b) (c) 

In each case write down the corresponding
expression for .

If find .f a x

/

bf (x) =

1

(1 - x)2
6

f (x + h) - f (x)

f (x) =

1

x
f (x) = x3f (x) = x2

f (x + h)5

g(4x + 9)
g(6t - 4)g(t + 5)g(3t)

g(x) = 3x2
- 74

It is possible to obtain the value of a function when the argument is an algebraic
expression. Consider the following example.

Example 1.8
Given the function find

(a) (b) (c) (d) (e) 

Solution
State the rule for this function:

We can apply this rule whatever the argument.

(a) In this case the argument is t. Multiplying this by 3 and adding 2 we find
. Equivalently we can replace x by t in the expression for the

function, so .

(b) In this case the argument is 2t. We need to replace x by 2t in the expression for
the function. So

(c) In this case the argument is .

(d) The argument is 5x and so there appears to be a clash of notation with the
original expression for the function. There is no problem if we remember that
the rule is to multiply the input by 3 and then add 2. The input now is 5x, so

(e) 3
t

a
+ 2

    
ya t

a
b =

 = 15x + 2

y(5x) = 3(5x) + 2

3(z + 2) + 2 = 3z + 8    y(z + 2) =

z + 2

3(2t) + 2 = 6t + 2    y(2t) =

y(t) = 3t + 2
y(t) = 3t + 2

multiply the input by 3 and then add 2    

ya t

a
by(5x)y(z + 2)y(2t)y(t)

y(x) = 3x + 2
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Solutions to exercises

(a) multiply the input by 9 (b) multiply the
input by 12 (c) multiply the input by 208 and
add 36 (d) multiply the input by 25 and subtract

1 18 (e) find one-half of the input and then add
(f) divide the number 10 by the input.

3
4

Solutions to exercises

The argument is the input.

(a) 59 (b) 19 (c) (d) 2.12

(a) (b) (c) 
(d) (e) 

(f) (g) (h) 

(a) (b) 
(c) 
(d) 

(a) 
(b) x3

+ 3x2h + 3xh2
+ h3

x2
+ 2xh + h25

48x2
+ 216x + 236

108t2 - 144t + 41
3t2 + 30t + 6827t2 - 74

2t2

a2
+ 42(t - l)2

+ 42l2
+ 4

18t2 + 60t + 5432x2
+ 32x + 12

2x2
+ 48x2

+ 42x2
+ 43

-12

1 (c) 

The corresponding expressions are (a)

(b) 

(c) 

1

a1 -

x

/

b2
6

1

x + h
-

1

x
= -

h

x(x + h)

3x2h + 3xh2
+ h3

2xh + h2

1

x + h

End of block exercises

State the rule of each of the following
functions:
(a) (b)
(c) (d)

(e) (f)

Given the function find
(a) (b) (c) (d) 
(e) (f) 

Given the function find

(a) (b) (c) (d)

(e)

If find (a) ,

(b) , (c) .F(s2
+ v2)F(s + 1)

F(s - 1)F(s) =

1

s + 1
4

f a t

a
b

f (v - x)f (t - l)f (t)f (l)

f (x) =

1

x
3

g(-0.5)g(0.01)
g1122g(-2)g(7)g(1)

g(x) = 6 - 12x2

g(x) =

10

x
f (x) =

1
2  
x +

3
4

f (t) = 25t - 18f (x) = 208x + 36
f (t) = 12tf (v) = 9v

1 Area of a circle. The area, A, of a circle
depends upon the radius, r, according to

Calculate and hence show that when the
radius of a circle is doubled, its area is
increased by a factor of 4.

Volume of a sphere. The volume, V, of a
sphere depends upon the radius, r, according to

(a) Calculate . Hence determine how the
volume of a sphere changes when the
radius is doubled. 

(b) By what factor does the volume of a
sphere change when the radius is halved? 

V(2r)

V(r) =

4pr3

3

6

A(2r)

A(r) = pr2

5
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(a) (b) (c) 30 (d) 0 (e) 5.88 (f) 12

(a) (b) (c) (d) (e) 

(a) (b) (c)

A(2r) = 4pr2
= 4A(r)5

1

s2
+ v2

+ 1

1

s + 2

1

s
4

a

t

1

v - x

1

t - l

1

t

1

l
3

-78-62 (a) . So when the 

radius is doubled the volume increases by
a factor of 8.

(b) . 

When the radius is halved the volume
decreases by a factor of 8.

Va r

2
b =

4p

3
a r

2
b3

=

1

8
a4pr3

3
b =

V(r)

8

V(2r) =

32pr3

3
= 8V(r)6
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BLOCK 2
The graph of a function

2.1 Introduction

Engineers often find mathematical ideas easier to understand when these are por-
trayed visually as opposed to algebraically. Graphs are a convenient and widely used
way of portraying functions. By inspecting a graph it is easy to describe a number of
properties of the function being considered. For example, where is the function posi-
tive, and where is it negative? Where is it increasing and where is it decreasing? Do
function values repeat? Questions such as these can be answered once the graph of a
function has been drawn. In this block we shall describe how the graph of a function
is obtained and introduce various terminology associated with graphs.

2.2 The graph of a function

Consider the function . The output from this function is obtained by multi-
plying the input by 2. We can choose several values for the input to this function and
calculate the corresponding outputs. We have done this for integer values of x
between �2 and 2, and the results are shown in Table 2.1.

f (x) = 2x

Input, x 0 1 2
Output, 0 2 4-2-4f (x)

-1-2
Table 2.1

To construct the graph of this function we first draw a pair of axes – a vertical axis
and a horizontal axis. These are drawn at right angles to each other and intersect at
the origin O as shown in Figure 2.1.

�2 �1 O 1 2

1
2
3
4

�1
�2
�3
�4

Horizontal axis

Vertical axis

Origin

y � 2x
Figure 2.1
The two axes
intersect at the
origin. Each pair
of values, x and

, gives a point
on the graph.
f (x)
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148 Block 2 The graph of a function6

Each pair of input and output values can be represented on a graph by a single
point. The input values are measured along the horizontal axis and the output values
are measured along the vertical axis. The horizontal axis is often called the x axis.
The vertical axis is commonly referred to as the y axis, so that we often write the
function as

or simply

Each pair of x and y values in the table is plotted as a single point shown as in
Figure 2.1. The point is often labelled as (x, y). The values of x and y are said to
be the coordinates of the point. The points are then joined with a smooth curve to
produce the required graph as shown in Figure 2.1. Note that in this case the graph is
a straight line.

Dependent and independent variables

Since x and y can have a number of different values they are variables. Here x is called
the independent variable and y is called the dependent variable. By knowing or
choosing a value of the independent variable x, the function rule enables us to calculate
the corresponding value of the dependent variable y. To show this dependence we
often write y(x). This is read as ‘y is a function of x’ or ‘y depends upon x’, or simply ‘y
of x’. Note that it is the independent variable that is the input to the function and the
dependent variable that is the output.

The domain and range of a function

The set of values that we allow the independent variable to take is called the domain
of the function. A domain is often an interval on the x axis. For example, the function

has any value of x between �5 and 20 inclusive as its domain because it has been
stated as this. If the domain of a function is not stated then it is taken to be the largest
set possible. For example,

has domain since h is defined for every value of t and the domain has not
been stated otherwise.

The set of values of the function for a given domain, that is the set of y values, is
called the range of the function. The range of is . The range of is

although this may not be apparent to you at this stage. The range can usually
be identified quite easily once a graph has been drawn.
[1, q)

h(t)[-23, 102]g(x)

(- q, q)

h(t) = t2 + 1

 = 5x + 2 -5 … x … 20
 y = g(x)

•

y = 2x

 = 2x
 y = f (x)
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2.2 The graph of a function 149 6

Later, you will meet some functions for which certain values of the independent
variable must be excluded from the domain because at these values the function 

would be undefined. One such example is for which we must exclude the

value x � 0, since is meaningless.1
0

f (x) =

1
x

Key point In the function is called the independent variable and y is called the
dependent variable because the value of y depends upon the value chosen for x.

The set of x values used as input to the function is called the domain of the function.
The set of values that y takes as x is varied is called the range of the function.

y = f (x), x

Example 2.1
Consider the function given by .
(a) State the domain of the function.
(b) Plot a graph of the function.
(c) Deduce the range of the function from the graph.

Solution
(a) The domain is given as the closed interval [�2, 2], that is any value of t

between �2 and 2 inclusive.
(b) To construct the graph a table of input and output values must be constructed

first. Such a table is shown in Table 2.2.

g(t) = 2t2 + 1, -2 … t … 2

t �2 �1 0 1 2
9 3 1 3 9y = g(t)

Table 2.2

Each pair of t and y values in the table is plotted as a single point shown as .
The points are then joined with a smooth curve to produce the required graph as
shown in Figure 2.2.

•

t

g(t) � 2t 
2 � 1

�2 �1 O 1 2

5

9
Figure 2.2
Graph of

.g(t) = 2t2 + 1

(c) The range is the set of values that the function takes as x is varied. By
inspecting the graph we see that the range of g is the closed interval [1, 9].
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Example 2.2
Consider the function given by .
(a) State the domain of the function.
(b) Draw up a table of input and output values for this function.
(c) Plot a graph of the function.
(d) Deduce the range of the function by inspecting the graph.

Solution
(a) Recall that the domain of a function is the set of values that x is allowed to

take. Write this set of values as an interval:

(b) The table of values has been partially calculated. Complete this now:

[-3, 3]    

f (x)

f (x) = x2
+ 2, -3 … x … 3

x 0 1 2 3
6 2x2

+ 2
-1-2-3

x 0 1 2 3
11 6 3 2 3 6 11x2

+ 2
-1-2-3

(c) The graph is shown in Figure 2.3.

(d) Recall that the range of the function is the set of values that the function takes
as x is varied. It is possible to deduce this from the graph. Write this set as an
interval.

Example 2.3
Explain why the value must be excluded from the domain of the function

Solution

 
When x = -4 the denominator

is zero, so f  is undefined here. 

f (x) =

3

(x + 4)2 

x = -4

[2, 11]    

f (x) � x 
2 � 2

�3 �2 �1 1 2 3

5

10

x
O

11
Figure 2.3
Graph of

.f (x) = x2
+ 2
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Example 2.4 Chemical Engineering – Discharge of a liquid from a tank

Figure 2.4 shows a tank that is used to store a liquid. Liquid can be let into the tank
through an inlet pipe at the top, and it discharges from the tank through a spout in
the side near its base. Such a situation occurs frequently in chemical engineering
applications. Under certain conditions the flow through the spout will be laminar or
smooth, and the rate of outflow, Q, is proportional to the depth, or head, H, of liquid
in the tank. This is expressed mathematically as

where K is a constant of proportionality called the discharge coefficient. The depen-
dent variable Q is a function of the independent variable H. Here the input to the
function is the head H, the function rule is ‘multiply the input by K’, and the result-
ing output is the flow rate Q. A graph of Q against H is shown in Figure 2.5(a).

Q = KH

Q

H

Figure 2.4
A liquid storage
system.

H

Q

H

Q

Q � KH
Q�K H

Figure 2.5
(a) Laminar flow
characteristic;
(b) turbulent flow
characteristic.

If the flow through the spout is turbulent then a different functional relationship
exists between Q and H:

Here the function rule is ‘take the positive square root of the input, H, and multiply this
by the discharge coefficient, K’. The output is the flow rate Q. A graph of Q against H is
shown in Figure 2.5(b).

Q = K2H

Exercises

Explain the meaning of the terms ‘dependent
variable’ and ‘independent variable’. When
plotting a graph, which variables are plotted
on which axes?

1 When stating the coordinates of a point, which
coordinate is given first?

2

(a) (b)
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152 Block 2 The graph of a function6

2.3 Using computer software to plot graphs of functions

Computer software packages make it very easy to plot graphs of functions. Not only
can they produce graphs accurately and quickly, but also they generally have other
useful facilities. For example, it is possible to zoom in on particular parts of the
graph, and to redraw a graph using different axes. It is straightforward to produce
multiple plots with several graphs in one figure. Furthermore, packages can be used
to plot other forms of graph such as polar plots, parametric plots (see Block 5), etc.
When you have managed to produce some simple graphs you will find on-line help
facilities that will enable you to explore this topic further.

Example 2.5
Use a computer package to plot a graph of the function
for values of x between and 6. By inspecting the graph locate the values of x
where the graph cuts the horizontal axis.

Solution

-6
f (x) = 2x3

- 3x2
- 39x + 20

Explain the meaning of an expression such as
in the context of functions. What is the

interpretation of ?

Explain the meaning of the terms ‘domain’
and ‘range’ when applied to functions.

4

x(t)
y(x)

3 Plot a graph of the following functions. In each
case state the domain and the range of the
function.
(a)
(b)
(c)
(d) f (t) = 6 - t2, 1 … t … 5

p(t) = 2t2 + 8, -2 … t … 4
g(x) = x2

+ 4, -2 … x … 3
f (x) = 3x + 2, -2 … x … 5

5

Solutions to exercises

The independent variable is plotted on the 
horizontal axis. The dependent variable is
plotted on the vertical axis.

The independent variable is given first, as in
(x, y).

2

1 means that the dependent variable x is a
function of the independent variable t.

(a) 
(b) (c) 
(d) .[1, 5], [-19, 5]

[-2, 4], [8, 40][-2, 3], [4, 13]
domain [-2, 5], range [-4, 17]5

x(t)3

Maple
In Maple the command to plot a graph of this function is

Note that Maple requires the multiplication symbol to be inserted, and uses the
symbol to denote a power. Note that the domain of interest is entered in the form

Maple produces the output shown in Figure 2.6, which can be customised asx = -6..6.
^

*

plot(2*x^ 3 - 3*x^ 2 - 39*x + 20,x = -6..6);
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required by the user. By inspection the graph cuts the horizontal axis at 
and .x =

1
2

x = 5x = -4, 

Matlab
In Matlab it is first necessary to specify the coordinates of all the required points on the
graph. Matlab will then plot the points and join them with a smooth curve. Clearly we
want points for which the value of x lies between �6 and 6. Suppose we want to plot
points at intervals of 0.1. The appropriate values of x are defined using the command

Then at each of these values of x, the value of y is calculated using the command 

Note the requirement to input as , and so on. Finally the command to plot the
graph is

Matlab produces the graph, similar to that produced by Maple, in a new window. You
should explore the commands to add labels, title, reposition the axes, etc.

plot(x,y);

x.^3x3

y = 2*x.^ 3 - 3*x.^ 2 - 39*x + 20;

x = -6:0.1:6;

–200

–100

100

–6 –4 –2 2 4 6

x

Figure 2.6

End of block exercises

Plot graphs of and for
. In each case state the domain

and range of the function.

On the same diagram draw graphs of
and . Comment on

any similarities between the two graphs.

On the same diagram draw graphs of 
and . Comment on any similarities
between the two graphs.

The relationship between a temperature, ,
measured in degrees Fahrenheit and a
temperature measured in degrees Celsius

is given by the function .
Plot a graph of this function for the domain

TF =
9
5 TC + 32(°C)

TC

(°F)
TF4

y = 4x
y = 3x3

y = 7x + 2y = 7x + 1
2

-4 … x … 4
y = -x2y = x21 . What is the range of this

function?

Plot a graph of the function

What is the range of this function?

Explain why the value must be excluded
from the domain of

What other value must be excluded and why?

g(x) =

1

x(x - 7)

x = 06

f (x) = (x - 2) (x + 4)

5

0 … TC … 100
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154 Block 2 The graph of a function6

Solutions to exercises

Domain [�4, 4] in both cases; range of is 
[0, 16], range of is .

Both graphs have the same slope.

Both pass through the origin.

[32, 212]4

3

2

[-16, 0]-x2
x21

When is not defined. The value
must also be excluded because once

again this value makes the denominator zero.
x = 7

x = 0, g(x)6

[-9, q)5
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Square the inputx

h

(3x � 5)2
3x � 5

g

Treble the input
and add 5

Figure 3.3
The composition of
the two functions to
give .g(h(x))

BLOCK 3
Composition of functions

3.1 Introduction

When the output from one function is used as the input to another function we form
what is known as a composite function. We study composite functions in this block.

3.2 Composition of functions

Consider the two functions and . Block diagrams showing
the rules for these functions are shown in Figure 3.1.

h(x) = 3x + 5g(x) = x2

Square the inputx x 
2

g

3x � 5

h

x
Treble the input

and add 5

Figure 3.1
Block diagrams of
two functions g
and h.

Suppose we place these block diagrams together in series as shown in Figure 3.2,
so that the output from function g is used as the input to function h.

Square the inputx
x 

2

g

3x 
2 � 5

h

Treble the input
and add 5

Figure 3.2
The composition
of the two
functions to give

.h(g(x))

Study Figure 3.2 and deduce that when the input to g is x the output from the two
functions in series is . Since the output from g is used as input to h we write

The form is known as the composition of the functions g and h.
Suppose we interchange the two functions so that h is applied first, as shown in

Figure 3.3.

h(g(x))

 = 3x2
+ 5

  h(g(x)) = h(x2)

3x2
+ 5
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156 Block 3 Composition of functions6

Study Figure 3.3 and note that when the input to h is x the final output is .
We write

Note that the function is different from .

Example 3.1
Given two functions and obtain expressions for the
compositions
(a) (b) 

Solution
(a) We have

Now the rule for g is ‘triple the input and add 2’, and so we can write

So, .
(b) We have

State the rule for h:

We note that .

Example 3.2
Find when .

Solution
Here the function rule is ‘multiply the input by 3 and then add 2’. The composite
function f(f(x)) is illustrated in Figure 3.4.

 = 9x + 8

 = 3(3x + 2) + 2

  f ( f (x)) = f (3x + 2)

f (x) = 3x + 2f (f (x))

h(g(t)) Z g(h(t))

h(3t + 2) = 3t + 5 h(g(t)) =

‘add 3 to the input’ 

h(g(t)) = h(3t + 2)

g(h(t)) = 3t + 11

 = 3t + 11

  g(t + 3) = 3(t + 3) + 2

g(h(t)) = g(t + 3)

h(g(t))g(h(t))

h(t) = t + 3g(t) = 3t + 2

g(h(x))h(g(x))

g(h(x)) = (3x + 5)2

(3x + 5)2

Multiply the input
by 3 and add 2

x

f f

3(3x � 2) � 2
Multiply the input

by 3 and add 2
3x � 2

Figure 3.4
The composition
of with itself.f (x)
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3.2 Composition of functions 157 6

Solutions to exercises

(a) (b) 
(c) (d) 

x

, 

If , and , then
.g(h(x)) = 7(x - 2)

h(x) = x - 2g(x) = 7x4

2x2
+ 3x + 33

2

x + 1816 - 2x2
-2x2

- 36x - 155-x2
- 18x - 781 If , and , then

(a) (b) 

(a) (b) (c) 

(a) 7 -

2

x
 (b) x Z  08

3 - x

3x - 10

x - 3

3x - 8
-

x + 3

3x + 8
7

28t2 + 82t + 6014t2 - 2t + 36

h(g(x)) = 7x - 2.
h(x) = x - 2g(x) = 7x5

Exercises

Find when and .

If find .

If and find
(a) , (b) , (c) , (d) .f (g(7))g(g(2))g(f (0))f (g(0))

g(x) = x2
- 5f (x) = x + 63

f (f (x))f (x) = 8x + 22

g(x) = x2f (x) = x - 7f (g(x))1 If and find .g(f (x))g(x) =

1

x
f (x) =

x - 3

x + 1
4

Solutions to exercises

8(8x + 2) + 2 = 64x + 182

x2
- 71 (a) 1 (b) 31 (c) (d) 50

x + 1

x - 3
4

-43

End of block exercises

If , and
find (a) g(f(x)), (b) h(g(f(x))),

(c) f(h(g(x))), (d) f(f(x)).

If find f(f(x)).

If and find y(z(x))
and z(y(x)).

Express the function as the
composition of two simpler functions.

f (x) = 7(x - 2)4

z(x) = 2xy(x) = x2
+ 33

f (x) =

1

x
2

h(x) = 1 + 2x
g(x) = 3 - x2f (x) = x + 91 Express the function as the

composition of two simpler functions.

If and find
(a) r(s(t)), (b) s(r(t)).

If , and , find

(a) f(g(x)), (b) g(f(x)), (c) f(f(x)).

(a) If and find g(f(x)).

(b) What is the domain of g(f(x))?

g(x) = 7 - xf (x) =

2

x
8

g(x) =

1

x + 3
f (x) =

1

x - 3
7

s(t) = 7t2 - tr(t) = 2t + 36

f (x) = 7x - 25
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BLOCK 4
One-to-one functions and inverse functions

4.1 Introduction

In this block we examine more terminology associated with functions. We explain
one-to-one and many-to-one functions and show how the rule associated with certain
functions can be reversed to give so-called inverse functions. These ideas will be
needed when we deal with particular functions in later blocks.

4.2 One-to-many rules, many-to-one and one-to-one functions

One-to-many rules

Recall from Block 1 that a rule for a function must produce a single output for a
given input. Not all rules satisfy this criterion. For example, the rule ‘take the square
root of the input’ cannot be a rule for a function because for a given input, other than
zero, there are two outputs: an input of 4 produces outputs of 2 and . Figure 4.1
shows two ways in which we can picture this situation, the first being a block dia-
gram, and the second using two sets representing input and output values and the
relationship between them.

-2

4

2

�2

Input Output

4

2

�2

Take the square root
of the input

Figure 4.1
This rule cannot be
a function – it is a
one-to-many rule.

Such a rule is described as a one-to-many rule. This means that one input pro-
duces more than one output. This is obvious from inspecting the sets in Figure 4.1.
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4.2 One-to-many rules, many-to-one and one-to-one functions 159 6

The graph is shown in Figure 4.2. Plotting a graph of a one-to-many rule will result
in a curve through which a vertical line can be drawn that cuts the curve more than
once as shown.

x

y

Figure 4.2
A vertical line cuts
the graph of a one-
to-many rule more
than once.

By describing a rule more specifically it is possible to make it a valid rule for a
function. For example, the rule ‘take the positive square root of the input’ is a valid
function rule because a given input produces a single output. The graph of this func-
tion is the upper branch in Figure 4.2.

Many-to-one and one-to-one functions

Consider the function . An input of produces an output of 9. Simi-
larly, an input of also produces an output of 9. In general, a function for which
different inputs can produce the same output is called a many-to-one function. This
is represented pictorially in Figure 4.3, from which it is clear why we call this a
many-to-one function.

-3
x = 3y(x) = x2

Input Output

�3

3

9

Figure 4.3
This represents a
many-to-one
function.

x 0 1 2 3 4

0 ;2; 2 3; 2 2;1y = ; 2 x

The graph of the rule ‘take ’ can be drawn by constructing a table of values:; 2x
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160 Block 4 One-to-one functions and inverse functions6

It is possible to decide whether a function is many-to-one by examining its graph.
Consider the graph of shown in Figure 4.4.y = x2

�5 5

10

�15

y � x 
3  

y

x

Figure 4.5
The function

is a one-
to-one function.
y(x) = x3

�3 3

9

y

x

y � x 
2Figure 4.4

The function
is a many-

to-one function.
y = x2

We see that a horizontal line drawn on the graph cuts it more than once. This
means that two different inputs have yielded the same output and so the function is
many-to-one.

If a function is not many-to-one then it is said to be one-to-one. This means that
each different input to the function yields a different output. Consider the function

, which is shown in Figure 4.5.y(x) = x3

A horizontal line drawn on this graph will intersect the curve only once. This
means that each input value of x yields a different output value for y.

Example 4.1 Electrical Engineering – Voltage in a circuit
The function shown in Figure 4.6 is often used to model voltage, , in electric cir-
cuits. It is known as a sine function – this function is described in detail in Chapter 9.

V

t

VFigure 4.6
A sine function
used to model
voltage.

State whether this is a one-to-one function or a many-to-one function.
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4.3 Inverse of a function 161 6

4.3 Inverse of a function

We have seen that a function can be regarded as taking an input, x, and processing it
in some way to produce a single output f(x) as shown in Figure 4.8.

A natural question to ask is whether we can find a function that will reverse the
process. In other words, can we find a function that will start with f(x) and process it
to produce x? This idea is also shown in Figure 4.8. If we can find such a function it

Solution
This is a many-to-one function as there are many values of that correspond to the
same value of voltage, , as indicated by the dashed line in Figure 4.6.

Example 4.2
Study the graphs shown in Figure 4.7. Decide which, if any, are graphs of functions.
For those which are, state whether the function is one-to-one or many-to-one. 

Solution

not a function 

V
t

Figure 4.7(b)

one-to-one function 

Exercises

Explain why a one-to-many rule cannot be a
function.

Illustrate why is a many-to-one function
by providing a suitable numerical example.

y = x42

1 By sketching a graph of show that
this is a one-to-one function.

y = 3x - 13

Figure 4.7(a)

(a)

(b)
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162 Block 4 One-to-one functions and inverse functions6

is called the inverse function to f(x) and is given the symbol (x). Do not confuse
the ‘ ’ with an index, or power. Here the superscript is used purely as the notation
for the inverse function. Note that , as shown in Figure 4.9.f - 1( f (x)) = x

-1
f - 1

Process
f (x)

f

x xReverse process

f  
�1Figure 4.9

, if it exists,
reverses the
process in f.

f - 1

Process f (x)

f

x

Reverse process x

f  
�1

 f (x)

Figure 4.8
The second block
reverses the
process in the first.

Key point (x) is the notation used to denote the inverse function of f (x). The inverse function,
if it exists, reverses the process in f (x).
f - 1

Example 4.3
Find the inverse function for .

Solution
The function f(t) takes an input, t, and produces an output, . The inverse
function, , must take an input and give an output t. That is,

If we introduce a new variable , and transpose this to give ,
then

So the rule for is add 8 to the input and divide the result by 3. Writing with t
as its argument instead of z gives

This is the inverse function of f (t).

f - 1(t) =

t + 8

3

f - 1f - 1

f - 1(z) =

z + 8

3

t =

z + 8

3
z = 3t - 8

f - 1(3t - 8) = t

3t - 8f - 1
3t - 8

f (t) = 3t - 8
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4.3 Inverse of a function 163 6

Example 4.4
Find the inverse function of .

Solution
This function takes an input x and produces an output . The inverse function

must take an input and produce an output x. That is,

Introduce a new variable and transpose this for x in order to find the
inverse function.

Write the inverse function with an argument of x.

Example 4.5

Find the inverse function of .

Solution

The inverse function must be such that . By letting 
find the inverse function.

Write this with x as its argument.

Not all functions possess an inverse function. In fact, only one-to-one functions do
so. If a function is many-to-one the process to reverse it would require many outputs
from one input, contradicting the definition of a function.

f -1(x) =

2

3 - x 

f -1(z) =

2

3 - z 

z =

3x - 2
x

f -1a3x - 2
x
b = x

f (x) =

3x - 2
x

g- 1(x) =

8 - x

7 

g- 1(z) =

8 - z

7 

z = 8 - 7x

g- 1(8 - 7x) = x

8 - 7xg- 1
8 - 7x

g(x) = 8 - 7x

Exercises

Explain what is meant by the inverse of a
function.

Explain why a many-to-one function does not
have an inverse function. Give an example.

2

1 Find the inverse of each of the following
functions:
(a) (b) 

(c) (d) f (x) =

1

x + 1
f (x) = -23x

f (x) = xf (x) = 4x + 7

3
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164 Block 4 One-to-one functions and inverse functions6

Solutions to exercises

(a) (b) f - 1(x) = xf - 1(x) =

x - 7

4
3 (c) (d) f -1(x) =

1 - x

x
f -1(x) = -

x

23

End of block exercises

By sketching a suitable graph, or otherwise,
determine which of the following are one-to-
one functions:
(a) (b)

(c) (d)

Find the inverse of the function

.

Find the inverse of the function

.f (x) =
1
2x + 1

3

f (x) =
1
7(4x - 3)

2

f (x) =

1

x
f (x) = x4

f (x) = -3x + 7f (x) = -x

1 If find . Show that 
.

If show that .

Find the inverse function of ,
.x Z -1

g(x) =

x - 1

x + 1
6

f - 1(t) =

5t + 3

4
f (t) =

4t - 3

5
5

f (f - 1(x)) = x
f - 1(x)f (x) = 5 - 4x4

Solutions to exercises

(a), (b) and (d) are one-to-one.

2x - 23

f -1(x) =

7x + 3

4
2

1

g-1(x) =

x + 1

1 - x
6

f -1(x) =

5 - x

4
4
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BLOCK 5

Parametric representation of a function

5.1 Introduction

We have already seen that it is possible to represent a function using the form
. This is sometimes called the cartesian form. An alternative representation

is to write expressions for y and x in terms of a third variable known as a parameter.
Commonly the variables t or are used to denote the parameter.

For example, when a projectile such as a ball or rocket is thrown or launched, the
x and y coordinates of its path can be described by a function in the form .
However, it is often useful also to give its x coordinate as a function of the time after
launch, that is x(t), and its y coordinate in the same way as y(t). Here time t is the
parameter.

5.2 Parametric representation of a function

Suppose we write x and y in terms of t in the form

(1)

For different values of t between and 1, we can calculate pairs of values of x and
y. For example, when we see that and . That is,

corresponds to the point with xy coordinates (4, 2).
A complete table of values is given in Table 5.1.

t = 1
y = 2 * 12

= 2x = 4(1) = 4t = 1
-1

x = 4t y = 2t2, for -1 … t … 1 

y = f (x)

u

y = f (x)

t 0 0.5 1
x 0 2 4
y 2 0.5 0 0.5 2

-2-4
-0.5-1

Table 5.1

If the resulting points are plotted on a graph then different values of t correspond
to different points on the graph. The graph of (1) is plotted in Figure 5.1. The arrow
on the graph shows the direction of increasing t.

It is sometimes possible to convert a parametric representation of a function into
the more usual form by combining the two expressions to eliminate the parameter.
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166 Block 5 Parametric representation of a function6

Thus if and we can write and so

So . Using and giving values to x we can find corresponding values

of y. Plotting (x, y) values gives exactly the same curve as in Figure 5.1.

y =

x2 

8
y =

x2 

8

 =

x2 

8

 =

2x2 

16

 = 2a x

4
 b2

  y = 2t2

t =

x

4
y = 2t2x = 4t

x

y

�4 �3 �2 �1 1 2 3 4

1

2

t � �0.5 t � 0.5

t � �1 t � 1

t � 0

Figure 5.1
Graph of the
function defined
parametrically by

, ,
-1 … t … 1.

y = 2t2x = 4t

Example 5.1

Consider the function , .

(a) Draw up a table of values of this function.
(b) Plot a graph of the function.

Solution
(a) A partially completed table of values has been prepared. Complete the table.

1 … t … 8x =

1

2
a t +

1

t
b , y =

1

2
a t -

1

t
b

(b) The graph is shown in Figure 5.2. Add your points to those already marked on
the graph. The arrow on the graph shows the direction of increasing t.

It is possible to eliminate t between the two equations so that the original parametric
form can be expressed as .x2

- y2
= 1

t 1 2 3 4 5 6 7 8
x 1 1.25 1.67 4.06
y 0 0.75 3.94
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x

y

1 2 3 4

1

2

3

4

O

Figure 5.2
Graph of 

, 

, 

.1 … t … 8

y =

1

2
 a t -

1

t
b

x =

1

2
 a t +

1

t
b

Exercises

Explain what is meant by the term ‘parameter’.

Consider the parametric equations
, , for .

(a) Draw up a table of values of t, x and y for
values of t between 0 and 10.

0 … t … 10y = tx = + 2t
2

1 (b) Plot a graph of this function.
(c) Obtain an explicit equation for y in terms

of x.

Solution to exercise

(c) , .0 … x … 210y = x22

End of block exercises

Consider the parametric equations ,
.

(a) Plot a graph of this function.
(b) Find an explicit expression for y in 

terms of x.

Given the parametric equations

plot a graph of y against x.
x = 3t + 2 y = -3t + 5

2

y = 9t2
x = 3t1 Obtain the cartesian equation of the function

defined parametrically by , ,
for .

Plot a graph of the function defined by 

, , for .t Ú 0y = tx = - 2t

4

0 … t … 1
y = 1 - tx = t

3

Solutions to exercises

, 0 … x … 1y = 1 - x3

y = x21 This is the graph of but only for .x … 0y = x24
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BLOCK 6
Describing functions

6.1 Introduction

There are a number of different terms used to describe the ways in which functions
behave. Some graphs have gaps or jumps known as discontinuities, others possess
various symmetries. Some graphs have a pattern that repeats at regular intervals. In
this block we explain some of these terms and give examples.

6.2 Continuous and discontinuous functions and limits

Consider the graph shown in Figure 6.1(a). The curve can be traced out from left to
right without moving pen from paper. Such a function is called continuous. If we try
to trace out the curve in Figure 6.1(b), the presence of the jump in the graph means
that a pen must be lifted from the paper and moved in order to trace the graph. Such
a function is said to be discontinuous. A jump is known as a discontinuity.

Example 6.1
Sketch a graph of a function that has two discontinuities.

When defining a discontinuous function algebraically it is often necessary to give
different function rules for different intervals of the x axis. Consider the following
example.

Figure 6.1
(a) A continuous
function;
(b) a discontinuous
function.

(a) (b)
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6.2 Continuous and discontinuous functions and limits 169 6

Example 6.2
A function is defined as

Notice that there is one rule for when x is less than 0 and another rule for when x is
greater than or equal to 0. Sketch a graph of this function.

Solution
A graph of this function is shown in Figure 6.2. Notice the convention that is
used to show an included end-point, and is used to show an excluded end-point.
This convention was introduced in Chapter 5, Block 1.

~

�

f (x) = b3 x 6 0

x2 x Ú 0
 

The limit of a function

Refer back to Figure 6.2. Suppose we ask ‘to what value does f(x) approach as x
approaches 0?’ Another way of saying this is ‘what value is f(x) close to when x is
close to 0?’ Note that this is not the same as asking ‘what is the value of f(x) when x
equals 0?’ If we approach from the right-hand side, then from the graph we see that
as x gets nearer and nearer to 0 the value of f(x) gets nearer to 0. We write this as

and say ‘the limit of f(x) as x tends to 0 from above is 0’. The small superscript � is
used to indicate that 0 is approached from the right-hand side.

On the other hand if x gets closer to 0 from the left-hand side, the value of f(x)
remains at 3. We write

and say ‘the limit of f(x) as x tends to 0 from below is 3’. The small superscript is
used to indicate that 0 is approached from the left-hand side.

In this example the right-hand limit and the left-hand limit are not equal, and this
is indicative of the fact that the function is discontinuous.

Example 6.3
Consider again the function

shown in Figure 6.2.

f (x) = b3 x 6 0

x2 x Ú 0
 

-

lim
x:0 -

 

f (x) = 3

lim
x:0 +

 

f (x) = 0

�3 �2 �1 1 2 3O

3

x

f (x)Figure 6.2
A discontinuous
function.
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170 Block 6 Describing functions6

(a) State f(3).
(b) State 

(c) State 

Solution
(a) f(3) �

(b) Ask ‘what value does y approach when x approaches 3 from the right?’

(c) Ask ‘what value does y approach when x approaches 3 from the left?’

Note that in this case the right- and left-hand limits are the same, and equal to the
value of the function at . In such a case we say the limit of the function exists
at the point and write

The limit exists because the function is continuous at the point where .

In general a function is continuous at a point x � a if the left-hand and right-hand
limits are the same there, and if both of these are equal to the value of the function at
that point. That is,

If the right-hand and left-hand limits are the same, we can simply describe this com-
mon limit as . If the limits are not the same we say the limit of the
function does not exist at .x = a

limx:a  f(x)

lim
x:a +

 f (x) = lim
x:a -

 f (x) = f (a)

x = 3

lim
x:3 

 f (x) = 9

x = 3
x = 3

9 

9 

9 

limx:3 - f (x).

limx:3 + f (x).

Key point The function f(x) is continuous at if

lim
x:a +

 f(x) = lim
x: a -

 f(x) = f (a)

x = a

Exercises

Explain the distinction between a continuous
and a discontinuous function. Draw a graph
showing an example of each type of function.

Study graphs of the functions and 

. Are these continuous functions?y = -x 2

y = x22

1 Study graphs of and
. Are these continuous functions?

Draw a graph of the function

f (x) = c 2x + 1 x 6 3

5 x = 3

6 x 7 3

 

4

y = -7x + 1
y = 3x - 23
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Find

(a) 

(b)

(c) limx:0  
f (x)

limx:0 - f (x)

limx:0 + f (x)

(d)

(e)

(f) limx:3  
f (x)

limx:3 - f (x)

limx:3 + f (x)

Solutions to exercises

yes

yes3

2 (a) 1 (b) 1 (c) 1 (d) 6 (e) 7

(f) limit does not exist

4

6.3 Periodic functions

Any function that has a definite pattern repeated at regular intervals is said to be
periodic. Each complete pattern is known as a cycle. The interval over which the repe-
tition takes place is called the period of the function, and is usually given the symbol T.
Each cycle has length T. The pattern of the function is repeated every cycle. Hence
increasing or decreasing the value of t by T will not change the value of the function.
Example 6.4 illustrates this behaviour. This is stated mathematically as 

for all values of t in the domain of f (t)f (t) = f(t + T )

Solution

(a) 

(b) 100 

10 milliseconds 

�10 �5 5 10O 15

1

t

f (t)Figure 6.3
A periodic
function.

Key point Let be a periodic function with period T. Then for all values of t in the domain of
: 

 f(t) =  f(t + T )
f (t)

f (t)

Example 6.4
A periodic function is shown in Figure 6.3. The horizontal axis is labelled t, and t is
measured in milliseconds.
(a) State the period, T, of this function.
(b) How many complete cycles will take place in 1 second?
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6.4 Odd and even functions

Example 6.5
Figure 6.4 shows graphs of several functions. They share a common property. Study
the graphs and comment on any symmetry.

Exercises

Explain what is meant by a periodic function.

Sketch a graph of a periodic function that has
no discontinuities.

Sketch a graph of a periodic function that has
discontinuities.

3

2

1 A periodic function has period 0.01
seconds. How many times will the pattern
in the graph repeat over an interval of 10
seconds?

4

Solution to exercise

10004

Solution

Any function that is symmetrical about the vertical axis – that is, the graph on the
right is a mirror image of that on the left – is said to be an even function. Even func-
tions have the following property:

The graphs are symmetrical

about the vertical axis 

Key point An even function is such that for all x.
The graph of an even function is symmetrical about the vertical axis.

f (-x) = f (x)

Figure 6.4
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6.4 Odd and even functions 173 6

This is saying that the function value at a negative value of x is the same as the func-
tion value at the corresponding positive value of x.

Example 6.6
Extend the graph in Figure 6.5 in order to produce a graph of an even function.

Figure 6.5
Extend this graph
to produce an even
function.

Solution

Example 6.7 Mechanical Engineering – Catenary
Figure 6.6 represents a heavy cable hanging under gravity from two points at the
same height. Such a curve, known as a catenary, is described by a mathematical
function known as a hyperbolic cosine, . The hyperbolic functions are
discussed in detail in Chapter 8.

f (x) = cosh x

y

x

y � cosh x

1

O

Figure 6.6
The catenary.

(a) Comment upon any symmetry.
(b) Is this function one-to-one or many-to-one?
(c) Is this a continuous or discontinuous function?
(d) State .

Solution

(a)

(b)

(c)

(d) 1 

continuous 

many-to-one 

function is even 

limx:0 cosh x
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Example 6.8
Show algebraically that the function is an even function.

Solution
To show that f is even we must show that . Now

But this is the same as f(x). We have shown and so f is an even function.
Check for yourself that .f (-2) = f (2)

f (-x) = f (x)

 = 2x4
- 3       since (-x)4

= x4

  f (-x) = 2(-x)4
- 3

f (-x) = f (x)

f (x) = 2x4
- 3

Imagine pivoting a graph at the origin and rotating it through 180°. If the result is the
same as the original graph there is said to be rotational symmetry of order 2 about
the origin.

Example 6.9
Figure 6.7 shows graphs of several functions. They share a common property. Study
the graphs and comment on any symmetry.

Figure 6.7

Any function that possesses rotational symmetry of order 2 – that is, the graph on the
right can be obtained by rotating the curve on the left through 180° about the origin –
is said to be an odd function. Odd functions have the following property:

There is rotational symmetry of

order 2 about the origin.
 

 

Key point An odd function is such that for all x.
The graph of an odd function possesses rotational symmetry of order 2 about the origin.

f (-x) = - f (x)

This is saying that the function value at a negative value of x is the negative of the
function value at the corresponding positive value of x.
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Example 6.10
Extend the graph in Figure 6.8 in order to produce a graph of an odd function.

Solution

Figure 6.8
Extend this graph
to produce an odd
function.

Example 6.11
Show algebraically that the function is an odd function.

Solution
To show that f is odd we must show that . Now

But this is . We have shown and so f is an odd function. Check
for yourself that .f (-2) = - f (2)

f (-x) = - f (x)- f (x)

 = -(6x3
- 5x)

 = -6x3
+ 5x since (-x)3

= -x3

  f (-x) = 6(-x)3
- 5(-x)

f (-x) = - f (x)

f (x) = 6x3
- 5x

Exercises

Classify the following functions as odd, even
or neither. If necessary sketch a graph to help
you decide.
(a) (b) 
(c) (d)
(e) f (x) = 2x

f (x) = xf (x) = 2x + 1
f (x) = x2f (x) = 6

1 Sketch a graph of a function that is neither odd
nor even.

2
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Solutions to exercises

(a) even (b) even (c) neither (d) odd (e) odd1

End of block exercises

Sketch a graph of the function

Find
(a) 

(b)

(c) limx:0 f (x)

limx:0 +  f (x)

limx:0 -  f (x)

f (x) = c x2 x 6 0

x + 2 0 … x … 2

4 x 7 2

 

1 (d)

(e)

(f)

A function is periodic with period 2 and is
even. Sketch a possible form of this function.

A function is periodic with period 1 and is
odd. Sketch a possible form of this function.

3

2

limx:2 f (x)

limx:2 +  f (x)

limx:2 -  f (x)

Solutions to exercises

(a) 0 (b) 2 (c) does not exist (d) 4 (e) 4 (f) 41
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BLOCK 7
The straight line

7.1 Introduction

Probably the most important function and graph that you will use are those associated
with the straight line. A large number of relationships between engineering variables
can be described using a straight line or linear graph. Even when this is not strictly
the case it is often possible to approximate a relationship by a straight line. In this
block we study the equation of a straight line, its properties and graph.

7.2 Linear functions

Any function of the form where a and b are constants is called a
linear function. The constant a is called the coefficient of x, and b is referred to as
the constant term.

y = f (x) = ax + b

Key point All linear functions can be written in the form

or simply

y = ax + b

f (x) = ax + b

For example,

are all linear functions. The graph of a linear function is always a straight line. Such
a graph can be plotted by finding just two distinct points and joining these with a
straight line.

Example 7.1
Plot the graph of the linear function .

Solution
We start by finding two points. Suppose we choose then . So
the first point has coordinates (0, 3). Secondly, suppose we choose ; thenx = 5

y = f (0) = 3x = 0;

y = f (x) = 4x + 3

f(x) = 3x + 2,  g(x) =

1

2
x - 7  and  h(x) = -3x +

2

3
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178 Block 7 The straight line6

. The second point is (5, 23). These two points are then plotted and
joined with a straight line as shown in Figure 7.1.
y = f (5) = 23

x

y

1 2 3 4 5O

5

10

15

20

25
y � 4 x � 3

(5, 23)

(0, 3)

Figure 7.1
A straight line
graph can be
drawn by finding
two distinct points.

Example 7.2
Plot graphs of the three linear functions and .

Solution
For each function it is necessary to find two points on the line.

For , suppose for the first point we choose , so that . For
the second point, let so that . So, the points and (2, 5) can be
plotted and joined. This is shown in Figure 7.2.

(0, -3)y = 5x = 2
y = -3x = 0y = 4x - 3

y = 4x + 5y = 4x - 3, y = 4x

�2 �1 1 2

5

10

�5

x

y y � 4 x � 5

y � 4 x
y � 4 x � 3

Figure 7.2
These graphs show
the effect of
varying the
constant term.

For we find the points (0, 0) and (2, 8). Similarly for we find
points (0, 5) and (2, 13). The corresponding lines are shown in Figure 7.2.

Example 7.3
Refer to Example 7.2. Comment upon the effect of varying the constant term of the
linear function.

y = 4x + 5y = 4x

As different constant terms are used a
series of parallel lines is generated.
The value of the constant term is also
known as the vertical intercept
because this is the value of y where
the line cuts the y axis.

M06_CROF5939_04_SE_C06.QXD  9/21/18  9:09 AM  Page 178
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Example 7.4
State the vertical intercept of each of the following lines:
(a)

(b)

(c)
(d)

Solution
In each case identify the constant term.

(a) For the constant term is

(b) For the constant term is

(c) For the constant term is

(d) For the constant term is

Example 7.5
Plot graphs of the lines and .

Solution
Note that all three lines have the same constant term, that is 3. So all three lines pass
through (0, 3), the vertical intercept. A further point has been calculated for each of
the lines, and their graphs are shown in Figure 7.3.

y = -2x + 3y = 3x + 3, y = 5x + 3

0 

y = -5x

1 

y = 1 - 3x

-

1

3 

y =
1
2x -

1
3

3 

y = 3x + 3

y = -5x
y = 1 - 3x

y =
1
2x -

1
3

y = 3x + 3

y � 5x � 3

y � 3x � 3

y � �2x � 3
x

y

5

10

O 1�2 �1

Figure 7.3
All these graphs
have the same
vertical intercept
but different
gradients.

Note from the graphs in Example 7.5 that as the coefficient of x is changed the gra-
dient of the graph changes. The coefficient of x gives the slope or gradient of the
line. In general, for the line , a positive value of a produces a graph that
slopes upwards from left to right. The larger the value of a, the steeper is the graph.
This can be seen by comparing the graphs of and .y = 3x + 3y = 5x + 3

y = ax + b
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A negative value of a produces a graph that slopes downwards from left to right. If
a is zero the line is horizontal, that is its gradient is zero. These properties are sum-
marised in Figure 7.4. Lines with the same gradient are known as parallel lines.

a is positive

x

y

x

y

a is negative

a is zero
Parallel lines have 
the same gradient

x

y

x

y

Figure 7.4
The gradient of a
line is
given by the value
of a.

y = ax + b

Key point In the linear function , a is the gradient of the graph and b is its vertical
intercept.

y = ax + b

You should note that it is also common practice to write the equation of a straight
line as , in which case m is the gradient of the line and c is the vertical
intercept.

Example 7.6
State the gradients of the following lines:
(a)

(b)

(c)

Solution
In each case the coefficient of x must be examined.
(a) The gradient of is

(b) The gradient of is

(c) The gradient of is

1
3 

y =

x + 2

3

-
1
3  

y = -

1

3
x + 4

7 

y = 7x + 2

y =

x + 2

3

y = -

1

3
x + 4

y = 7x + 2

y = mx + c
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Example 7.7
Which of the following lines has the steepest gradient?

(a) (b) (c) 

Solution
The line with the largest gradient is

Example 7.8 Mechanical Engineering: Car crash-testing
New cars are subjected to crash-testing to assess their safety rating. One test requires
crashing a car at 64 km/h into an immovable barrier. Figure 7.5 illustrates this.

(b) 

y =

1

3
x + 4y = 9x - 2y =

17x + 4

5

The crush of a point is the distance the point has been moved from its original
position. Many such measurements are taken along the width of the car, w. The mean
(see Chapter 23, Block 2) of these crush measurements is calculated to give an over-
all crush value, C, for the car.

As the car crashes into the barrier there is a force, F, exerted by the barrier onto
the car. Of interest is the relationship between F and C. As it is impractical to crash
all new models of car at many different speeds in order to measure values of F and C,
software-based models have been developed.

A common assumption in these models is that there is a linear relationship between
the force per unit width and the crush. This is represented mathematically as

where a and b are positive constants. Note that in the graph of this linear relation-
ship, a is the intercept on the vertical axis and b is the gradient of the line. Figure 7.6
illustrates this in the case where and .b = 1a = 3

F

w
= a + b C

2 4 6 8 10 12 14 16O

2

4

6

8

10

12

14

16

18

Fo
rc

e 
pe

r 
un

it 
w

id
th

,  
 F

 / 
w

  

Crush, C

Figure 7.5
Car crashing into
immovable barrier.

Figure 7.6
Graph of force per
unit width against
crush.
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(a) By considering vertical forces for the entire beam (Figure 7.7) show that 
where R is the reaction at each support point.

R =

wL

2

The values of a and b are known as the stiffness coefficients of the car. They give
a measure of the ability of the car to withstand an impact.

For values of F/w less than a there is no crush, that is . For collisions at low
speed, and hence for small values of F, the bumpers absorb the impact without dam-
age . Hence a is a measure of the shock-absorbing properties of the car
bumpers.

Example 7.9 Structural Engineering – Shear force in a beam
The calculation of forces in beams is important in the design of structures such as
bridges and buildings. Beams are classified according to how they are supported
and/or fixed at their ends. Here we consider a simply supported beam of length L
which carries a load uniformly distributed along its length as shown in Figure 7.7. A
beam is said to be simply supported if, at each end, vertical motion is restricted by
the supports but the beam is free to rotate. Placing one of the supports on a roller as
indicated ensures that discussion of horizontal reaction forces can be avoided. By
symmetry, the vertical reaction force at each support will be the same and is denoted
by R. The weight of the load being supported is usually quoted as a ‘weight per unit
length’ w, say, which means that the total weight supported is wL.

1C = 02
C = 0

182 Block 7 The straight line6

L

R R

wFigure 7.7
A simply
supported beam
with a uniform
load.

V

wx

V

x

RFigure 7.8
Shear force V.

Within the beam itself there are internal forces. Imagine a vertical cut in the beam
at a point x units from the left-hand end as shown in Figure 7.8. The part of the beam
on the right exerts a force known as a shear force, having magnitude V, on the part
that is on the left, as shown. An equal and opposite force is exerted by the left part on
the right. Structural engineers need to calculate the shear force in order to assess
whether the beam is capable of withstanding the load.
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(b) By considering vertical forces for the short section shown in Figure 7.8 show that 

(c) Show that takes the form of an equation of a straight line and state the
gradient and the vertical intercept.

(d) Sketch a graph showing the shear force at any point x.

Solution
(a) Considering forces vertically for the entire beam (Figure 7.7), the reaction R at

the support points is found from

so that 

(b) We consider forces vertically for the short section (Figure 7.8), noting that the
weight of the section is wx:

Then, using the result of part (a),

so that

(c) Comparing the equation with the general equa-

tion of a straight line , we see that the gradient, a, is . The

vertical intercept, b, is 

(d) It is straightforward to plot the graph by noting that when 

Similarly, when The graph is shown in Figure 7.9. The 

magnitude of the shear force is zero half-way along the beam, and achieves a 

maximum value of at each end.
wL

2

x = L, V = -

wL

2
.

x = 0, V =

wL

2
.

wL

2
.

-wy = ax + b

V =

w

2
(L - 2x) =

wL

2
- wx

V =

wL

2
- wx =

w

2
(L - 2x)

wL

2
= wx + V

R = wx + V

R =

wL

2
.

2R = wL

V(x)

V(x) =

w

2
(L - 2x).

V

L
x

�

wL
2

O

wL
2

Figure 7.9
The shear force
varies linearly
along the length of
the beam.
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The gradient of the line joining A and B can then be calculated from the following
formula.

x

y

O

B(x2 
, y2)

A(x1 
, y1)

x2 
– x1

y2 
– y1

Figure 7.10
The coordinates of
points A and B are

and 
respectively.

(x2, y2)(x1, y1)

Exercises

State the general form of the equation of a
straight line, explaining the role of each of the
terms in your answer.

State which of the following functions will
have straight line graphs:
(a) (b) 

(c) (d) 

(e) f (t) = -2 - t

g(x) = 13f (x) =

1

x

f (t) = t1>2y(x) = 3x - 3

2

1 For each of the following, identify the gradient
and vertical intercept:
(a) (b) 
(c) (d) 
(e) .f (x) = mx + c

y(x) = -7 - 17xg(t) = -2t
f (t) = 3f (x) = 2x + 1

3

Solutions to exercises

For example, is the independent
variable, y is the dependent variable, a is the
gradient and b is the vertical intercept.

(a), (d) and (e) will have straight line graphs.2

y = ax + b. x1 (a) gradient , vertical intercept
(b) 0, 3 (c) , 0 (d) , (e) m, c-7-17-2

= 1= 23

7.3 Finding the gradient of a line given two points on the line

A common requirement is to find the gradient of the line when we know two points
on the line. Suppose the two points are , , as shown in Figure 7.10.

The vertical distance between A and B is . The horizontal distance
between A and B is . The gradient of the line is given by

gradient =

vertical distance

horizontal distance

x2 - x1

y2 - y1

B(x2, y2)A(x1, y1)
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Key point The gradient of the line joining and is given by

 =

y2 - y1 

x2 - x1 

gradient =

vertical distance

horizontal distance

B(x2, y2)A(x1, y1)

Example 7.10 Electrical Engineering – Sawtooth wave
A sawtooth waveform, , is shown in Figure 7.11.f(t)

t

f(t)

T 2T 3T

1

O

Figure 7.11
A sawtooth
waveform.

Note that is a periodic function with period T. State in mathematical form.

Solution
Consider Here, is a linear function passing through the origin and so
the vertical intercept is 0. We now calculate the gradient of the line. The horizontal
distance is T, the vertical distance is 1 and so the gradient is . Hence on

has the form

Since is periodic with period T then

So can be expressed as

and for all 

Example 7.11
Find the gradient of the line joining each of the following pairs of points:
(a) A(0, 3) and B(4, 5)
(b) A( , 4) and B(2, 1)-1

t Ú 0.f(t) = f (t + T)

f(t) =

t

T
  for 0 … t 6 T

f(t)

f(t) = f(t + T)  for all t Ú 0

f(t)

f (t) =

t

T

0 … t 6 T, f(t)
1>T

f(t)0 … t 6 T.

f(t)f(t)
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Solution
(a) We calculate the gradient as follows:

Thus the gradient of the line is . Graphically, this means that if x increases by 
1 unit, the value of y increases by .

(b)

Thus the gradient of the line is . Graphically, this means that for every unit
increase in x, the value of y decreases by 1 unit.

Example 7.12
A straight line has equation . State, without calculation, the increase in y
obtained from a unit increase in x.

Solution
The gradient of this line is 3. This means that y increases by 3 units for every unit
increase in x.

Example 7.13 Mechanical Engineering – Tension in a spring
The tension T in a spring when it is extended by a distance e is given by .
Calculate the increase in tension that follows from a unit increase in extension.

Solution
T � 0.25e is a linear function with gradient 0.25. Thus a unit increase in extension
results in an increase in tension of 0.25 units.

This is an example of Hooke’s law, which states that the tension is proportional to
the extension. Hooke’s law is a mathematical model which assumes the extended
spring remains within its limits of elasticity.

T = 0.25e

y = 3x + 7

-1

1 -  4

2 -  (-1)
 = -1

 
gradient =

y2 - y1 

x2 - x1 
=

1
2

1
2

 =

1

2

 =

2

4

 =

5 - 3

4 - 0

 gradient =

y2 - y1 

x2 - x1 

Exercises

Calculate the gradient of the line joining (1, 0)
and (15, ).

Calculate the gradient of the line joining
(10, ) and (15, ).-3-3

2

-3
1 State the increase or decrease in y which

follows from increasing x by 1 unit in each of
the following cases:
(a) (b)
(c) y = 3

y =
1
3x + 2y = -17x + 2

3
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Solutions to exercises

02

-
3
141 (a) decrease of 17 (b) increase of (c) y is

constant so there is no change in y

1
33

7.4 Finding the equation of a line

There are a number of ways in which the equation of a line can be found. Much
depends upon the information that is available. We may know

• the gradient of the line and the coordinates of one point through which the line
passes;

• the coordinates of two points on the line.

In what follows remember that any straight line has the form , where a is
the gradient of the line and b is the vertical intercept.

Finding the equation of a line given its gradient and the coordinates
of one point on the line

Consider the following example.

Example 7.14
Find the equation of the straight line that has gradient 11 and passes through the
point with coordinates (2, 3).

Solution
In this example let us suppose that the equation of the line has the form ,
in which case m is the gradient and c is the vertical intercept. We are told the gradi-
ent is 11 and so . The equation is therefore

We are told that the line passes through the point (2, 3). Thus when , y must
equal 3. Therefore, substituting these values gives

That is,

It follows, by solving this equation, that c equals . A thorough treatment of
equations like this is given in Chapter 7. The equation of the line is therefore

.y = 11x - 19

-19

3 = 22 + c

3 = 11(2) + c

x = 2

y = 11x + c

m = 11

y = mx + c

y = ax + b
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188 Block 7 The straight line6

Example 7.15
Find the equation of the line with gradient 7 and which passes through (5, 6).

Solution
Let the equation be .

Use the information given about the gradient of the line.

Use the fact that the line passes through (5, 6) to find c.

Finding the equation of a line given two points on the line

Consider the following example.

Example 7.16
Find the equation of the line passing through (2, 1) and ( , 2).

Solution
The equation of the line must take the form . We are told that (2, 1) lies
on the line, so when . Similarly ( , 2) lies on the line, so when

, . Substituting these pairs of values into produces the two
equations

These are known as simultaneous equations. Solution of simultaneous equations is
described in detail in Chapter 7. It can be shown that values of a and b which satisfy
both equations are

So the equation of the line is .

An alternative way of finding the equation of the line is by use of a formula.
The equation of the line passing through the points with coordinates and

is given by the following.B(x2, y2)
A(x1, y1)

y = -
1
6 x +

4
3

a = -

1

6
, b =

4

3

1 = 2a + b and 2 = -4a + b

y = ax + by = 2x = -4
-4x = 2, y = 1

y = ax + b

-4

y = 7x - 29 

y = 7x + c 

y = mx + c

Key point The line passing through points and is given by

y - y1 

y2 - y1 
=

x - x1 

x2 - x1 
 

B(x2, y2)A(x1, y1)
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7.5 Finding the distance between two points on a line 189 6

Example 7.17
Find the equation of the line passing through A( , 11) and B(1, 3).

Solution
Here and . Write down and .

Apply the formula:

Simplify this to obtain the required equation.

Example 7.18 Mechanical Engineering – Extension of a spring
A spring has a natural (unstretched) length of 60 cm. The length is extended by
adding a mass to the spring. Every 1 kg added extends the spring by 2 cm. If l cm is the
length of the spring when m kg is applied, determine an equation for l in terms of m.

Solution
When 1 kg is applied the extension is 2 cm. So when m kg is applied the extension is
2m cm. The length of the spring is made up of its natural length plus the extension

So . This is the equation of a straight line.l = 60 + 2m

 = 60 + 2m
l = natural length + extension

y = 4 - x 

y - 11

3 - 11
=

x + 7

1 + 7 

y - y1 

y2 - y1
=

x - x1

x2 - x1
=

y1 = 11, y2 = 3 

y2y1x2 = 1x1 = -7

-7

Exercises

Find the equation of the line joining (1, 5) and
( , 2).-9

1 Find the gradient and vertical intercept of the
line joining (8, 1) and ( , ).–3-2

2

Solutions to exercises

y =

3

10
x +

47

10
1 0.4, -2.22

7.5 Finding the distance between two points on a line

Referring again to Figure 7.10, the distance between the points and
is given by the following formula, which follows immediately from

Pythagoras’s theorem. This theorem is described in detail in Chapter 10.
B(x2, y2)

A(x1, y1)
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Key point The distance between points and is given by

distance = 2(x2 - x1)
2

+ (y2 - y1)
2 

B(x2, y2)A(x1, y1)

Example 7.19
Find the distance between and B(1, 3).

Solution
Apply the formula:

2128 distance = 2(x2 - x1)
2

+ (y2 - y1)
2 =

A(-7, 11)

Exercises

Find the distance between the points (4, 5) and
( , 1).-17

1

Solutions to exercises

24571

End of block exercises

State the gradient and vertical intercept of
(a) (b) 
(c) (d) (e) 

An alternative way of finding the equation of a
straight line through the points ,

is by use of Lagrange’s formula.
This states that

Use this formula to find the equation of the
line through (4, 1) and (7, ).

Find the equation of the line that passes
through A(0, 3) and B(11, ).

Find the gradient of the line that passes
through A( , 1) and B(2, 16).-9

4

-1
3

-5

f (x) =

x - x2 

x1 - x2 
 f (x1) +

x - x1 

x2 - x1 
 f (x2)

(x2, f (x2))
(x1, f (x1))

2

f (x) = -3 - 4xy = -3ty = 9
y = 3t - 2y = 8x - 3

1 Find the distance between the points with
coordinates (9, 1) and (12, 1).

Find the distance between the points with
coordinates (19, ) and ( , 1).

The point lies on the line
. If the value of x1 is increased

by 7, what is the resulting change in the value
of y1?

Find the equation of the line passing through
A(2, ) and B(5, 8).

A spring has length 90 cm when a mass of
10 kg is applied and a length of 81 cm when a
4 kg mass is applied. If l cm is the length of
the spring when mass m kg is applied
(a) find an equation expressing l in terms of m
(b) calculate the length of the spring when a

mass of 7 kg is applied.

9

-1
8

y = -2x + 3
A(x1, y1)7

-12-2
6

5
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Solutions to exercises

(a) gradient 8, vertical intercept 
(b) 3, �2 (c) 0, 9 (d) �3, 0
(e) �4, �3

15

11
4

y = -

4

11
x + 33

f (x) = -2x + 92

-31 3

(a) (b) 85.5 cml = 75 + 1.5m9

y = 3x - 78

-147

2970 = 31.146

5

M06_CROF5939_04_SE_C06.QXD  9/21/18  9:10 AM  Page 191



BLOCK 8
Common engineering functions

8.1 Introduction

This block provides a catalogue of some functions commonly met in engineering.
These include polynomials, rational functions, the modulus function, the unit step
function and the unit impulse or delta function. Important properties and definitions
are stated. This block can be used as a reference when the need arises throughout the
rest of the book. There are, of course, other types of function that arise in engineer-
ing applications, such as trigonometrical, exponential and logarithmic functions.
These are dealt with in later chapters.

8.2 Polynomial functions

A polynomial expression is one made up of multiples of non-negative whole 
number powers of a variable, such as , and so on. You are already familiar
with many such expressions:

are all polynomial expressions.
Polynomial expressions are used to define polynomial functions. Polynomial

functions include

where x, z and t are independent variables. Purely for convenience, we have labelled
these polynomials .

When the context is clear, both polynomial functions and polynomial expressions
are loosely called polynomials.

Note that fractional and negative powers of the independent variable are not
allowed, so that and are not polynomials. The function

is a polynomial – we can regard it as .
By convention a polynomial is written with the powers either increasing or

decreasing. For example,

3x + 9x2
- x3

+ 2

6t0P4(t) = 6
g(x) = x3>2f (x) = x- 1

P1, P2, P3 and P4

  P4(t) = 6
  P3(t) = 3t + 9
  P2(z) = 7z4

+ z2
- 1

  P1(x) = 3x2
- x + 2

x2
+ 3x + 9, 3t4

- 2t3
+ 7t2

- 11t, 8x + 9

3x2, -7x3
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Degree Name

4 Quartic
3 Cubic
2 Quadratic
1 Linear

a 0 Constant
ax + b
ax2

+ bx + c
ax3

+ bx2
+ cx + d

ax4
+ bx3

+ cx2
+ dx + e

�5 5
�5

x x x

5

10

�5 5

10

�15

�5 5

�10

10
P2(x) � �x � 4

P1(x) � 2x � 3

P3(x) � x 
2 � 3

P5(x) � x 
3

P6(x) � �x 
3 � 7x � 6

P4(x) � �x 
2 � 2x

Figure 8.1
Graphs of some
typical linear,
quadratic and
cubic polynomials.

would be written as either

In general we have the following definition.

-x3
+ 9x2

+ 3x + 2 or 2 + 3x + 9x2
- x3

Key point A polynomial expression has the form

where n is a non-negative integer, , . . . , are constants and x is a variable.
A polynomial function P(x) has the form

P(x) = anxn
+ an - 1xn - 1

+ an - 2xn - 2
+ . . . + a2x2

+ a1x + a0

a1, a0an, an - 1

anxn
+ an - 1xn - 1

+ an - 2xn - 2
+ . . . + a2x2

+ a1x + a0

The degree of a polynomial is the value of the highest power. Referring to the ex-
amples listed above, polynomial has degree 2, because the term with the highest
power is has degree 4, has degree 1 and has degree 0. Polynomials with
low degrees have the special names given in Table 8.1.

P4P33x2, P2

P1

Typical graphs of some polynomial functions are shown in Figure 8.1. In particu-
lar, observe that the graphs of the linear polynomials and are straight lines.P2P1

Another important feature of all polynomial graphs is that they are continuous.

Example 8.1
Which of the polynomial graphs in Figure 8.1 are odd and which are even? Are any
periodic?

Solution

P3 is even, P5 is odd. None is periodic. 

Table 8.1
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194 Block 8 Common engineering functions6

Example 8.2
State which of the following are polynomial functions. For those that are, give the
degree and name.
(a)
(b)

(c)

(d)

(e)

Solution
Remember that a polynomial is built up by adding terms involving non-negative
whole number powers of the independent variable, and that the degree is the value of
the highest power.

(a)

(b)

(c)

(d)

(e)

Example 8.3 Dynamics – Motion with constant acceleration
Time, , distance, , initial velocity, , final velocity, , and constant acceleration, ,
are related by the following equations:

(1)

(2)

Note that (1) is a polynomial of degree 2 in ; equation (2) is a polynomial of degree 1
(i.e. linear) in .

Example 8.4 Structural engineering – Bending moment in a beam
In Example 7.9 we introduced the shear force in a simply supported beam of length
L carrying a uniform load, w, per unit length (Figure 8.2).

t
t

v = u + at

s = ut +

1

2
at2

avust

polynomial of degree 0 (constant) 

polynomial of degree 0 (constant) 

not a polynomial 

polynomial of degree 3 (cubic) 

polynomial of degree 4 (quartic) 

g(x) =
1
6

f (x) = 16

g(x) =

1

x2 
+

3
x

f (t) = t3 - 3t2 + 7
f (x) = 6x2

+ 7x3
- 2x4

Figure 8.2
A simply
supported beam
with a uniform
load.

x
L

R R

w

Another quantity of importance to a structural engineer is the bending moment,
which is a measure of the internal stress caused when the beam is loaded. A bending
moment is not a force but a turning effect, or a tendency to cause a rotation about an
axis, and arises through the interaction of internal forces in the beam. Generally a
moment is calculated as the product of the magnitude of a force and its perpendicular
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8.2 Polynomial functions 195 6

distance from the axis of rotation and hence the units of bending moment are N m.
Like the shear force, the bending moment, M, varies with position x along the beam.
It is given by the quadratic polynomial

(a) Evaluate M(0) and M(L) and deduce that the bending moment is zero at both
ends of the beam.

(b) Sketch a graph of this quadratic function for .

Solution

(a) Substituting into immediately shows that . 

Similarly, substituting we find We deduce that

the bending moment is zero at both ends of the beam, as required.

(b) Observe that the form of this quadratic function corresponds closely to the
function P4(x) illustrated in Figure 8.1 in that the coefficient of x2 is negative
and the constant term is zero. To sketch the graph it is helpful to locate the
values of x where that is the values of x where the graph crosses the
horizontal axis. We have already noted that M(0) = 0 and M(L) = 0 so the graph
crosses the horizontal axis at x = 0 and x = L. This information is sufficient to
sketch the graph which is shown in Figure 8.3.

M(x) = 0,

M(L) =

w

2
(L2

- L2) = 0.x = L

M(0) = 0M(x) =

w

2
(Lx - x2)x = 0

0 … x … L

M(x) =

w

2
(Lx - x2)

Figure 8.3
A bending moment
diagram for a
simply supported
beam with a
uniform load.

x
L

M

O

wL2

8

From the symmetry of the graph we see that M(x) has its maximum value when

(i.e. at the middle of the beam). This maximum value is calculated thus:

 =

wL2

8

 =

w

2
aL2

4
b

 =

w

2
aL2

2
-

L2

4
b

 MaL

2
b =

w

2
aL #

L

2
- aL

2
b2b

x =

L

2
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Exercises

Write down a polynomial of degree 3 with
independent variable t.

Write down a function that is not a
polynomial.

Explain why is not a
polynomial.

y = 1 + x + x1>23

2

1 State the degree of the following polynomials:
(a) (b)
(c) (d)

Write down a polynomial of degree 0 with
independent variable z.

Referring to Figure 8.1, state which functions
are one-to-one and which are many-to-one.

6

5

P(t) = tP(t) = 11
P(t) = - t3 + 3P(t) = t4 + 7

4

This allows the value to be indicated on the vertical axis. 

An alternative approach to finding the points where the graph crosses the x axis
requires the solution of the equation

which is the topic of Chapter 7, Block 2.

w

2
(Lx - x2) = 0

wL2

8

8.3 Rational functions

A rational function is formed by dividing one polynomial by another. Examples
include

For convenience we have labelled these rational functions and .R3R1, R2

R1(x) =

x + 2

x2
+ 1

, R2(t) =

t3 - 1

2t + 3
, R3(z) =

2z2
+ z - 1

z2
+ z - 2

Solutions to exercises

For example, 

For example, 

A term such as , with a fractional index, is
not allowed in a polynomial.

x1>23

y =

1

x
2

f (t) = 1 + t + 3t2 - t31 (a) 4 (b) 3 (c) 0 (d) 1

, for example

and are one-to-one. The rest are
many-to-one.

P5P1, P26

P(z) = 135

4
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Key point A rational function has the form

where P and Q are polynomial expressions; P is called the numerator and Q is called
the denominator.

R(x) =

P(x)

Q(x)

The graphs of rational functions can take a variety of different forms and can be dif-
ficult to plot by hand. Use of a graphics calculator or computer software can help. If
you have access to a plotting package or calculator it would be useful to obtain
graphs of these functions for yourself. The next three examples allow you to explore
some of the features of the graphs.

Example 8.5

Study the graph in Figure 8.4 and the algebraic form of the function 
carefully and try to answer the following questions.

R1(x) =

x + 2

x2
+ 1

2

�2
x

R1Figure 8.4
Graph of

.=

x + 2

x2
+ 1

R1(x)

(a) For what values of x, if any, is the denominator zero?
(b) For what values of x, if any, is the denominator negative?
(c) For what values of x is the function negative?
(d) What is the value of the function when x is zero?
(e) What happens to the function if x gets very large (say 10, 100, . . .)? Substitute

some values to see.

Solution

(a)

(b)

(c)

(d)

(e)  
R1 approaches zero because the x2 term

in the denominator becomes very large. 

2 

only when x is less than -2 

x2
+ 1 is never negative 

x2
+ 1 is never zero 
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�10 �5 5 10

10

�10

t

R2

Figure 8.5
Graph of

.=

t3 - 1

2t + 3
 R2(t)

(a) What is the function value when ?

(b) What is the value of the denominator when ?

(c) What do you think happens when ?

Solution

(a)

(b)

(c) is not defined. An explanation
When t = -

3
2 the function

is given below.
 

 

0 

0 

t = -
3
2

t = -
3
2

t = 1

Note that for large x values the graph gets closer and closer to the x axis. We say that
the x axis is a horizontal asymptote of this graph.

Asking yourself, and answering, questions such as these will help you to sketch
graphs of rational functions.

Example 8.6

Study the graph in Figure 8.5 and the algebraic form of the function 
carefully and try to answer the following questions.

R2(t) =

t3 - 1

2t + 3

Note from parts (b) and (c) that we must exclude the value from the domain

of this function because division by 0 is not defined. When t approaches from

below, R2 approaches positive infinity. When t approaches from above, 

approaches negative infinity. Thus there is a discontinuity at . The dashed line

in Figure 8.5 is . This line is approached by the curve as t approaches . It is

known as a vertical asymptote.

Example 8.7

Study the graph in Figure 8.6 and the algebraic form of the function 

carefully and try to answer the following questions.
2z2 + z - 1

(z - 1)(z + 2)

R3(z) =

-
3
2t = -

3
2

t = -
3
2

R2-
3
2

-
3
2

t = -
3
2
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z
�5 5

10

�10

R3
Figure 8.6
Graph of

.= 
2z2

+ z - 1

(z - 1)(z + 2)

R3(z)

(a) What is happening to the graph when 
(b) Which values should be excluded from the domain of this function?
(c) Try substituting some large values for z (e.g. 10, 100, . . .). What happens to 

as z gets large?
(d) Is there a horizontal asymptote?
(e) What is the name given to the vertical lines and ?

Solution

(a)

(b)

(c)

(d)

(e) vertical asymptotes 

y = 2 is a horizontal asymptote 

R3 approaches the value 2 

z = -2 and z = 1 

 

z = -2z = 1

R3

-2 or 1?z approaches

Examples 8.5–8.7 are intended to give you some guidance so that you will be able to
sketch rational functions of your own. Each function must be looked at individually,
but some general guidelines are given below:

1 Find the value of the function when the independent variable is zero. This is gen-
erally easy to evaluate and gives you a point on the graph.

2 Find values of the independent variable that make the denominator zero. These
values must be excluded from the domain of the function and give rise to vertical
asymptotes.

3 Find values of the independent variable that make the dependent variable zero.
This gives you points where the graph cuts the horizontal axis (if at all).

4 Study the behaviour of the function when x is positive and large, and negative and
large.

5 Are there any vertical or horizontal asymptotes? Oblique asymptotes can also
occur but these are beyond the scope of this book.

denominator is zero, R3 tends to
�infinity as z approaches �2 from
below or 1 from above. It tends to
-infinity as z approaches �2 from
above or 1 from below.
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6 When you have studied differentiation you will know a further technique that will
enable you to locate maximum and minimum points of a function.

It is particularly important for engineers to find values for which the denominator is
zero. These values are known as the poles of the rational function.

Key point The poles of a rational function are any values that make the denominator zero.

Example 8.8
State the poles of the following rational functions:

(a)

(b)

(c)

Solution
In each case we locate the poles by seeking values of the independent variable that
make the denominator zero.

(a) The denominator of is zero when

(b) The denominator of is zero when

(c) The denominator of is zero when

In each case the calculated values are the poles of the rational function. If you have
access to a plotting package, plot these functions now.

-1 or -2 x =

r (x) =

2x + 5

(x + 1)(x + 2)

3 or -3 s =

F(s) =

s + 7

(s + 3)(s - 3)

-7 t =

f (t) =

t - 3

t + 7

r (x) =

2x + 5

(x + 1)(x + 2)

F(s) =

s + 7

(s + 3)(s - 3)

f (t) =

t - 3

t + 7

Exercises

Explain what is meant by a rational function.

State the degree of the numerator and the
degree of the denominator of the rational
function

Explain the term ‘pole’ of a rational function.3

R(x) =

3x2
+ x + 1

x - 1

2

1 Referring to Figures 8.4, 8.5 and 8.6, state
which functions, if any, are one-to-one and
which are many-to-one.

Without using a graphical calculator plot

graphs of and . Comment upon 

whether these graphs are odd, even or neither,
whether they are continuous or discontinuous,
and state the position of any poles.

y =

1

x2 
y =

1

x

5

4
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8.4 The modulus function

The modulus of a number is the size of that number with no regard paid to its sign.
For example, the modulus of is 7. The modulus of is also 7. We can write

and . The modulus function is defined as follows:|+7| = 7|-7| = 7
+7-7

Solutions to exercises

where P and Q are polynomials.

2, 1, respectively

The pole is a value of the independent variable
that makes the denominator zero.

3

2

R(x) =

P(x)

Q(x)
1 All are many-to-one.

is odd, and discontinuous. Pole at . 

is even and discontinuous. Pole at . 

Neither of these functions is defined at ,
so this value should be excluded from the
domain.

x = 0

x = 0
1

x2 

x = 0
1

x
5

4

Key point The modulus function is defined as

f (x) =  |x |

The output from this function is simply the modulus of the input.
A graph of this function is shown in Figure 8.7. Note that this graph is continuous.

It is smooth everywhere except at the origin where there is a corner.

�5 5

5

x

f (x) � | x |

Figure 8.7
Graph of the
modulus function.

Study Figure 8.7 and note that when x is positive the graph is the same as that of
. When x is negative the graph is the same as that of . Consequently we

can also write the modulus function in the form

Example 8.9
Draw up a table of values of the function for values of x between 
and 5. Sketch a graph of this function.

-3f (x) = |x - 2|

f (x) = ƒ x ƒ = b  
x x Ú 0

-x  x 6 0
 

y = -xy = x
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202 Block 8 Common engineering functions6

The graph is shown in Figure 8.8. Plot your calculated points on the graph.

8.5 The unit step function

The unit step function is defined as follows:

f (x) � | x � 2|

�3 5

5

x
2

Figure 8.8
Graph for 
Example 8.9.

Exercises

Sketch a graph of the following functions:
(a) (b)
(c) f (x) = 7|x - 3|

f (x) = |x + 1|f (x) = 3|x|
1 Is the modulus function one-to-one or many-

to-one?
2

Solutions to exercises

Many-to-one2

Key point
u(t) = b  

1 t Ú 0

0 t 6 0
 

x 0 1 2 3 4 5
f(x) 5 3 2 0

-1-2-3

Study this definition carefully. You will see that it is defined in two parts, with one
expression to be used when t is greater than or equal to 0, and another expression to
be used when t is less than 0. The graph of this function is shown in Figure 8.9, from
which it is obvious why it is called a step function. Such functions are useful in engin-
eering applications when we wish to model a quantity that is ‘off’ but which is
‘switched on’ at .t = 0

Solution
The table has been started. Complete it for yourself.
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1

t

u(t)Figure 8.9
Graph of the unit
step function.

There is a discontinuity in the graph when . That is why we need to define
the function in two parts: one part for when t is negative, and one part for when t is
non-negative. The point with coordinates (0, 1) is part of the function defined on

.
The position of the discontinuity may be shifted to the left or right. The graph of

is shown in Figure 8.10.u(t - d)

t Ú 0

t = 0

In Figures 8.9 and 8.10 the function takes the value 0 or 1. We can adjust the value
1 by multiplying the function by any other number we choose. The graph of

is shown in Figure 8.11.2u(t - 3)

u(t � d)

t

1

d

Figure 8.10
Graph of .u(t - d)

2u(t � 3)

t

2

3

Figure 8.11
Graph of

.2u(t - 3)

t

1

1O

u(t � 1)Figure 8.12
The function 

.u(t - 1)

Example 8.10
Sketch the functions
(a) A(t) = u(t) - u(t - 1)
(b) B(t) = u(t) - u(t - 1) + u(t - 2)
(c) C(t) = 2u(t) - u(t - 3)

Solution
(a) Figure 8.9 above shows u(t). By considering Figure 8.10 with d = 1 we can

sketch u(t - 1) and this is shown in Figure 8.12.

Looking at the two graphs referred to, we see that u(t) - u(t - 1) is 0 everywhere
except for the interval where the function has a value of 1. This is
illustrated in Figure 8.13.

0 … t 6 1
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t

1

1O

A(t)Figure 8.13
The function A(t) =

u(t) - u(t - 1).

t

1

1 2O

B(t)Figure 8.14
The function 
u(t) - u(t - 1) +
u(t - 2).

t

2

O

2u(t)

t

1

3O

u(t � 3)

Figure 8.15
(a) The function f(t) = 2u(t); (b) the function g(t) = u(t - 3).

t

2

3O

1

Figure 8.16
The function 
2u(t) - u(t - 3).

Note that in engineering terms this is a unit pulse of duration 1.
(b) The function B(t) = u(t) - u(t - 1) + u(t - 2) can be thought of as B(t) =

[u(t) - u(t - 1)] + u(t - 2) = A(t) + u(t - 2). We note that u(t - 2) is 0
for and 1 for . Adding u(t - 2) to A(t) yields the graph shown in
Figure 8.14.

t Ú 2t 6 2

(c) Figure 8.15(a), (b) shows the functions f(t) = 2u(t) and g(t) = u(t - 3)
respectively.

By considering these two graphs the graph of C(t) = f(t) - g(t) = 2u(t) -

u(t - 3) is then evident. The value of 2u(t) is reduced by 1 for owing to
subtracting the function u(t - 3). This results in the graph shown in Figure 8.16.

t Ú 3

(a) (b)

C(t)
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t

T

TO

f(t)Figure 8.18
Graph showing 
f = 0 for , 
f = t for

and 
f = 0 for t Ú T.
0 …  t 6 T

t 6 0

Example 8.11 Electronic Engineering – Pulse wave
A pulse wave, f(t), of magnitude M and period T is illustrated in Figure 8.17.

Express f(t) using the unit step function, u(t).

Solution
By drawing upon Example 8.10 we can state that

Note that this can be expressed as an infinite sum using the sigma notation:

Example 8.12 Electronic Engineering – Sawtooth pulse
A sawtooth pulse, f(t), of duration T, starting at t = 0, is illustrated in Figure 8.18.

f(t) = Ma

q

0
(-1)iua t -

iT

2
b

f(t) = M cu(t) - ua t -

T

2
b + u(t - T) - ua t -

3T

2
b + u(t - 2T) -

Á d

t

M

O T 2T 3T

f(t)

T
2

3T
2

5T
2

Figure 8.17

Note that for the sawtooth pulse is 0. Express f(t) in terms of the unit step
function.

Solution
Consider the function g(t) = tu(t). Since u(t) = 0 for t 6 0 and u(t) = 1 for ,
then g(t) may be expressed as

A graph of g(t) is shown in Figure 8.19(a).

g(t) = e0 for t 6 0

t for t Ú 0

t Ú 0

t Ú T
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Exercises

Sketch graphs of the following functions:
(a) (b) (c) (d)
(e) (f)
(g)

Sketch a graph of the function .t2u(t - 1)2

-2u(t - 3)
3u(t)u(t - 3) - u(t - 2)

u(t + 1)u(t - 1)-u(t)u(t)
1 A periodic square wave, f (t), is illustrated in

Figure 8.20.
Note that f (t) has period T. State f (t) in

terms of the unit step function.

3

Consider now the function h(t) = tu(t - T ). Noting that u(t - T) = 0 for t 6 T,
and u(t) = 1 for we can express h(t) as

A graph of h(t) is shown in Figure 8.19(b).
Finally we consider g(t) - h(t). By looking at the graphs of g(t) and h(t) we can

see that g(t) - h(t) is simply the function shown in Figure 8.18, that is

f(t) = g(t) - h(t) = tu(t) - tu(t - T ) = t[u(t) - u(t - T )]

h(t) = e0 for t 6 T

t for t Ú T

t Ú T,

tO

g(t)

t

T

TO

h(t)

Figure 8.19

t

1

O T 2T 3T

f(t)

–1

T
2

3T
2

5T
2

Figure 8.20

This can be expressed as

u(t) + 2a

q

1
(-1)iua t -

iT

2
b

f(t) = u(t) - 2ua t -

T

2
b + 2u(t - T) - 2ua t -

3T

2
b + 2u(t - 2T) -

Á3

Solutions to exercises

(a) (b)
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8.6 The delta function, or unit impulse function, �(t )

Consider the rectangular-shaped function R(t) shown in Figure 8.21. The base of the 

rectangle has width h, and its height is . This means that the area of the rectangle 

is 1.
A function of particular interest to control engineers is the impulse function or

delta function, written (t), which is obtained by allowing h to become smaller andd

1

h

smaller whilst the height of the rectangle is allowed to grow, so that the total area
enclosed remains constant at 1. Thus

So this function can be thought of as being zero everywhere except at the origin,
when it is infinitely large. In reality a function that has infinite size and which lasts
for zero time is impossible. However, this function can be used as a model of a situ-
ation in which, for example, a large voltage pulse is applied to an electrical system
for a very short period of time.

Because the area under the graph is 1 we say that (t) represents an impulse of
strength 1. The function encloses an area k and is referred to as an impulse of
strength k.

Because an infinitely large value cannot be drawn on a graph, the delta function is
often illustrated as in Figure 8.22 where the height of the arrow represents the
strength of the impulse.

The position of the delta function can be shifted to the left or the right. is
an impulse occurring at .t = d

d(t - d)

kd(t)
d

d(t) = a rectangle function for which h is allowed to approach zero

t

R(t)

h

1
h

Figure 8.21
A rectangular-
shaped function
of width h and

height .
1

h

t

1

Figure 8.22
The height of the
arrow represents
the strength of the
impulse.
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End of block exercises

State the degree of the following polynomials:
(a) (b)

Use a graphics calculator, or computer
software, to plot for x
between and 2.

Without using a graphics calculator or
software plot

State which, if any, values should be excluded
from the domain of the function. State the
position of any poles. State any asymptotes.

y =

x - 1

x + 2

3

-2
y = x5

- x2
+ 2

2

7x2(x3
+ 3x2)(t - 1)(t - 2)t

1 Plot a graph of

Are there any poles of this function lying
within the given domain?

Sketch a graph of and
.

Sketch a graph of .

Sketch .t3u(t - 1)7

-

1

2
 u (t + 1)6

u(t - 6) - u(t - 5)
u(t - 6), u(t - 5)5

f (R) =

R

1 + R
       for R Ú 0

4

Solutions to exercises

(a) 3 (b) 5

Exclude . Pole at . Vertical
asymptote . Horizontal asymptote

.y = 1
x = -2

x = -2x = -23

1 No4
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BLOCK 9
The equation of a circle

9.1 Introduction

This block develops the equation of a circle. Let the centre of the circle be C(a, b)
and the radius r. Consider any general point P(x, y) on the circumference. Figure 9.1
illustrates this.

C(a, b)

P(x, y)

b

a x

y

r

x−a

y−b

Q(x, b)

Figure 9.1
A circle centre 
(a, b) and radius r.

We form the right-angled triangle CPQ. Note that the coordinates of Q are (x, b).
Then the distances CQ, PQ and CP are

Using Pythagoras’s theorem we have

CQ2 PQ2 CP2

Any pair of values, x and y, that satisfy this equation represents a point lying on this
circle.

1x - a22 + 1y - b22 = r2

=+

 CQ = x - a,  PQ = y - b,  CP = r

Key point The equation of a circle, centre (a, b) and radius r is

By expanding brackets the equation may also be expressed as

Note that a circle, centre at the origin, radius r, has equation

x2
+ y2

= r2

x2
+ y2

- 2ax - 2by + a2
+ b2

- r2
= 0

1x - a22 + 1y - b22 = r2
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210 Block 9 The equation of a circle6

Example 9.1
Find the equation of the circle, centre (2, ) with radius 3.

Solution
Here , and , so the required equation is

Example 9.2
Find the equation of the circle, centre (4, 7), which passes through (3, 5).

Solution
The radius is the length from the centre (4, 7) to any point on the circumference, in
particular (3, 5). Using the Key point on page 190, the radius is found to be .
Hence the equation of the circle is

Example 9.3
Find where the circle

intersects (a) the y axis (b) the x axis.

Solution
The circle has centre (2, 5) and radius 4.

(a) When intersecting the y axis then and so at the points of intersection

The circle intersects the y axis at and .
(b) The centre of the circle is (2, 5). Thus the perpendicular distance from the

centre to the x axis is 5. Given that the radius is 4, it is clear that the circle does
not intersect the x axis.

Example 9.4
Find the equation of the circle through (1, ), (2, 0) and ( , 3).

Solution
Let the equation of the circle be

Applying the points (1, ), (2, 0) and ( , 3) in turn, the equation of the circle
becomes respectively

(1 a)2 ( b)2 r2 (1)
(2 a)2 ( )2 r2 (2)

( a)2 (3 b)2 r2 (3)=-+--1
=-b+-

=--1+-

-1-1

1x - a22 + 1y - b22 = r2

-1-1

10, 5 - 212210, 5 + 2122
y = 5 ; 212

1y - 522 = 12

1 - 222 + 1y - 522 = 16

x = 0

1x - 222 + 1y - 522 = 16

1x - 422 + 1y - 722 = 5

25

1x - 222 + 1y + 122 = 9

r = 3b = -1a = 2

-1
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We need to solve equations (1), (2) and (3) simultaneously. We eliminate r2 from
equations (1) and (2) by using equation (3). After simplification these become

(4)

(5)

Solving equations (4) and (5) yields a 0, b 1. Therefore, the centre is (0, 1).
Putting a 0, b 1 into equation (1) yields . The equation of the circle is

x2
+ 1y - 122 = 5

r = 25==

==

a - b + 1 = 0

a - 2b + 2 = 0

End of block exercises

Find the equation of the circle with
(a) centre the origin and radius 2.5

(b) centre (2, ) and radius 

(c) centre ( , 4) and radius 3.

Find where the circle

intersects (a) the x axis, (b) the y axis.

Find where the circles

and

intersect.

1x - 122 + 1y + 122 = 4

1x - 122 + 1y - 122 = 1

3

1x + 222 + 1y - 122 = 9

2

-1

1

2
-2

1 Find the equation of the circle passing through
the origin, (0, 4) and ( , 5).

Find the points of intersection of the circle

and the line .y = -3x + 1

1x - 222 + 1y - 322 = 25

5

-2
4

Solutions to exercises

(a) 

(b) 

(c) 

(a) , 

(b) , 10, 1 - 25210, 1 + 252
1-2 - 222 , 021-2 + 222, 022

1x + 122 + 1y - 422 = 9

1x - 222 + 1y + 222 = 0.25

x2
+ y2

= 2.52
= 6.251

, 1-1.764, 6.291210.964, -1.89125

ax +

9

4
b2

+ 1y - 222 =

145

16
4

a4 + 215

4
, 3

4
b  and a4 - 215

4
, 3

4
b3
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End of chapter exercises

If find .

If find .

If find .

If find .

If find .

If find .

If find .

The signum function is defined as

(a) Sketch a graph of this function.
(b) Is this function discontinuous or

continuous?
(c) Is this function odd, even or neither?
(d) Is this function periodic?
(e) Is this function many-to-one or one-to-one?

(a) Sketch a graph of the function
.

(b) State the position of any discontinuities.

The ramp function is defined by

(a) Sketch a graph of this function.
(b) State the position of any discontinuities.
(c) Find .

Sketch a graph of .

Sketch a graph of .f (x) = u(x - 1)|x|12

y = x + |x|11

lim
 x:0  

f (x)

f (x) = b0 x 6 0

kx x Ú 0
 

10

u(t - 1) - u(t - 2)
9

f (x) = sgn(x) = c +1 x 7 0

-1 x 6 0

 0 (x = 0)

8

f a215 

2
 tbf (x) = 3x47

G( jv)G(s) =

1

s + 1
6

f (t - t)f (x) = 3x25

sF(s)F(t) =

1

t + 1
4

5F(5s)F(s) =

1

s + 1
3

F(s + a)F(s) =

v

s2 + v2 
2

G(s + a)G(s) =

s

s2 + v2 
1 State the poles of the following rational

functions:

(a) (b)

(c)

Consider the function . Find

(x). Show that .

Find the inverse of the function

If and find
(a) (b) (c) (d)

State the rule that describes the function
.

Write a formula for the function given by the
rule ‘subtract the cube of the input from the
square of the input’.

State the domain and range of the function
.

The maximal domain of a function is the
largest possible domain that can be defined for
that function. Find the maximal domain of the
function

Find the inverse of the function

Find the equation of the straight line passing
through and (�4, 1). Does the line pass
through ?

Electrical Engineering and Electronics –
Reactance of a capacitor. The reactance of a
capacitor is its resistance to the passage of
alternating current. Reactance, , measured in
ohms, is given by 

X

23

(-2, 3)
(-1, 4)

22

f (x) = -

3

x

21

f (t) =

5

t

20

y = 3t - 17, 0 … t … 9
19

18

y = 3(x2
- 1)

17

g(g(x)).g(f (x)),f (g(x)),f (f (x)),
g(x) = x + 2f (x) = x2

+ 3x16

f (x) =

1

7
 (4x - 3)

15

f (f - 1(x)) = f - 1(f (x)) = xf - 1

f (x) = 5 - 4x14

F(s) =

1

3s - 2

F(s) =

s2
+ 2s + 3

(s + 1)3 
F(s) =

1

s

13

212 Block 9 The equation of a circle
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End of chapter exercises 213 6

where is the frequency of the current in hertz
and is the capacitance, measured in farads.
Note that is a function of .

Calculate the reactance when the frequency
is 50 hertz and the capacitance is farads.

Volume of a cone. The volume, , of a cone
with base radius, , and vertical height, , is
given by

Note that is a function of two variables: 
and .
(a) If the radius is doubled and the height

remains constant, describe the effect on the
volume.

(b) If the height is doubled and the radius is
constant, describe the effect on the volume.

(c) If both radius and height are doubled,
describe the effect on the volume.

h
rV

V =

1

3
pr2h

hr
V24

10- 6

fX
C

f

X =

1

2pfC
Dynamics – Constant acceleration. The
distance travelled, , by a particle with initial
velocity, , and constant acceleration, , after 
seconds is

Note that is a function of . If the initial
velocity is 6 m s and the acceleration is
0.5 m s calculate the distance travelled 
(a) in the first 10 seconds
(b) from to .

Extension of a spring. A spring has a natural
length of 90 cm. When a 1.5 kg mass is
suspended from the spring, the length extends
to 115 cm. Calculate the length when a 2.5 kg
mass is suspended from the spring.

A curve is defined parametrically by

Obtain explicitly in terms of .xy

x = t + 1, y = t2 + 1

27

26

t = 20t = 10

- 2

- 1
ts

s(t) = ut +

1

2
at2

tau
s

25

Solutions to exercises

(b) discontinuous (c) odd (d) no 
(e) many-to-one

discontinuities at and 

(b) none (c) 010

t = 2t = 19

8

3a215 

2
 tb4

=

675

16
 t47

1

jv + 1
6

3(t - t)25

s

s + 1
4

5

5s + 1
3

v

(s + a)2
+ v2

2

s + a

(s + a)2
+ v2

1 (a) (b) (c)

(a) (b)
(c) (d)

Square the input, subtract 1, and multiply the
result by 3.

domain [0, 9], range 

all t except 

lies on this line.(-2, 3)
y = x + 522

f - 1(x) = -

3

x
21

t = 020

[-17, 10]19

f (x) = x2
- x318

17

x + 4x2
+ 3x + 2

x2
+ 7x + 10x4

+ 6x3
+ 12x2

+ 9x16

f - 1(x) =

7x + 3

4
15

f - 1(x) =

5 - x

4
14

s =

2

3
s = -1s = 013

M06_CROF5939_04_SE_C06.QXD  9/21/18  9:10 AM  Page 213



6

3183 

(a) volume increases by a factor of 4
(b) volume is doubles
(c) volume increases by a factor of 8

24

Æ23 (a) 85 m (b) 135 m

131.7 cm

y = x2
- 2x + 227

26

25

214 Block 9 The equation of a circle
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This chapter is concerned with developing algebraic techniques.

Equations are made up of mathematical expressions in which there
are one or more unknown quantities. Equations arise in engineering
problems when the underlying laws or physical principles are applied
to model the problem.

To solve an equation means to find these unknown quantities. There
are many different types of equation, and the solution of these
different types is tackled in different ways. In the first instance it is
necessary to recognise the sort of equation that you are dealing with.
Having done this it is necessary to select an appropriate method of
solution.

In this chapter several sorts of equations and methods for solving
them will be described.

Inequalities are made up of mathematical expressions connected
through relationships of the form ‘is less than’, ‘is less than or equal
to’, ‘is greater than’ or ‘is greater than or equal to’. Inequalities, like
equations, contain unknowns which must be found. Block 5 describes
two ways in which inequalities can be solved.

Chapter 7
Polynomial equations, inequalities, partial
fractions and proportionality
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The chapter continues with a block on partial fractions. This technique
allows some complicated algebraic fractions to be expressed as the
sum of simpler fractions. There are many situations when this is
useful, especially when performing calculations with Laplace
transforms, for example in control theory.

The chapter concludes with a treatment of proportionality. The
concepts of direct and inverse proportion are explained and illustrated.
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Chapter 7 contents

Block 1 Solving linear equations

Block 2 Solving quadratic equations

Block 3 Factorising polynomial expressions and solving
polynomial equations

Block 4 Solving simultaneous equations

Block 5 Solution of inequalities

Block 6 Partial fractions

Block 7 Proportionality

End of chapter exercises
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BLOCK 1
Solving linear equations

1.1 Introduction

Many problems in engineering reduce to the solution of an equation or a set of equa-
tions. An equation is a type of mathematical expression that contains one or more
unknown quantities which you will be required to find. In this block we consider a
particular type of equation that contains a single unknown quantity, known as a
linear equation. Later blocks will describe techniques for solving other types of
equation.

1.2 Linear equations

Key point A linear equation is an equation of the form

where a and b are known numbers, and x represents an unknown quantity that we must
find.

ax + b = 0

In the equation , the number a is called the coefficient of x, and the
number b is called the constant term.

The following are examples of linear equations:

Note that the unknown, x, appears only to the first power, that is as x, and not as ,
, , etc. Linear equations often appear in a non-standard form, and different

letters are often used for the unknown quantity. For example,

are all linear equations. Where necessary they can be rearranged and written in the
form . We shall explain how to do this later in this block.ax + b = 0

3i - 7 = 17, 13 = 3z + 1 and 1 -

1

2
y = 3

x1>22x
x2

3x + 4 = 0, -2x + 3 = 0, -
1

2
x - 3 = 0

ax + b = 0
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1.2 Linear equations 219 7

Example 1.1
Which of the following are linear equations and which are not linear?
(a) (b) (c) (d)

Solution
The equations that can be written in the form are linear.

(a) is 

(b) is 

(c) is 

(d) is 

To solve a linear equation means to find the value of x that can be substituted into the
equation so that the left-hand side equals the right-hand side. Any such value is
known as a solution or root of the equation. If a number is a root, we say that it
satisfies the equation.

Example 1.2
Consider the linear equation .
(a) Check that is a solution.
(b) Check that is not a solution.

Solution
(a) To check that is a solution we substitute the value 4 for x and see

whether both sides of the equation are equal. Evaluating the left-hand side we
find , which equals 10, the same as the right-hand side. So, is a
solution. We say that satisfies the equation.

(b) Substituting into the left-hand side we find , which equals 4.
Clearly the left-hand side is not equal to 10, and so is not a solution. The
number does not satisfy the equation.

Example 1.3
Test which of the following values are solutions of the equation

(a) , (b) , (c) .

Solution
(a) Substituting , the left-hand side equals

But so is not a solution.
(b) Substituting , the left-hand side equals

This is the same as the right-hand side, so is a solution.x = -2

18 - 4(-2) = 26    

x = -2
x = 210 Z 26

10    
x = 2

x = 8x = -2x = 2

18 - 4x = 26

x = 2
x = 2

3(2) - 2x = 2
x = 4

x = 43(4) - 2

x = 4

x = 2
x = 4

3x - 2 = 10

linear; here the

constant term is zero

 
 

    
5x = 0

not linear because

of the term x2

 
 

    
3x2

+ 7 = 0

linear; the unknown is t    -3t + 17 = 0

linear    3x + 7 = 0

ax + b = 0

5x = 03x2
+ 7 = 0-3t + 17 = 03x + 7 = 0
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220 Block 1 Solving linear equations77

(c) Substituting , the left-hand side equals

But and so is not a solution.x = 8-14 Z 26

18 - 4(8) = -14    

x = 8

Exercises

(a) Write down the general form of a linear
equation.

(b) Explain what is meant by the root of a
linear equation.

In questions 2–8 verify that the given value is a
solution of the given equation.

8x - 3 = -11, x = -13

3x - 7 = -28, x = -72

1

0.01x - 1 = 0, x = 1008

11x - 1 = 10, x = 17

7x + 7 = 7, x = 06

1

3
x +

4

3
= 2, x = 25

2x + 3 = 4, x =

1

2
4

Solutions to exercises

(a) The general form is where a
and b are known numbers and x represents
the unknown quantity.

ax + b = 01 (b) A root is a number that satisfies the
equation.

1.3 Solving a linear equation

To solve a linear equation we try to make the unknown quantity the subject of the
equation. This means we attempt to obtain the unknown quantity on its own on the
left-hand side. To do this we may apply the same five rules used for transposing for-
mulae given in Chapter 5, Block 7. These are given again here.

Key point Operations that can be used in the process of solving a linear equation:

1 Add the same quantity to both sides.
2 Subtract the same quantity from both sides.
3 Multiply both sides by the same quantity.
4 Divide both sides by the same quantity.
5 Take functions of both sides: for example, square both sides.

A useful summary of these rules is ‘whatever we do to one side of an equation we
must also do to the other’.
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1.3 Solving a linear equation 221 7

Example 1.4
Solve the equation .

Solution
Note that by subtracting 14 from both sides, we leave x on its own on the left. Thus

Hence the solution of the equation is . It is easy to check that this solution is
correct by substituting into the original equation and checking that both
sides are indeed the same. You should get into the habit of doing this.

Example 1.5
Solve the equation .

Solution
In order to make y the subject of the equation we can divide both sides by 19:

Cancelling the 19s gives

so

Hence the solution of the equation is .

Example 1.6
Solve the equation .

Solution
Starting from we can subtract 12 from both sides to obtain

If we now divide both sides by 4 we find

So the solution is .

Example 1.7
Solve the linear equation .

Solution
First add 56 to both sides and obtain an expression for 14t:

56    14t =

14t - 56 = 0

x = -3

Cancelling the 4s gives x = -3

 
4x

4
=

-12

4

so that  4x = -12

4x + 12 - 12 = 0 - 12

4x + 12 = 0

4x + 12 = 0

y = 2

y = 2

y =

38

19

 
19y

19
=

38

19

  19y = 38

19y = 38

x = -9
x = -9

  x = -9
  x + 14 - 14 = 5 - 14

x + 14 = 5
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222 Block 1 Solving linear equations7

Finally, divide both sides by 14 to find

Example 1.8
Solve the following equations:

(a) (b)

Solution
(a) Subtracting 3 from both sides gives .
(b) Subtracting 3 from both sides gives .

Note that when asked to solve we can write the two solutions as
. It is usually acceptable to leave the solutions in this form rather

than work out their decimal approximations. This form is known as the surd form.

Example 1.9
Solve the equation .

Solution
There are a number of ways in which the solution can be attempted. The idea is to
remove unwanted terms on the left-hand side gradually to leave t on its own. By mul-
tiplying both sides by we find

and after simplifying and cancelling, 

Finally, subtracting 7 from both sides gives

So the solution is .

Example 1.10
Solve the equation .

Solution
At first sight this may not appear to be in the form of a linear equation. Some prelim-
inary work is necessary. Removing the brackets and collecting like terms we find the
left-hand side can be written

 = 5p + 2
 3(p - 2) + 2(p + 4) = 3p - 6 + 2p + 8

3(p - 2) + 2(p + 4) = 5

t =
1
2

 =

1

2

 =

15

2
-

14

2

  t =

15

2
- 7

t + 7 =

15

2

 =

3

2
*

5

1

 
3

2
*

2

3
(t + 7) =

3

2
* 5

3
2

2
3(t + 7) = 5

x = -3 ; 27
x + 3 = ; 27

x = - 27 - 3
x = 27 - 3

x + 3 = - 27x + 3 = 27

56

14
= 4

    
t =
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1.3 Solving a linear equation 223 7

So the equation becomes . We can then proceed to find p. Subtracting 2
from both sides yields so that, finally, .

Example 1.11
Solve the equation .

Solution
First remove the brackets on both sides:

We may write this as

We shall try to rearrange this equation so that terms involving x appear only on the
left-hand side, and constants on the right. Start by adding 10 to both sides:

Now add x to both sides:

Finally, solve this to find x:

Example 1.12
Solve the equation

Solution
This equation appears in an unfamiliar form but can be rearranged into the standard
form of a linear equation. By multiplying both sides by and we find

Consider each side in turn and cancel any common factors:

Removing the brackets and rearranging to find x we have

and further rearrangement gives

The solution is therefore .x =
19
20

x =

19

20

20x = 19

6x - 12 = 7 - 14x

6(x - 2) = 7(1 - 2x)

(1 - 2x)(x - 2) *

6

1 - 2x
= (1 - 2x)(x - 2) *

7

x - 2

(x - 2)(1 - 2x)

6

1 - 2x
=

7

x - 2

7

3    
x =

3x = 7    

2x = -x + 7    

2x - 10 = -x - 3

2x -  10 = 3 -  x -  6    

2(x - 5) = 3 - (x + 6)

p =
3
55p = 3

5p + 2 = 5
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224 Block 1 Solving linear equations7

Example 1.13 Electrical Engineering – Kirchhoff’s current law

I I2

I1

XFigure 1.1
The current
entering the node
equals the total
current leaving the
node: .I = I1 + I2

Consider Figure 1.1, which shows part of an electric circuit. At point X the circuit
divides into two branches. Point X is known as a node. The current in each of the
branches is denoted by I, and . Kirchhoff’s current law states that the current
entering any node must equal the current leaving that node. Thus we have the
equation

(a) If and calculate .
(b) Suppose and it is known that current is five times as great as .

Find the branch currents.

Solution
(a) Substituting the given values into the equation we find . Solving

for we find

Thus equals 8 A.
(b) We are given that, from Kirchhoff’s law, . We are told that is five

times as great as , and so we can write . Since we have

Solving the linear equation gives . Finally, since is five
times as great as , .I2 = 5I1 = 30 AI1

I2I1 = 6 A36 = 6I1

  = 6I1

36 = I1 + 5I1

I = 36I2 = 5I1I1

I2I = I1 + I2

I1

 = 8
 I1 = 18 - 10

I1

18 = I1 + 10

I1I2I = 36 A
I1I = 18 AI2 = 10 A

I = I1 + I2

I2I1

Example 1.14 Automotive Engineering – Car suspension
Springs form part of the suspension system of most cars. They must be able to sup-
port the car, together with passengers and luggage. So an understanding of the prop-
erties of springs under load is crucial in the design of cars.

Consider a spring of natural length . A spring is in compression when it has been
reduced in length. If is the compressed length, then the compression, , is 

 compression = x =  natural  length -  compressed  length = a - b

xb
a
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1.3 Solving a linear equation 225 7

When a spring is compressed it exerts a thrust. This means there is a force in the
spring pushing outwards, away from its centre, as illustrated in Figure 1.2.

ThrustThrust

The size of the thrust, , depends upon the compression of the spring, , and the
physical properties of the spring. The crucial characteristic is the spring stiffness, 
. This is a measure of the spring’s ability to resist compression, or, indeed, extension.
The higher the value of , the greater the force needed to bring about a given com-
pression. In other words, for a given compression there is a greater thrust.

Springs used in car suspension systems are compressed by the weight of the car,
and then further compressed by the weight of any passengers and luggage. Car
springs must be able to withstand this weight. Additionally they must be chosen to
ensure that the car has sufficient ground clearance when fully loaded with passengers
and luggage.

Consider a spring in compression. Applying Hooke’s law produces

The units of thrust are newtons (N); the units of are newtons per metre (N/m–1).
Car suspension on each rear wheel commonly consists of a spring, with one end

attached to the car body and the other to the wheel axle as illustrated in Figure 1.3.

kT

T = kx

k

k
xT

Figure 1.2 
A compressed
spring exerts an
outward force
known as a thrust.

Car body

Figure 1.3
Car suspension
consists of a spring
connecting the car
body to the wheel
axle.

The natural length of a coil spring used in a particular car suspension is 0.4 m,
with a spring stiffness of N/m–1. The part of the car supported by the
spring exerts a force of 3000 N on the spring.
(a) Find the length of the spring in its compressed state when attached to the car

and axle.
(b) Two passengers sit in the car and increase the load on the spring by 600 N. Find

the additional compression caused by the passengers.

1.75 * 104
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Exercises

In questions 1–24 solve each equation:

x

6
= 39

2t = -48

4t = 27

2t = 46

4t = -25

3x =

1

2
4

1

2
x = 73

-3x = 62

7x = 141

x

4
= 1618

x - 3 = 8 + 3x17

3 - x = 2x + 816

17

3
t = -215

-7x + 1 = -1314

-7x + 1 = -613

7x + 2 = 2312

7x + 2 = 911

x

6
= -310

Solution
(a) We use Hooke’s law given by

where x is the compression in metres. So

The spring is compressed by just over 17 cm. The compressed length of the
spring is then m; that is, just under 23 cm.

(b) When the passengers are in the car the load on the spring is

Then

So the additional compression is m, that is 3.5 cm.0.206 - 0.171 = 0.035

x = 0.206
3600 = 1.75 * 104 x

T = kx

T = 3000 + 600 = 3600 N

0.4 - 0.171 = 0.229

x =

3000

1.75 * 104 = 0.171

3000 = 1.75 * 104 x

T = kx
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In questions 25–47 solve each equation:

-3x + 3 = 1844

5

m
=

2

m + 1
43

3

m
= 442

1

3
(x + 3) = -941

17(x - 2) + 3(x - 1) = x40

2(y + 1) = -839

5m - 3 = 5(m - 3) + 2m38

5(m - 3) = 837

2 - (2t + 1) = 4(t + 2)36

-3(3x - 1) = 235

-2(x - 3) = -634

-2(x - 3) = 633

2(x + 4) = 832

2x - 1 = x - 331

3(x + 7) = 7(x + 2)30

3x + 7 = 7x + 229

4 - 3x = 4x + 328

3x + 4 = 4x + 327

7t - 5 = 4t + 726

3y - 8 =

1

2
y25

-8 = -4g24

-69y = -69023

-7y = 1122

-2y = -621

-

13

2
x = 1420

x

9
= -219

If find x if .

If find x if .

If find x if .

If find y if .

If find x when .

If find if 

In questions 54–63 solve each equation:

Solve the linear equation to
find x.

Solve the linear equation 
to find x.

1

ax + b
=

1

cx + d
65

ax + b = 064

3

2s - 1
+

1

s + 1
= 063

4x + 5

6
-

2x - 1

3
= x62

y - 3

y + 3
=

2

3
61

x + 1

x - 3
= 460

x - 3

x + 1
= 459

2

3x - 2
=

5

x - 1
58

5

3m + 2
=

2

m + 1
57

x

2
+

4x

3
= 2x - 756

x

4
+

3x

2
-

x

6
= 155

x - 5

2
-

2x - 1

3
= 6 54

54 = g - 4b.bg = 253

10x + 55y = 530y = 1052

2x + y = 8x = -351

-4x + 10y = -8y = 050

4x + 5y = 3y = -249

4x + 3y = 9y = 248

x - 4 = 22347

x + 4 = 2846

3x + 10 = 3145
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Solutions to exercises

2

14

2

18

1

3

1

2

64

3

10

224

23

-

11

7
22

21

-

28

13
20

-1819

18

-

11

2
17

-

5

3
16

-

6

17
15

14

13

12

11

-1810

9

-28

1

2
7

6

-

1

2
5

1

6
4

3

-22

1

4

1

0

0

6

6

7

223 + 447

28 - 446

45

-544

-

5

3
43

3

4
42

-3041

37

19
40

-539

38

23

5
37

-

7

6
36

1

9
35

34

33

32

-231

7

4
30

5

4
29

1

7
28

27

26

16

5
25
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2

14

42

1

8

13
58

57

56

12

19
55

-4954

-1353

-252

51

50

13

4
49

3

4
48

15

d - b

a - c
65

-

b

a
64

-

2

5
63

7

6
62

61

13

3
60

-

7

3
59

End of block exercises

Solve the equation .

Solve the equation .

Solve the equation .

Solve the equation .

Solve the equation .3 - 11x = 255

3x + 11 = 204

7I = -283

7x = 632

x

9
= 51 Solve the equation .

Solve the equation .

Solve the equation .

Solve the equation .

Solve the equation .
3

s - 1
 =

2

s - 5
10

1

5x
+

1

4x
 = 109

5(x + 3) + 2(2x - 1) = 98

3(4x + 11) = 87

7R + 13 = 2R - 76

Solutions to exercises

R = -46

x = -25

x = 34

I = -43

x = 92

x = 451

s = 1310

x =

9

200
9

x = -

4

9
8

x = -

25

12
7
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BLOCK 2
Solving quadratic equations

2.1 Introduction

A quadratic equation is one that can be written in the form ,
where a, b and c are numbers and x is the unknown whose value(s) we wish to find.
In this block we shall see that a quadratic equation can possess

• two solutions,
• a single solution, or
• no solutions at all.

We describe several ways in which quadratic equations can be solved. Familiarity
with all the techniques is important.

2.2 Quadratic equations

ax2
+ bx + c = 0

Key point A quadratic equation is one that can be written in the form

where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

ax2
+ bx + c = 0

For example,

are all quadratic equations. To ensure the presence of the term the number a
cannot be zero. However, b and c may be zero, so that

are all quadratic equations. Frequently quadratic equations occur in non-standard
form but where necessary they can be rearranged into standard form using the rules
for rearranging linear equations given in Block 1 of this chapter.

For example,

can be rewritten as

respectively.

3x2
+ 5x - 8 = 0 and 2x2

- 8x + 9 = 0

3x2
+ 5x = 8 and 2x2

= 8x - 9

4x2
+ 3x = 0, 2x2

- 3 = 0 and 6x2
= 0

x2

2x2
+ 7x - 3 = 0, x2

+ x + 1 = 0, 0.5x2
+ 3x + 9 = 0
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2.3 Solution by factorisation 231 7

To solve a quadratic equation we must find values of the unknown x that make the
left-hand and right-hand sides equal. Such values are known as solutions or roots of
the quadratic equation. We shall now describe four techniques for solving quadratic
equations:

1 factorisation
2 using a formula
3 completing the square
4 solution using graphs.

Exercises

Verify that and are both solutions
of .x2

- 5x + 6 = 0
x = 3x = 21 Verify that and are both

solutions of .x2
+ 5x + 6 = 0

x = -3x = -22

2.3 Solution by factorisation

It may be possible to solve a quadratic equation by factorisation using the method
described for factorising quadratic expressions in Chapter 5, Block 5, although you
should be aware that not all quadratic equations can be factorised.

Example 2.1
Solve the quadratic equation .

Solution
Factorising we find

When the product of two quantities equals zero, at least one of the two must equal
zero. In this case either ( ) is zero or ( ) is zero. It follows that

or

There are two solutions, and . These solutions can be checked quite
easily by substitution back into the given equation.

Example 2.2
Solve the quadratic equation .

Solution
Factorising we find

2x2
- 7x - 4 = (2x + 1)(x - 4) = 0

2x2
- 7x - 4 = 0

x = 2x = -3

x - 2 = 0, giving x = 2

x + 3 = 0, giving x = -3

x - 2x + 3

x2
+ x - 6 = (x + 3)(x - 2) = 0

x2
+ x - 6 = 0
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232 Block 2 Solving quadratic equations7

In this case either ( ) is zero or ( ) is zero. It follows that

, giving 

or

There are two solutions, and .

Example 2.3
Solve the equation .

Solution
Factorising and equating each factor to zero we find

so that and are the two solutions.

Example 2.4 Structural Engineering—Bending moment in a beam
In Example 8.4 in Chapter 6 we considered a simply supported beam of length L car-
rying a uniform load, w, per unit length (Figure 2.1), and introduced the bending
moment, M, which is a measure of the internal stress caused when the beam is
loaded.

x = -5x = 0

x2
+ 5x = x(x + 5) = 0

x2
+ 5x = 0

x = 4x = -
1
2

x - 4 = 0, giving x = 4

 x = -

1

2
2x + 1 = 0

x - 42x + 1

x
L

R R

wFigure 2.1
A simply
supported beam
with a uniform
load.

M varies with position x along the beam. It can be shown (see Example 1.18 in
Chapter 17) that M is given by the quadratic polynomial 

Determine the values of x for which the bending moment is zero.

Solution
The values of x for which the bending moment is zero are found by solving 

which is a quadratic equation. We can proceed in exactly the same way as in Exam-
ple 2.3 and factorise the equation noting the common factor x in both terms in the

w

2
(Lx - x2) = 0

M(x) =

w

2
(Lx - x2)
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brackets: 

Noting that cannot be zero, we have 

Each factor is then equated to zero to give x = L and x = 0 as the two solutions. We
conclude that the bending moment is zero at both ends of the beam.

Example 2.5
Solve the equation .

Solution
Factorising we find

This time the factor ( ) occurs twice. The equation becomes

so that

and we obtain the root . Because the factor appears twice in the
equation we say that this root is a repeated or double root.

Example 2.6
Solve the quadratic equation .

Solution
First factorise the left-hand side:

Each factor is then equated to zero to obtain the two solutions:

and and 3-

1

7
    

    
x =

(7x + 1)(x - 3)    7x2
- 20x - 3 =

7x2
- 20x - 3 = 0

(2x + 3)2
= 0

2x + 3 x = -
3
2

2x + 3 = 0

(2x + 3)2
= 0

2x + 3

4x2
+ 12x + 9 = (2x + 3)(2x + 3) = (2x + 3)2

4x2
+ 12x + 9 = 0

x(L - x) = 0

w

2

w

2
(Lx - x2) =

w

2
x(L - x) = 0

Exercises

Solve the following equations by factorisation:

x2
- x - 2 = 02

x2
- 3x + 2 = 01

x2
+ 3x + 2 = 04

x2
+ x - 2 = 03
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2.4 Solution by formula

When it is difficult or impossible to factorise a quadratic equation, it may be possible
to solve it using a formula that is used to calculate the roots.

x2
- 2x + 1 = 09

x2
- 1 = 08

x2
- x - 20 = 07

x2
- 7x + 12 = 06

x2
+ 8x + 7 = 05

x2
+ 9x = 014

x2
- 3x = 013

2x2
+ 2x = 012

x2
+ 11x = 011

x2
+ 2x + 1 = 010

Solutions to exercises

1, 2

, 2

, 1

, 

, 

4, 3

, 5

1, 

1 twice

twice

, 0-1111

-110

9

-18

-47

6

-1-75

-2-14

-23

-12

1 0, 

0, 3

0, 

2, 

, 1

1, 318

1

5
17

1

2
, -

1

3
16

1

2
15

-914

13

-112

Key point If then

x =

-b ; 2b 2
- 4ac

2a
 

ax2
+ bx + c = 0

Solve the following quadratic equations by
factorisation:

6x2
- x - 1 = 016

2x2
- 5x + 2 = 015

-x2
+ 4x - 3 = 018

-5x2
+ 6x - 1 = 017
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2.4 Solution by formula 235 7

To apply the formula it is necessary to identify carefully the values of a, b and c, pay-
ing particular attention to the signs of these numbers. Substitution into the formula
gives the desired solutions.

Note that if the quantity is a positive number we can take its square root
and the formula will produce two solutions known as distinct real roots. The first
root is found by using the positive square root in the formula, and the second is
found using the negative square root. If there will be a single root

known as a repeated root. The value of this root is . Finally if 

is negative we say the equation possesses complex roots. These require special treat-
ment and are described in Chapter 11.

b2
- 4ac x = -

b

2a

b2
- 4ac = 0

b2
- 4ac

Key point The quadratic equation has

• distinct real roots if 
• a repeated root if 
• complex roots if .b2

- 4ac 6 0
b2

- 4ac = 0
b2

- 4ac 7 0

ax2
+ bx + c = 0

Example 2.7
Compare the given equation with the standard form and identify
a, b and c. Calculate and use this information to state the nature of the roots.
(a)
(b)
(c)
(d)

(e)

(f)
(g)

Solution
(a) , and . So

and the roots will be real and distinct.
(b) , and . So

The roots will be complex.
(c) , and . So

Again the roots will be complex.

 = -80
  b2

- 4ac = (-2)2
- 4(3)(7)

c = 7b = -2a = 3

 = -80
 b2

- 4ac = (2)2
- 4(3)(7)

c = 7b = 2a = 3

 = 88
  b2

- 4ac = (2)2
- 4(3)(-7)

c = -7b = 2a = 3

x2
- 2x + 1 = 0

5x2
- 3 = 0

-x2
+ 3x -

1
2 = 0

x2
+ x + 2 = 0

3x2
- 2x + 7 = 0

3x2
+ 2x + 7 = 0

3x2
+ 2x - 7 = 0

b2
- 4ac

ax2
+ bx + c = 0
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236 Block 2 Solving quadratic equations7

(d) , and . So

and the roots will be complex.
(e) , and . So

The roots will be real and distinct.
(f) , and . So

The roots will be real and distinct.
(g) , and . So

There will be a single repeated root.

Example 2.8
Solve the quadratic equation using the formula.

Solution
We compare the given equation with the standard form in order
to identify a, b and c. We see that , and . Note particularly the
sign of c. Substituting these values into the formula we find

The two solutions are and . However, it is often sufficient 

to leave your answer in the so-called surd form .

Example 2.9
Solve the equation .3x2

- x - 6 = 0

x =

-3 ; 257

4

x = -2.6375x = 1.1375

 = 1.1375 and -2.6375

 =

-3 ; 7.5498

4

 =

-3 ; 257

4

 =

-3 ; 29 + 48

4

 =

-3 ; 232
- 4(2)(-6)

(2)(2)

  x =

-b ; 2b2
- 4ac

2a

c = -6b = 3a = 2
ax2

+ bx + c = 0

2x2
+ 3x - 6 = 0

 = 0
  b2

- 4ac = (-2)2
- 4(1)(1)

c = 1b = -2a = 1

 = 60
  b2

- 4ac = 0 - 4(5)(-3)

c = -3b = 0a = 5

 = 7
  b2

- 4ac = 32
- 4(-1)(-

1
2)

c = -
1
2b = 3a = -1

 = -7
  b2

- 4ac = (1)2
- 4(1)(2)

c = 2b = 1a = 1
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Solution
First identify a, b and c.

, ,

Substitute these values into the formula

x =

-b ; 2b2
-  4ac

2a

-6c =-1b =3a =    c =    b =    a =

Finally, calculate the values of x:

1.5907, -1.2573    x =

-(-1) ; 2(-1)2 
-  (4)(3)(-6)

(2)(3)
   

=

1 ; 273

6
  

=

Exercises

Solve the following quadratic equations by using
the formula:

x2
+ x - 1 = 06

2x2
+ 3x - 1 = 05

4x2
+ 3x - 2 = 04

x2
+ 6x - 2 = 03

x2
+ 7x - 2 = 02

x2
+ 8x + 1 = 01

3x2
- 6x + 3 = 013

x2
+ 6x + 9 = 012

9x2
+ 6x + 1 = 011

-2s2
- s + 3 = 010

2x2
+ 5x - 3 = 09

-2x2
- 3x + 1 = 08

-x2
+ 3x + 1 = 07

Solutions to exercises

, 

, 0.2749

0.3166, 

, 0.4254

0.2808, -1.78085

-1.17544

-6.31663

-7.27492

-7.8730-0.12701 , 0.6180

3.3028, 

, 0.2808

, -3
1

2
9

-1.78088

-0.30287

-1.61806
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238 Block 2 Solving quadratic equations7

2.5 Completing the square

The technique known as completing the square can be used to solve quadratic equa-
tions, although it is applicable in other circumstances as well. We shall develop this
technique in the following examples.

Example 2.10
(a) Show that .
(b) Hence show that can be written as .

Solution
(a) Removing the brackets we find

Thus

(b) By subtracting 9 from both sides of the previous equation it follows that

Example 2.11
(a) Show that .
(b) Hence show that can be written as .

Solution
(a) Removing the brackets we find

(b) Subtracting 16 from both sides we can write

We shall now generalise the results of Examples 2.10 and 2.11. Noting that

we can write

x2
+ 2kx = (x + k)2

- k2

(x + k)2
= x2

+ 2kx + k2

(x - 4)2
- 16 = x2

- 8x

 = x2
- 8x + 16

 = x2
- 4x - 4x + 16

  (x - 4)2
= (x - 4)(x - 4)

(x - 4)2
- 16x2

- 8x
(x - 4)2

= x2
- 8x + 16

(x + 3)2
- 9 = x2

+ 6x

(x + 3)2
= x2

+ 6x + 9

 = x2
+ 6x + 9

 = x2
+ 3x + 3x + 9

(x + 3)2
= (x + 3)(x + 3)

(x + 3)2
- 9x2

+ 6x
(x + 3)2

= x2
+ 6x + 9

, 1

-

1

3
11

-

3

2
10

113

-312
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2.5 Completing the square 239 7

Note that the constant term in the brackets on the right is always half the coefficient
of x on the left. This process is called completing the square.

Key point Completing the square x2
+ 2kx = (x + k)2

- k2

Example 2.12
Complete the square for the expression .

Solution
Comparing with the general form we see that . Hence

Note that the constant term in the brackets on the right, that is 8, is half the coeffi-
cient of x on the left, which is 16.

Example 2.13
Complete the square for the expression .

Solution
Consider . First of all the coefficient 5 is removed outside a bracket as
follows

We can now complete the square for the quadratic expression in the brackets:

Hence, multiplying both sides by 5 we find

Completing the square can be used to solve quadratic equations as shown in the
following examples.

Example 2.14
Solve the equation by completing the square.

Solution
First of all just consider , and note from Example 2.10 that we can write
this as

Then the quadratic equation can be written as

that is
(x + 3)2

= 7

x2
+ 6x + 2 = (x + 3)2

- 9 + 2 = 0

x2
+ 6x = (x + 3)2

- 9

x2
+ 6x

x2
+ 6x + 2 = 0

5x2
+ 4x = 5 C 1x +

2
522 -

4
25 D

 = 1x +
2
522 -

4
25

x2
+

4
5x = 1x +

2
522 - 12522

5x2
+ 4x = 51x2

+
4
5x2

5x2
+ 4x

5x2
+ 4x

 = (x + 8)2
- 64

  x2
+ 16x = (x + 8)2

- 82

k = 8x2
+ 2kxx2

+ 16x

x2
+ 16x
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240 Block 2 Solving quadratic equations7

Taking the square root of both sides gives

The two solutions are and .

Example 2.15
Solve the equation .

Solution
First consider . Using Example 2.11 we can write

so that the equation becomes

Example 2.16
Solve the equation by completing the square.

Solution
First examine the two leftmost terms in the equation, . Complete the square
for these terms:

The equation can then be written

From which

2 ; 13 = 3.7321, 0.2679 x =

; 13 x - 2 =

3(x - 2)2
=

 = 0
 (x -  2)2 -  4 + 1 = (x -  2)2 -  3

x2
- 4x + 1 =

x2
- 4x + 1 = 0

(x -  2)2 -  4x2
- 4x =

x2
- 4x

x2
- 4x + 1 = 0

 = 7.3166, 0.6834
  x = 4 ; 211

  x - 4 = ; 211
  (x - 4)2 = 11

  x2
- 8x + 5 = (x - 4)2

- 16 + 5 = 0

x2
- 8x = (x - 4)2

- 16

x2
- 8x

x2
- 8x + 5 = 0

x = -3 - 27 = -5.6458x = -3 + 27 = -0.3542

  x = -3 ; 27
  x + 3 = ; 27

Exercise

Solve the quadratic equations at the end of
Section 2.4 by completing the square.

1
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2.6 Solution of quadratic equations using graphs

Equations can be solved quite simply using graphs. For example, to solve the equa-
tion we can plot a graph of the function . If the
graph crosses the horizontal axis it will do so when , and so the x coordinates
at such points are solutions of . This is illustrated in the following
example.

Example 2.17
Solve the equation by plotting a graph of the function

Solution
By constructing a table of function values we can plot the graph as shown in
Figure 2.2.

y = x2
- 4x + 1

x2
- 4x + 1 = 0

x2
- 4x + 1 = 0

y = 0
y = x2

- 4x + 1x2
- 4x + 1 = 0

−1 1 2 3 4 5O x

y

−1

−2

−3

1
C D

x 0 1 2 3 4
y 1 −2 −3 −2 1

Figure 2.2
The graph of

cuts the x axis at
C and D.

y = x2
- 4x + 1

The solutions of the equation are found by looking for points
where the graph crosses the horizontal axis. The two points are approximately

and , marked C and D on the figure.

If you have access to a graphics calculator or computer software for graph plotting
check that you can use it to plot quadratic graphs and locate solutions of quadratic
equations.

You may find the illustrative examples in Chapter 6, Block 2.3 helpful.

x = 3.73x = 0.27

x2
- 4x + 1 = 0

Computer and calculator exercises

Solve the following quadratic equations
by plotting graphs:

0.56x2
+ 0.05x - 3 = 02

7x2
- 17x - 9 = 01 -0.25x2

- 0.05x + 0.01 = 03
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242 Block 2 Solving quadratic equations7

End of block exercises

Solve the following quadratic equations:
(a) (b) 
(c) 

Solve the equation .

Solve the equation .6s2
+ s - 15 = 03

x2
- 5x + 6 = 02

3x2
- 12 = 0

s2
- 25 = 0x2

- 9 = 0
1 Solve the equation .

Solve the equation .

Use the technique of completing the square 
to derive the quadratic formula as given on
page 234.

6

2x2
- 3x - 7 = 05

x2
+ 7x = 04

Solutions to exercises

(a) , (b) , (c) , 

, 2

s =
3
2, -5

33

x = 32

-2x = 2-5s = 5-3x = 31 , 

2.766, -1.2665

-7x = 04
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BLOCK 3
Factorising polynomial expressions
and solving polynomial equations

3.1 Introduction

Key point A polynomial expression is one of the form

where , , . . . are known coefficients (or numbers) and x is a variable.a1a0

anx
n

+ an - 1x
n - 1

+
. . .

+ a2x
2

+ a1x + a0

For example, is a polynomial expression. Note that only non-
negative whole number powers of the variable x are allowed in a polynomial expression.
When a polynomial expression is equated to zero, a polynomial equation is obtained.
Thus

are examples of polynomial equations. The linear and quadratic equations that you
have already met are particular types of polynomial equation. In this block you will
learn how to factorise some polynomial expressions and how to solve some polyno-
mial equations. You will also learn the technique of equating coefficients, which is
very important when you need to perform calculations involving partial fractions in
Block 6.

3x2
+ 6x - 7 = 0, x3

- 2x2
+ 8x - 3 = 0

x3
- 17x2

+ 54x - 8

3.2 Multiplying polynomials together

The degree of a polynomial is the highest power to which the variable is raised. Thus
has degree 3, has degree 6, and has degree 1.

Let us consider what happens when two polynomials are multiplied together. For
example,

is the product of two first-degree polynomials. Expanding the brackets we obtain

which is a second-degree polynomial.
In general we can regard a second-degree polynomial, or quadratic, as the product

of two first-degree polynomials, provided that the quadratic can be factorised.

(x + 1)(3x - 2) = 3x2
+ x - 2

(x + 1)(3x - 2)

5x + 2t6 - 6t4 + 2tx3
+ 6x + 2
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244 Block 3 Factorising polynomial expressions and solving polynomial equations7

On the other hand

is a third-degree, or cubic, polynomial that is also the product of a linear polynomial
and a quadratic polynomial.

In general we can regard a cubic polynomial as the product of a linear polynomial
and a quadratic polynomial. This fact will be important in the following section
when we come to factorise cubics.

(x - 1)(x2
+ 3x - 7) = x3

+ 2x2
- 10x + 7

Key point cubic = linear * quadratic

Exercises

If poly-
nomial, state the degree of the polynomial.

(a) If polyno-
mial, state the degree of the polynomial.

(b) What is the coefficient of x in this
unknown polynomial?

3x2
+ 13x + 4 = (x + 4) * a2

x3
- 17x2

+ 54x - 8 = (x - 4) * a1 If polynomial,
what must be the coefficient of x in this
unknown polynomial?

Two quadratic polynomials are multiplied
together. What is the degree of the resulting
polynomial?

4

2x2
+ 5x + 2 = (x + 2) * a3

Solutions to exercises

two

(a) one (b) it must be three in order to generate
the term when the brackets are removed.3x2

2

1 two

four4

3

3.3 Factorising polynomial expressions and equating coefficients

Factorisation of polynomial expressions can sometimes be achieved if one or more
of the factors is already known. This requires a knowledge of the technique of
equating coefficients, which is illustrated in the following example.

Example 3.1
Factorise the expression given that one of the factors is .

Solution
Given that is a factor we can write

x3
- 17x2

+ 54x - 8 = (x - 4) * an unknown quadratic polynomial

x - 4

(x - 4)x3
- 17x2

+ 54x - 8
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3.3 Factorising polynomial expressions and equating coefficients 245 7

The unknown polynomial must be quadratic because the expression on the left is
cubic. Suppose we write this quadratic as where , and are
unknown numbers, which we shall try to find. Then

Removing the brackets on the right and collecting like terms together we have

Equating coefficients means that we compare the coefficients of each term on the
left with the corresponding term on the right. Thus if we look at the terms on each
side we see that

that is, must equal 1 for both sides to be the same. Similarly by equating coeffi-
cients of we find

With we have so that must equal . Finally, equating
constant terms we find

so that . Check for yourself that, with these values of and , the coefficient
of x is the same on both sides. We can now write the polynomial expression as

The quadratic expression on the right cannot be factorised further.

x3
- 17x2

+ 54x - 8 = (x - 4)(x2
- 13x + 2)

bgg = 2

-8 = -4g

-13b-17 = b - 4a = 1

-17 = b - 4a

x2
a

x3
= ax3

x3

x3
- 17x2

+ 54x - 8 = ax3
+ (b - 4a)x2

+ (g - 4b)x - 4g

x3
- 17x2

+ 54x - 8 = (x - 4)(ax2
+ bx + g)

gbaax2
+ bx + g

Exercises

In questions 1–4 factorise the given polynomial
expressions into three linear factors:

, given is a factor.

, given is a factor.x + 2x3
- 7x - 62

x - 1x3
- 6x2

+ 11x - 61 , given is a factor.

, given is a factor.x + 43x3
+ 7x2

- 22x - 84

x + 12x3
+ 7x2

+ 7x + 23

Solutions to exercises

(x - 3)(x + 1)(x + 2)2

(x - 1)(x - 2)(x - 3)1

(x - 2)(x + 4)(3x + 1)4

(x + 1)(2x + 1)(x + 2)3
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246 Block 3 Factorising polynomial expressions and solving polynomial equations7

3.4 Polynomial equations

Key point A polynomial equation has the form

where a0, a1, . . . are known coefficients, and x represents an unknown whose value(s)
are to be found.

anx
n

+ an - 1x
n - 1

+
Á

+ a2x
2

+ a1x + a0 = 0

The following are examples of polynomial equations:

Recall that the degree of the equation is the highest power of x occurring. The
solutions or roots of the equation are those values of x that satisfy the equation. A
polynomial equation of degree n has n roots.

Example 3.2
Verify that , and are roots of the equation

Solution
We substitute each value in turn into :

so is clearly a root. It is easy to verify that and are also
solutions.

Polynomial equations of low degree have special names. A polynomial equation of
degree 1 is a linear equation and such equations have been solved in Block 1. A poly-
nomial equation of degree 2 is a quadratic equation and such equations have been
solved in Block 2. We now consider ways in which polynomial equations of higher
degree can be solved.

x = 0x = 1x = -1

 = 0
  (-1)3

- (-1) = -1 + 1

x3
- x = 0

x3
- x = 0

x = 0x = 1x = -1

5x6
- 3x4

+ x2
+ 7 = 0, -7x4

+ x2
+ 9 = 0

Exercises

In questions 1 and 2 verify that the given values are
solutions of the given equations:

x2
- 5x + 6 = 0, x = 3, x = 21 2t3 + t2 - t = 0, t = 0, t = -1, t =

1
22
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3.5 Solving polynomial equations when one solution is known

In Block 2 we gave a formula that can be used to solve quadratic equations. Unfortu-
nately, when dealing with equations of higher degree no such simple formulae exist.
If one of the roots can be spotted we can sometimes find the others by the method
shown in Example 3.3.

Example 3.3
Verify that is a solution of the equation .
Hence find the other solutions.

Solution
We substitute into the left-hand side of the given equation:

So, when the left-hand side equals zero. Hence is indeed a solution.
Knowing that is a root we can state that must be a factor of .
Therefore can be written

The quadratic polynomial has already been found in Example 3.1. So the given equa-
tion can be written

In this form we see that

The first equation gives , which we already knew. The second must be solved
using one of the methods for solving quadratic equations given in Block 2. For
example, using the formula we find

Hence the solutions are , and .x = 0.156x = 12.844x = 4

 = 12.844, 0.156

 =

13 ; 12.6886

2

 =

13 ; 2161

2

 =

13 ; 2(-13)2
- 4.1.2

2

x =

-b ; 2b2
- 4ac

2a

x = 4

x - 4 = 0 or x2
- 13x + 2 = 0

 = (x - 4)(x2
- 13x + 2) = 0

  P(x) = x3
- 17x2

+ 54x - 8

 = (x - 4) * quadratic polynomial

P(x) = x3
- 17x2

+ 54x - 8

P(x)
P(x)(x - 4)x = 4

x = 4x = 4

 = 0

  43
- 17(42) + 54(4) - 8 = 64 - 272 + 216 - 8

x = 4

P(x) = x3
- 17x2

+ 54x - 8 = 0x = 4
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Example 3.4
Solve the equation given that is a root.

Solution
Consider the equation . If is a root then 
must be a factor of the left-hand side. We can therefore write the left-hand side as

Expanding the right-hand side we have

Equating coefficients of we find

Equating constant terms we find

Finally, equating coefficients of gives

from which .
This enables us to write the equation as

Thus or . The quadratic equation can be solved using
the formula to obtain and .

Example 3.5 Control Engineering – Poles of a transfer function
We have already noted in Example 1.11 (Chapter 5, Block 1) that algebraic fractions
can appear in control engineering applications in the form of transfer functions
which relate the output of a system to the input. Poles of the transfer function are
those values which make the denominator of the fraction zero and knowledge of
these is particularly important when examining the stability of a control system.

Calculate the poles of the system which has transfer function 

Solution
We examine the denominator and seek those values of s for which 

Observe that this is a polynomial equation of degree 3, that is a cubic equation.
Note that there is a common factor in the terms of the equation, namely s, and so

the equation can be factorised into

s(s2
+ 15s + 50) = 0

s3
+ 15s2

+ 50s = 0

500

s3
+ 15s2

+ 50s

x = -0.209x = -4.791
x2

+ 5x + 1 = 0x + 3 = 0

(x + 3)(x2
+ 5x + 1) = 0

b = 5

8 = 3a + b

x2

3 = 3g so that g = 1

1a =

x3

x3
+ 8x2

+ 16x + 3 = ax3
+ (3a + b)x2

+ (3b + g)x + 3g

x3
+ 8x2

+ 16x + 3 = (x + 3)(ax2
+ bx + g)

x + 3x = -3x3
+ 8x2

+ 16x + 3 = 0

x = -3x3
+ 8x2

+ 16x + 3 = 0
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3.6 Solving a polynomial equation graphically

The real roots of the polynomial equation are given by the values of the
intercepts of the function and the x axis because, on the x axis, y, and hence

, is zero. Many excellent computer software packages and graphics calculators
exist that can be used for plotting graphs and hence solving polynomial equations.
Suppose the graph of is plotted and takes a form similar to that shown in
Figure 3.1.

The graph intersects the x axis at , and and so the equation
has real roots , and .x3x2x1P(x) = 0

x = x3x = x2x = x1

y = P(x)

P(x)
y = P(x)

P(x) = 0

Exercises

In questions 1–3 verify that the given value is a
solution of the equation and hence find all solutions:

2x3
+ 11x2

- 2x - 35 = 0, x = -52

x3
+ 7x2

+ 11x + 2 = 0, x = -21 Verify that and are solutions of
and hence

find all solutions.
x4

+ 4x3
- 17x2

+ 8x + 4 = 0
x = 2x = 13

Solutions to exercises

, , 

, , 1.6375-2.1375-52

-4.7913-0.2087-21 1, 2, , -6.7016-0.29843

x

y

x1 x2 x3

Figure 3.1
A polynomial
function that cuts
the x axis at points

, and .x3x2x1

In turn, the quadratic term can be factorised: 

from which and . There are three poles. s = -5s = -10s = 0,

s(s + 10)(s + 5) = 0
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Exercise

Consider the polynomial
. By evaluating P(2)P(x) = 5x3

- 47x2
+ 84x

1

Computer and calculator exercises

By plotting graphs estimate the roots of each of the
following equations:

2x3
+ 3x + 7 = 02

x3
+ 2x2

- 7x + 3 = 01 x4
+ 2x3

- 7x2
+ 11x + 3 = 03

Solutions to exercises

0.53, , 1.43

-1.202

-3.961 , -0.25-4.23

and P(3) show that at least one root of
lies between and .x = 3x = 2P(x) = 0

Example 3.6
Plot a graph of the function and hence solve the equation

.

Solution
The graph has been plotted with the aid of a computer graph-plotting package and is
shown in Figure 3.2.

4x4
- 15x2

+ 5x + 6 = 0
y = 4x4

- 15x2
+ 5x + 6

x

y

5–4

Figure 3.2
Graph of

.15x2
+ 5x + 6

y = 4x4
-

The solutions of the equation are found by looking for where the graph crosses the
horizontal axis. We see that the solutions are , , and .

An important feature of the graph of a polynomial is that it is continuous. By study-
ing the graph in Figure 3.2 you will see that if we choose any two values of x, say a
and b, such that y(a) and y(b) have opposite signs, then at least one root lies between

and .x = bx = a

x = -2x = -0.5x = 1.5x = 1
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End of block exercises

Factorise given that
is a factor.

Show that is a root of
and locate the

other roots algebraically.

Show that is a root of 
and locate the other roots.

Solve the equation .

Factorise given
that is a factor.(x + 1)

x4
- 7x3

+ 3x2
+ 31x + 205

x4
- 2x2

+ 1 = 04

x3
- 3x - 2 = 0x = 23

x3
+ 11x2

+ 31x + 21 = 0
x = -12

(x + 7)
x3

- x2
- 65x - 631 Given that two of the roots of

have the
same modulus but different sign, solve the
equation. (Hint: let two of the roots be and

and use the technique of equating
coefficients.)

Without solving the equation, or using a
graphical calculator, show that

has a root between and .x = 1x = 0

x4
+ 4x - 1 = 0

7

-a

a

x4
+ 3x3

- 7x2
- 27x - 18 = 0

6

Solutions to exercises

, , 

, -1x = 23

-7-3x = -12

(x + 7)(x + 1)(x - 9)1 , 1

, 3, , -2-1x = -36

(x + 1)2(x - 4)(x - 5)5

x = -14
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BLOCK 4
Solving simultaneous equations

4.1 Introduction

Equations often arise in which there is more than one unknown quantity. When this
is the case there will usually be more than one equation involved. For example, in the
two equations

there are two unknowns: x and y. In order to solve the equations we must find values
for x and y that satisfy both of the equations. The two equations are called
simultaneous equations. You should verify that the solution of these equations is

, because by substituting these values into both equations, the left-hand
and right-hand sides are equal.

In this block we shall show how two simultaneous equations can be solved either
by a method known as elimination or by drawing graphs. If more than two equations
are involved you should refer to the techniques described in Chapter 13, Blocks 1, 2
and 3.

y = 2x = 1

7x + y = 9, -3x + 2y = 1

Exercises

In each case verify that the given values satisfy
the given simultaneous equations:
(a) , satisfy and

.-3x - y = -4
7x + y = 12y = -2x = 2

1 (b) , satisfy and
.

(c) , satisfy 
and .9x + 2y = -23

8x - y = -26y = 2x = -3
x - y = 1

x + y = 7y = 3x = 4

4.2 Solving simultaneous equations by elimination

One way of solving simultaneous equations is by elimination. Elimination, as the
name implies, involves removing one of the unknowns. Note that if both sides of an
equation are multiplied or divided by a non-zero number an equivalent equation
results. For example, if we are given the equation

then by multiplying both sides by 7, say, we find

and this modified equation is equivalent to the original one.

7x + 28y = 35

x + 4y = 5
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4.2 Solving simultaneous equations by elimination 253 7

Given two simultaneous equations, elimination of one unknown can be achieved
by modifying the equations so that the coefficients of that unknown in each equation
are the same. By subtracting one equation from the other that unknown is eliminated.

If the coefficients of one unknown differ only in sign, that unknown can be elimi-
nated by adding the equations together.

Consider the following example.

Example 4.1
Solve the simultaneous equations

(1)

(2)

Solution
We first try to modify each equation so that the coefficient of x is the same in both
equations. This can be achieved if equation (1) is multiplied by 2 and equation (2) is
multiplied by 3. This gives

Note that in this form the unknown x can be removed or eliminated if the second
equation is subtracted from the first:

The result implies that , and we see immediately that y must equal 2. To find
x we substitute the value found for y into either of the given equations. For example,
using equation (1),

Thus the solution of the given equations is , . You should always check
your solution by substituting back into both of the given equations.

If the coefficients of x in the two equations differ only in sign, elimination can be
achieved by adding the two equations:

Example 4.2
Solve the equations

(3)

(4) 7x - 3y = -44

-3x + y = 18

y = 2x = 7

  x = 7
  3x = 21

3x + 5(2) = 31

1y = 2

0x +  1y = 2
6x +  9y = 60
6x +  10y = 62 -

6x + 9y = 60
 6x + 10y = 62

 2x + 3y = 20

3x + 5y = 31
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Solution
We modify the equations so that x can be eliminated by adding. For example, by
multiplying equation (3) by 7 and equation (4) by 3 we find

If both equations are now added we can eliminate x. Therefore

from which , so that . Substituting this value into equation (3) we
can find x:

so that

that is

Sometimes it will be easier to eliminate y rather than x:

Example 4.3
Solve the equations

Solution
Note that the coefficients of y differ only in sign. By adding the two equations we
find so that . It follows that .

Example 4.4
Solve the equations

(5)

(6)

Solution
First modify the equations so that the coefficient of x is the same in both. This means
that if equation (5) is multiplied by 2 then equation (6) must be multiplied by

Write down the resulting equations:

10x - 14y = -160, 10x + 55y = 530

5

2x +  11y = 106

5x -  7y = -80

y = 2x = -163x = -48

-2x - 3y =   26
 5x + 3y = -74

x = -5

-3x = 15

-3x + 3 = 18

y = 3-2y = -6

 0x - 2y = -6
 21x - 9y = -132

-21x + 7y = 126 +

21x - 9y = -132
 -21x + 7y = 126

254 Block 4 Solving simultaneous equations7
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4.2 Solving simultaneous equations by elimination 255 7

Subtract these to eliminate x and hence find y.

Finally verify that .

Equations with no solution

On occasions you may come across a pair of simultaneous equations that have no
solution. Consider the following example.

Example 4.5
Solve the equations

(7)

(8)

Solution
Leaving equation (7) unaltered and multiplying equation (8) by 2 we find

Adding these equations to eliminate x we find y is eliminated as well:

The last line is clearly nonsense. We say that the equations are inconsistent and they
have no solution.

Equations with an infinite number of solutions

Simultaneous equations can also possess an infinite number of solutions. Consider
the following example.

Example 4.6
Solve the equations

(9)

(10)

If equation (9) is multiplied by 2 we find

  4x + 2y = 16
  4x + 2y = 16

4x + 2y = 16

2x +  y = 8

 0x + 0y = -1

-10x + 2y = 2
 10x - 2y = -3 +

-10x + 2y = 2
10x - 2y = -3

-5x +  y = 1

  10x - 2y = -3

x = -2

y = 10
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256 Block 4 Solving simultaneous equations7

Note that both equations are now identical. This means that one of them is redun-
dant. We need only consider the single equation

There are infinitely many pairs of values of x and y that satisfy this equation. For
example, if , . Similarly, if , , and if , . We
could continue like this, producing more and more solutions. Suppose we choose a
value for x. Because we are not restricted in any way we call x a free variable. Let us
call our choice . We can then write

The solution is therefore , for any value of whatsoever. There
are an infinite number of such solutions.

Example 4.7 Civil Engineering – Curve fitting
In many engineering applications physical quantities are specified at a few distinct
points rather than everywhere in a given domain. For example, if a civil engineer
wishes to analyse the strain in a building, strain gauges may be attached at several
specific points in the structure. Interpolation techniques can be used to find the strain
at other points. Curve fitting is used to achieve this, by fitting a curve whose mathe-
matical equation can be calculated through the known points. Curve fitting is partic-
ularly important in computer-aided design (CAD) and computer-aided manufacture
(CAM) because the geometry or shape of a solid can be described by specifying a
number of points on the surface and interpolating using an appropriate curve or line.

Suppose two measured points have (x, y) coordinates (5, 8) and (6, 5) as shown in
Figure 4.1.
(a) Find the equation of the straight line that passes through or interpolates these

points.
(b) Use this linear approximation to estimate y(5.3).

ly = 8 - 2lx = l

2l + y = 8 so that y = 8 - 2l

l

y = 14x = -3y = 6x = 1y = 8x = 0

2x + y = 8

(5, 8)

(6, 5)

x

yFigure 4.1
The straight line
interpolates the
two given points.

Solution
(a) Suppose the straight line has equation . Because the line passes

through (5, 8) and (6, 5) we know that

(11)

(12) and 5 = 6m + c 

  8 = 5m + c 

y = mx + c
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4.3 Solving simultaneous equations using graphs 257 7

These are two simultaneous equations, which must be solved in order to find m
and c. Subtracting equation (12) from equation (11) we find

so that . Substituting this value for m into equation (11) we find

so that . Then the linear approximation has equation .
(b) We can use the linear approximation to estimate y when :

In practice, higher-degree polynomials or other curves are usually used for interp-
olation purposes rather than simple straight lines.

y(5.3) = -3(5.3) + 23 = 7.1

x = 5.3
y = -3x + 23c = 23

8 = 5(-3) + c

m = -3

3 = -m

Exercises

In questions 1–3 solve the given simultaneous
equations by elimination:

A straight line has an equation of the form
. The line passes through the

points with coordinates (2, 4) and ( , 3).
Write down the simultaneous equations that

-1
y = ax + b

4

7x + 11y = -24, -9x + y = 463

2x + 3y = -2, 5x - 5y = 202

5x + y = 8, -3x + 2y = -101

must be satisfied by a and b. Solve them and
hence find the equation of the line.

A quadratic function is
used in signal processing to approximate a
more complicated signal. If this function must
pass through the points with coordinates (0, 0),
(1, 3) and (5, ) write down the
simultaneous equations satisfied by a, b and c.
Solve these to find the quadratic function.

-11

y = ax2
+ bx + c5

Solutions to exercises

x = -5, y = 13

x = 2, y = -22

x = 2, y = -21

 y = -

13

10
 x2

+

43

10
 x5

 y =

1

3
 x +

10

3
4

4.3 Solving simultaneous equations using graphs

An alternative way of solving two simultaneous equations in two unknowns is to
draw a graph. Note that each of the equations we have studied is a linear equation
and plotting its graph will produce a straight line. We can plot a line for each equa-
tion and locate the point of intersection of the two lines. This point represents the
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258 Block 4 Solving simultaneous equations7

solution of the equations. If the two lines do not intersect then the equations have no
solution. If the two lines are identical, there are an infinite number of solutions. Con-
sider the following examples.

Example 4.8
Solve the simultaneous equations

(13)

(14)

by plotting two straight line graphs.

Solution
Equation (13) is rearranged into the standard form of the equation of a straight line:

. By selecting two points on the line a graph can be drawn as shown in
Figure 4.2.

Similarly, equation (14) can be rearranged as and its graph drawn. This
is also shown in Figure 4.2. The coordinates of any point on line I satisfy .
The coordinates of any point on line II satisfy . At the point where the
two lines intersect the x and y coordinates must satisfy both equations and so the point
of intersection represents the solution. We see from the graph that the point of inter-
section is (2, 1). The solution of the given equations is therefore , .y = 1x = 2

-x + y = -1
4x + y = 9

y = x - 1

y = -4x + 9

-x + y = -1

 4x + y = 9 

21 3 4�1�2 �3�4�5

1
2
3

x

y
II: y � x � 1

I: y � 9 � 4x

Figure 4.2
The coordinates of
the point of inter-
section give the
required solution.

Example 4.9
Solve the equations: , .

Solution
Rewriting the equations in standard form we find

Graphs of these lines are shown in Figure 4.3. Note that these lines do not intersect
because they are parallel. This means that the given simultaneous equations do not
have a solution; they are inconsistent.

y = 5x +

3

2
 and y = 5x + 1

5x - y = -110x - 2y = -3
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4.3 Solving simultaneous equations using graphs 259 7

�2 �1 1 2

2
1

3

x

y

y � 5x � 1

y � 5x � 3
2

Figure 4.3
The graphs do not
intersect – the
equations have no
solution.

Exercises

In questions 1–4 solve the given equations
graphically:

2x - 2y = -2, 5x + y = -92

5x - y = 7, 2x + y = 71

4x + 4y = -4, x + 7y = -194

7x + 3y = 25, -2x + y = 43

Solutions to exercises

 x = -
5
3, y = -

2
32

x = 2, y = 31

x = 2, y = -34

x = 1, y = 63

Computer and calculator exercise

Use your calculator or computer software to
plot graphs and hence estimate the solution of

  0.33x + 0.8y = -0.15
  0.5x - 0.25y = -0.6

1

Solution to exercise

approx. x = -1.07, y = 0.251
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260 Block 4 Solving simultaneous equations7

End of block exercises

Solve the following simultaneous equations:
(a) 
(b) 

Show that the equations and
have no solution.

Solve the equations

(Hint: let .)x =

1

s
, y =

1

t

3

s
+

2

t
 = 11, -

7

s
 -

5

t
 = -26

3

7y = 7 - 77x
11x + y = 72

3s + 4t = 0, 2s - 2t = 7
3x + 2y = 7, x + y = 3

1 Find the equation of the straight line passing

through and .

A graph has equation . Find a
and b if the graph passes through the points
(1,2) and (3, 5).

y = ax2
+ bx5

a1, 
13

4
ba4, 13

3

4
b

4

Solutions to exercises

(a) 1, 2 (b) 2, 

, 1
1

3
3

-1.51

-

1

6
, 

13

6
5

y =

7

2
x -

1

4
4
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BLOCK 5
Solution of inequalities

5.1 Introduction

An inequality is an expression involving one of the symbols , , or . This
block will first show how to manipulate inequalities correctly. Then the solution of
inequalities, both algebraically and graphically, will be described.

5.2 The inequality symbols

Recall the meaning of the following symbols:

67…Ú

baFigure 5.1
If , b will be
to the right of a on
the number line.

b 7 a

�5 �4 �3 �2 �1 0 1 2 3 4 5 6 7 8
Figure 5.2

Key point means: ‘is greater than’, means: ‘is greater than or equal to’
means: ‘is less than’, means: ‘is less than or equal to’…6

Ú7

So, we may state, for example, , , and . The symbols ,
, , are called inequalities.
A number line is often a helpful way of picturing inequalities. Given two numbers

a and b, if then b will be to the right of a on the number line, as shown in
Figure 5.1.

b 7 a

…Ú6

77 … 7-2 6 39 Ú 28 7 7

Note from Figure 5.2 that , and .8 7 54 7 -2-3 7 -5

Inequalities can always be written in two ways. For example, in English we can
state that 8 is greater than 7, or equivalently, 7 is less than 8. Mathematically we
write or . Similarly if then . If then a will be to the
left of b on the number line.

a 6 ba 6 bb 7 a7 6 88 7 7
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262 Block 5 Solution of inequalities7

Example 5.1
Rewrite the inequality using only the ‘greater than’ sign, .

Solution
can be written as .

Example 5.2
Rewrite the inequality using only the ‘less than’ sign, .

Solution
can be written as .

Sometimes two inequalities are combined into a single statement. Consider for
example . This is a compact way of writing and . Now

is equivalent to and so means x is greater than 3 but less
than 6.

It would be incorrect to write because 5 is not greater than 9. Instead
two inequalities would be used and we would write: or , that is x is less
than 5 or greater than 9.

Inequalities obey simple rules when used in conjunction with arithmetical
operations.

x 7 9x 6 5
5 7 x 7 9

3 6 x 6 6x 7 33 6 x
x 6 63 6 x3 6 x 6 6

x 6 55 7 x

65 7 x

x 7 -
2
5-

2
5 6 x

7-
2
5 6 x

Key point 1 Adding or subtracting the same quantity from both sides of an inequality leaves the
inequality sign unchanged.

2 Multiplying or dividing both sides by a positive number leaves the inequality sign
unchanged.

3 Multiplying or dividing both sides by a negative number reverses the inequality.

For example, since , by adding k to both sides we can state

for any value of k.
Further, by multiplying both sides of by k we can state provided 

k is positive. However,

if k is negative. Note that the inequality sign is reversed when multiplying both sides
by a negative number. A common mistake is to forget to reverse the inequality sign
when multiplying inequalities by a negative number. For example, , but multi-
plying both sides by gives .

Example 5.3
Find the result of multiplying both sides of the inequality by the number

.

Solution

54 7 -27

-3
-18 6 9

-8 6 -5-1
8 7 5

8k 6 5k

8k 7 5k8 7 5

8 + k 7 5 + k

8 7 5
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5.2 The inequality symbols 263 7

The modulus sign is sometimes used with inequalities. For example, means
all numbers whose actual size, irrespective of sign, is less than 1. This means any
value between and 1. Thus

In general, if k is a positive number,

|x| 6 1 means -1 6 x 6 1

-1

|x| 6 1

Key point |x| 6 k means -k 6 x 6 k

Similarly means all numbers whose size, irrespective of sign, is greater than
4. This means any value greater than 4 or less than . Thus

In general, if k is a positive number,

|x| 7 4 means x 7 4 or x 6 -4

-4
|x| 7 4

Key point |x| 7 k means x 7 k or x 6 -k

Exercises

State whether each of the following statements
is true or false.
(a) (b) (c)
(d) (e) 
(f ) (g)

In questions 2–9 rewrite each of the statements
without using a modulus sign:

|x| 6 53

|x| 6 22

0.001 … 10- 3|-19| 7 -20
|-19| 6 1000.001 6 10- 5

4 Ú 44 7 44 7 9

1

|x| Ú 09

|x| 7 7.58

|x| 7 27

|x - a| 6 16

|x - 3| 6 25

|x| … 7.54

Solutions to exercises

(a) F (b) F (c) T (d) F (e) T (f) T (g) T

-2 6 x - 3 6 25

-7.5 … x … 7.54

-5 6 x 6 53

-2 6 x 6 22

1

, in fact any xx Ú 0 or x … 09

x 7 7.5 or x 6 -7.58

x 7 2 or x 6 -27

-1 6 x - a 6 16
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5.3 Solving inequalities algebraically

When we are asked to solve an inequality, the inequality will contain an unknown
variable, x say. To solve means to find all values of x for which the inequality is true.
In a linear inequality the unknown appears only to the first power, that is as x, and
not as , , , and so on. It is possible to solve a linear inequality by making the
unknown the subject. Consider the following examples.

Example 5.4
Solve the inequality .

Solution

Hence all values of x greater than satisfy .

Example 5.5
Solve the inequality .

Solution

Hence all values of x greater than or equal to satisfy .

Example 5.6
Solve the inequality .

Solution
We try to make x the subject and obtain it on its own on the left-hand side. Start by
subtracting 4x from both sides to remove quantities involving x from the right.

Then subtract 2 from both sides to remove the 2 on the left:

Finally, find the range of values satisfied by x:

x 6 -
1
13 

13x 6 -1

13x + 2 6 1

17x + 2 6 4x + 1

-3x - 7 … 0-
7
3

 and reversing the inequality
x Ú -

7
3 dividing both sides by -3

-3x … 7   by adding 7 to both sides
-3x - 7 … 0

-3x - 7 … 0

4x + 3 7 0-
3
4

 x 7 -
3
4 by dividing both sides by 4

 4x 7 -3 by subtracting 3 from both sides
4x + 3 7 0

4x + 3 7 0

x1>2x3x2

264 Block 5 Solution of inequalities7
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5.3 Solving inequalities algebraically 265 7

Example 5.7
Solve the inequality and depict the solution graphically.

Solution

is equivalent to

We shall treat both parts of the inequality separately:

So . Now consider the second part: .

Putting both parts of the solution together we see that the inequality is satisfied when
. This range of values is shown in Figure 5.3.-

2
5 6 x 6

6
5

x 6
6
5 by dividing both sides by 5

5x 6 6 by adding 2 to both sides
5x - 2 6 4

5x - 2 6 4x 7 -
2
5

-
2
5 6 x    by dividing both sides by 5

-2 6 5x   by adding 2 to both sides
-4 6 5x - 2

-4 6 5x - 2 6 4

|5x - 2| 6 4

|5x - 2| 6 4

� 02
5

6
5

Figure 5.3

when
.-

2
5 6 x 6

6
5

|5x - 2| 6 4

Example 5.8
Solve the inequality .

Solution
First of all rewrite the inequality without using the modulus sign.

Then treat each part separately. First of all consider . Solve this.

The second part is . Solve this.

Finally, confirm that the solution is .-2 6 x 6 3

x 7 -2

1 - 2x 6 5

x 6 3

-5 6 1 - 2x

-5 6 1 - 2x 6 5|1 - 2x| 6 5 is equivalent to 

|1 - 2x| 6 5

Exercises

In questions 1–16 solve the given inequality algebraically:

4x 7 81 5x 7 82

M07_CROF5939_04_SE_C07.QXD  9/21/18  10:38 AM  Page 265



266 Block 5 Solution of inequalities7

8x 6 09

2x 7 08

5x 7 27

3x 6 -16

2x 7 15

8x … 54

8x 7 53

4x … 016

5x Ú 015

3x … -414

4x … -313

3
4x 7 112

3x 7 411

3x Ú 010

In questions 17–26 solve the given inequality
algebraically:

14x + 11 7 2221

18x + 2 7 920

7x + 3 Ú 019

5x + 1 … 818

5x + 1 6 817

7 - 3x 7 x - 526

5 + 4x 7 2x + 125

11 - 7x 6 224

2 + 5x Ú 123

1 - 5x … 022

In questions 27–33 solve the inequality:

|5x| … 030

|5x| 6 129

|2x + 1| Ú 328

|7x - 3| 7 127

|2x - 1| 6 133

|2 - 5x| Ú 332

|1 - 5x| 7 231

Solutions to exercises

x … -
3
413

x 7
4
312

x 7
4
311

x Ú 010

x 6 09

x 7 08

x 7
2
57

x 6 -
1
36

x 7
1
25

x …
5
84

x 7
5
83

x 7
8
52

x 7 21

x 6 326

x 7 -225

x 7
9
724

x Ú -
1
523

x Ú
1
522

x 7
11
1421

x 7
7
1820

x Ú -
3
719

x …
7
518

x 6
7
517

x … 016

x Ú 015

x … -
4
314
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5.4 Solving inequalities using graphs 267 7

5.4 Solving inequalities using graphs

Graphs can be used to solve inequalities, particularly if the inequality is not linear.
Graphics calculators or software can help save a lot of time and effort here.

Example 5.9
Solve graphically the inequality .

Solution
We consider the function whose graph is shown in Figure 5.4.y = 5x + 2

5x + 2 6 0

x = 030

-
1
5 6 x 6

1
529

x Ú 1 or x … -228

x 7
4
7 or x 6

2
727

0 6 x 6 1 33

x … -
1
5, x Ú 132

x 6 -
1
5, x 7

3
5 31

The values of x that make negative are those for which y is negative. We
see directly from the graph that y is negative when .x 6 -

2
5

5x + 2

�1 O 1 2

5

10

x  �  �

x

y
y � 5x � 2

2
5

Figure 5.4
Graph of

.y = 5x + 2

Example 5.10
Find the range of values of x for which .

Solution
We consider the graph of , which is shown in Figure 5.5.y = x2

- x - 6

x2
- x - 6 6 0

�2 �1 1 2 3O

�5

5

x

y

y � x 
2 � x � 6

Figure 5.5
Graph of

.y = x2
- x - 6

Note that the graph crosses the x axis when and when . Now
will be negative when y is negative. Directly from the graph we see that

y is negative when .-2 6 x 6 3
x2

- x - 6
x = 3x = -2
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268 Block 5 Solution of inequalities7

Example 5.11
Find the range of values of x for which .

Solution
The graph of has been drawn in Figure 5.5. We require

to be positive. Use the graph to solve the problem.

Example 5.12
By plotting a graph of find the range of
values of x for which

Solution
A software package has been used to plot the graph, which is shown in Figure 5.6.
We see that y is negative when and when .1.5 6 x 6 2.2-2.5 6 x 6 -1

20x4
- 4x3

- 143x2
+ 46x + 165 6 0

y = 20x4
- 4x3

- 143x2
+ 46x + 165

x 6 -2 or x 7 3

y = x2
- x - 6

y = x2
- x - 6

x2
- x - 6 7 0

x

y

�5 �4 �3 �2 �1 1 3 4 5

Figure 5.6
Graph of

.46x + 165
4x3

- 143x2
+

y = 20x4
-

Exercises

In questions 1–4 solve the given inequality
graphically:

2x - 7 6 02

3x + 1 6 01

5x - 3 7 04

6x + 9 7 03

Solutions to exercises

x 6

7

2
2

x 6 -

1

3
1

x 7

3

5
4

x 7 -

3

2
3
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5.4 Solving inequalities using graphs 269 7

Solutions to exercises

(a) N is any number less than or equal to .
(b) p lies between 0 and 1, inclusive.

(a) -

3

4
 6 x 6

5

4
5

x Ú

7

4
4

x Ú 03

-3 … a … 92

-211 (b)

(c)

(d) 

x 7 3 or x 6 -17

-s + m 6 X 6 s + m6

-

8

5
 6 x 6

12

5

x … -1 or x Ú -

1

2

x 6 -4 or x 7

4

3

Computer and calculator exercises

Use a graphics calculator or software to solve the
following inequalities:

x + 2

x - 3
 6 03

4x4
+ 9x3

- 3x2
- 10x 7 02

6x3
+ x2

- 4x + 1 6 01

(x - 1)(x + 1)

x - 3
 6 05

x + 1

x + 2
 7 04

End of block exercises

Express in words, the meaning of
(a) (b) 

Express in symbols the statement ‘a can take
any value between and 9 inclusive’.

Express in symbols ‘x is non-negative’.

Solve the inequality .

Solve the given inequalities:

(a) (b) 
(c) (d) |5x - 2| 6 10|4x + 3| Ú 1

|3x + 4| 7 8ƒ 2x -
1
2 ƒ 6 2

5

5 - 4x … -24

3

-3
2

0 … p … 1N … -21
1 Find the range of values satisfied by X if

and .

Sketch a graph of the rational function

Hence state the range of values for which

x + 1

2x - 6
7 0

R(x) =

x + 1

2x - 6

7

s 7 0` X - m

s
` 6 1

6
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BLOCK 6
Partial fractions

6.1 Introduction

It is often helpful to break down a complicated fraction into the sum of simpler

fractions. For example, it can be shown that has the same value as

for any value of x. We say that

and that the partial fractions of are and . The ability to

express a fraction as its partial fractions is particularly useful in the study of Laplace
transforms, and in control theory. In this block we explain how partial fractions are
found.

6.2 Proper and improper fractions

Frequently we find that an algebraic fraction appears in the form

that is as the ratio of two polynomials. For example,

The procedure for finding partial fractions depends critically upon the form of the
denominator, as we shall see. The degree of the numerator, n say, is the highest
power occurring in the numerator. The degree of the denominator, d say, is the high-
est power occurring in the denominator. If the fraction is said to be proper. If

the fraction is said to be improper. Before calculating the partial fractions of
an algebraic fraction it is important to decide whether the fraction is proper or
improper.

Example 6.1
For each of the following fractions state the degrees of the numerator and denomi-
nator. Hence classify the fractions as proper or improper.

(a) (b) (c) (d)
s2

+ 4s + 5

(s2
+ 2s + 4)(s + 3)

x

x4
+ 1

3x2
- 2x + 5

x2
- 7x + 2

x3
+ x2

+ 3x + 7

x2
+ 1

d … n
d 7 n

x3
+ x2

+ 3x + 7

x2
+ 1

, 
3x2

- 2x + 5

x2
- 7x + 2

 and 
x

x4
+ 1

algebraic fraction =

numerator

denominator
=

polynomial

polynomial

3

x + 1

1

x + 2

4x + 7
x2

+ 3x + 2

4x + 7

x 2
+ 3x + 2

 is identically equal to 
1

x + 2
+

3

x + 1

1

x + 2
+

3

x + 1

4x + 7

x2
+ 3x + 2
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6.3 Proper fractions with linear factors 271 7

Solution
(a) The degree of the numerator, n, is 3. The degree of the denominator, d, is 2.

Because the fraction is improper.
(b) Here and . State whether this fraction is proper or improper.

(c) Noting that we see that and . State whether this fraction is
proper or improper.

(d) Removing the brackets in the denominator we see that it has degree 3. The
degree of the numerator is 2 and so this fraction is proper.

The denominator of an algebraic fraction can be factorised into a product of linear and
quadratic factors. Linear factors are those of the form , for example ,

and . Quadratic factors are those of the form such as
, and , which cannot be factorised into linear factors.4x2

- 2x + 3x2
+ x + 1

ax2
+ bx + c4 - x3x - 2

2x + 7ax + b

d 7 n; the fraction is proper

d = 4n = 1x = x1

d … n; the fraction is improper

d = 2n = 2
d … n

Exercises

For each fraction state the degrees of the
numerator and denominator, and hence
determine which are proper and which are
improper:

1 (a) (b)

(c)
(x - 1)(x - 2)(x - 3)

x - 5

x2

x3
- x

x + 1

x

Solutions to exercises

(a) , , improper
(b) , , proper
(c) , , improperd = 1n = 3

d = 3n = 2
d = 1n = 11

6.3 Proper fractions with linear factors

First we describe how to calculate partial fractions of proper fractions where the
denominator may be written as a product of linear factors. The steps needed to calcu-
late the partial fractions are as follows:

1 Factorise the denominator.
2 Each factor will produce a partial fraction. A factor such as will produce

a partial fraction of the form where A is an unknown constant. In general
A

3x + 2

3x + 2
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a linear factor will produce a partial fraction . The unknown con-

stants for each partial fraction may be different and so we shall call them A, B, C, 

A

ax + b
ax + b

Key point
A linear factor produces a partial fraction of the form .

A

ax + b
ax + b

The steps involved are illustrated in the following example.

Example 6.2

Express as its partial fractions.

Solution
Note that this fraction is proper. The denominator is factorised to give .
It has been written as the product of two linear factors. Each factor produces a partial

fraction. The factor produces a partial fraction of the form . The fac-

tor x � 1 produces a partial fraction , where A and B are unknown constants

which we now try to find. We write

By multiplying both sides by we obtain

(1)

We may now let x take any value we choose. By an appropriate choice we can sim-
plify the right-hand side. Let because this choice eliminates A. We find

so that the constant B must equal 3. The constant A can be found by substituting
other values for x or alternatively by equating coefficients. Observe that, by rearranging
the right-hand side, equation (1) can be written as

Comparing the coefficients of x on both sides we see that . We already
know and so

 = A + 6
 7 = A + 2(3)

B = 3
7 = A + 2B

7x + 10 = (A + 2B)x + (A + 3B)

  3 = B
 7(-1) + 10 = A(0) + B(-2 + 3)

x = -1

7x + 10 = A(x + 1) + B(2x + 3)

(2x + 3)(x + 1)

7x + 10

(2x + 3)(x + 1)
 =

A

2x + 3
+

B

x + 1

B

x + 1

A

2x + 3
2x + 3

(2x + 3)(x + 1)

7x + 10

2x2
+ 5x + 3

272 Block 6 Partial fractions7

and so on.
3 Evaluate the unknown constants by equating coefficients or substituting specific

values of x.

The sum of the partial fractions is identical in value to the original algebraic fraction
for any value of x.
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6.3 Proper fractions with linear factors 273 7

from which . We can therefore write

We have succeeded in expressing the given fraction as the sum of its partial fractions.
The result can always be checked by adding the fractions on the right.

Example 6.3

Express in partial fractions.

Solution
First factorise the denominator:

Because there are two linear factors we write

Multiply both sides by to obtain the equation from which we can
find values for A and B.

By substituting an appropriate value for x obtain B.

Finally by equating coefficients of x obtain the value of A.

Finally, write down the partial fractions:

-7

3x + 2
+

1

x - 1

9 - 4x

3x2
- x - 2

=

-4 = A + 3B, A = -7 since B = 1

substitute x = 1 and get B = 1

A(x - 1) + B(3x + 2)9 - 4x =

(3x + 2)(x - 1)

 =

A

3x + 2
+

B

x - 1

 
9 - 4x

3x2
- x - 2

 =

9 - 4x

(3x + 2)(x - 1)

(3x + 2)(x - 1)3x2
- x - 2 =

9 - 4x

3x2
- x - 2

7x + 10

2x2
+ 5x + 3

 =

1

2x + 3
+

3

x + 1

A = 1

Exercises

(a) Find the partial fractions of

(b) Check your answer by adding the partial
fractions together again.

5x - 1

(x + 1)(x - 2)

1 (c) Express in partial fractions

(d) Check your answer by adding the partial
fractions together again.

7x + 25

(x + 4)(x + 3)
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6.4 Proper fractions with repeated linear factors

As before, the denominator is factorised first. Sometimes a linear factor appears
more than once. For example, in

the factor occurs twice. We call it a repeated linear factor. The repeated 

linear factor produces two partial fractions of the form .

In general, a repeated linear factor of the form generates two partial 
fractions of the form

A

ax + b
+

B

(ax + b)2

(ax + b)2

A

x + 1
+

B

(x + 1)2(x + 1)2

(x + 1)

1

(x + 1)(x + 1)
   which equals   

1

(x + 1)2

Find the partial fractions of .

Express each of the following as the sum of partial
fractions:

3

(x + 1)(x + 2)
3

11x + 1

(x - 1)(2x + 1)
2

-3

(2x + 1)(x - 3)
5

5

x2
+ 7x + 12

4

Solutions to exercises

(a) (c) 

3

x + 1
-

3

x + 2
3

4

x - 1
+

3

2x + 1
2

3

x + 4
+

4

x + 3

2

x + 1
+

3

x - 2
1

6

7(2x + 1)
-

3

7(x - 3)
5

5

x + 3
-

5

x + 4
4

Key point Repeated linear factors produce partial fractions of the form

A

ax + b
+

B

(ax + b)2

(ax + b)2

Once again the unknown constants are found by a mixture of equating coefficients
and substituting specific values for x.

M07_CROF5939_04_SE_C07.QXD  9/21/18  10:38 AM  Page 274
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Example 6.4
Express

in partial fractions.

Solution
First the denominator is factorised.

You should have found a repeated linear factor. The repeated linear factor 
gives rise to two partial fractions of the form

Multiply both sides through by to obtain the equation that must be solved
to find A and B.

Now evaluate the constants A and B by equating coefficients. Equating coefficients
of x gives

Equating constant terms gives , from which . So, finally, we
may write

10x + 18

(2x + 3)2 =

5

2x + 3
+

3

(2x + 3)2

B = 318 = 3A + B

10 = 2A, A = 5

10x + 18 = A(2x + 3) + B

(2x + 3)2

10x + 18

(2x + 3)2 =

A

2x + 3
+

B

(2x + 3)2

(2x + 3)2

(2x + 3)(2x + 3) = (2x + 3)2

4x2
+ 12x + 9 =

10x + 18

4x2
+ 12x + 9

Exercises

Express the following in partial fractions:

5x + 18

(x + 4)2
4

3x + 14

x2
+ 8x + 16

3

-

7x - 15

(x - 1)2
2

3 - x

x2
- 2x + 1

1

2s + 3

s2
9

s + 2

(s + 1)2
8

6x2
- 30x + 25

(3x - 2)2 (x + 7)
7

5x2
+ 23x + 24

(2x + 3)(x + 2)2
6

2x2
- x + 1

(x + 1)(x - 1)2
5
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276 Block 6 Partial fractions7

6.5 Proper fractions with quadratic factors

Sometimes a denominator is factorised producing a quadratic factor that cannot be
factorised into linear factors. One such quadratic factor is . This factor

would produce a partial fraction of the form . In general a quadratic fac-

tor of the form produces a single partial fraction of the form

.
Ax + B

ax2
+ bx + c

ax2
+ bx + c

Ax + B

x2
+ x + 1

x2
+ x + 1

Solutions to exercises

1

x + 1
+

1

x - 1
+

1

(x - 1)2
5

5

x + 4
-

2

(x + 4)2
4

3

x + 4
+

2

(x + 4)2
3

-

7

x - 1
+

8

(x - 1)2
2

-

1

x - 1
+

2

(x - 1)2
1

2

s
+

3

s2
9

1

s + 1
+

1

(s + 1)2
8

-

1

3x - 2
+

1

(3x - 2)2
+

1

x + 7
7

3

2x + 3
+

1

x + 2
+

2

(x + 2)2
6

Key point A quadratic factor of the form produces a partial fraction of the form

Ax + B

ax 2
+ bx + c

 

ax2
+ bx + c

Example 6.5
Express as partial fractions

Solution
Note that the quadratic factor cannot be factorised further. We have

Multiplying both sides by gives

(Ax + B)(x - 1) + C(x2
+ x + 10)

3x + 1 =

(x2
+ x + 10)(x - 1)

3x + 1

(x2
+ x + 10)(x - 1)

 =

Ax + B

x2
+ x + 10

+

C

x - 1

3x + 1

(x2
+ x + 10)(x - 1)
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6.5 Proper fractions with quadratic factors 277 7

To evaluate C we can let , which eliminates the first term on the right. This
gives

Equate coefficients of and hence find A. Finally substitute any other value for x or
equate coefficients of x to find B.

Finally

Example 6.6 Electrical Engineering – Admittance
Admittance, Y, is a quantity that is used in analysing electronic circuits. A typical
expression for admittance might take the form

where s can be thought of as representing frequency. To calculate the behaviour of
the circuit it is often necessary to express the admittance as the sum of its partial
fractions and find the effect of each part separately. Express Y(s) in partial fractions.

Solution
The fraction is proper. The denominator contains a quadratic factor that cannot be
factorised further, and also a linear factor. Thus

Multiplying both sides by we obtain

To find the constant C we can let to eliminate A and B. Thus

so that

and so .
Equating coefficients of we find

so that .

Equating constant terms gives

5 = 3B + 4C

A = 1 - C = 1 -
2
7 =

5
7

1 = A + C

s2
C =

2
7

2 = 7C

(-3)2
+ 4(-3) + 5 = C[(-3)2

+ 2(-3) + 4]

s = -3

s2
+ 4s + 5 = (As + B)(s + 3) + C(s2

+ 2s + 4)

(s2
+ 2s + 4)(s + 3)

s2
+ 4s + 5

(s2
+ 2s + 4)(s + 3)

 =

As + B

s2
+ 2s + 4

+

C

s + 3

Y(s) =

s2
+ 4s + 5

(s2
+ 2s + 4)(s + 3)

 =

1

3
 

7 - x

x2
+ x + 10

+

1

3(x - 1)

 
3x + 1

(x2
+ x + 10)(x - 1)

 =

-
1
3 x +

7
3

x2
+ x + 10

+

1
3

x - 1

 A = -

1

3
, B =

7

3

x2

4 = 12C, so that C =

1

3

x = 1
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so that

Finally

which can be written as

Y (s) =

5s + 9

7(s2
+ 2s + 4)

+

2

7(s + 3)

Y(s) =

s2
+ 4s + 5

(s2
+ 2s + 4)(s + 3)

 =

5
7s +

9
7

s2
+ 2s + 4

+

2
7

s + 3

 so B =

9

7

 =

27

7

 = 5 -

8

7

 = 5 - 4a2

7
b

3B = 5 - 4C

Exercises

Express each of the following as the sum of its partial fractions:

27x2
- 4x + 5

(6x2
+ x + 2)(x - 3)

2

3

(x2
+ x + 1)(x - 2)

1

6x2
+ 13x + 2

(x2
+ 5x + 1)(x - 1)

4

2x + 4

4x2
+ 12x + 9

3

Solutions to exercises

3x + 1

6x2
+ x + 2

+

4

x - 3
2

3

7(x - 2)
-

3(x + 3)

7(x2
+ x + 1)

1

3x + 1

x2
+ 5x + 1

+

3

x - 1
4

1

2x + 3
+

1

(2x + 3)2
3

6.6 Improper fractions

When calculating the partial fractions of improper fractions an extra term needs to be
included. The extra term is a polynomial of degree where d is the degree ofn - d
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the denominator and n is the degree of the numerator. Recall that

• a polynomial of degree 0 is a constant, A say,
• a polynomial of degree 1 has the form ,
• a polynomial of degree 2 has the form ,

and so on. For example, if the numerator has degree 5 and the denominator has
degree 3, then , the fraction is improper, and we need to include an extra
term of the form .Ax2

+ Bx + C
n - d = 2

Ax2
+ Bx + C

Ax + B

Key point If a fraction is improper an additional term is included taking the form of a polynomial
of degree , where n is the degree of the numerator and d is the degree of the
denominator.

n - d

Example 6.7
Express as partial fractions

Solution
The fraction is improper because , and so . Further, note that

. We therefore need to include an extra term: a polynomial of the form
, in addition to the usual partial fractions. So

where the final term arises from the linear factor in the denominator. Multiplying
both sides by we find

Equating coefficients of gives . Equating coefficients of x gives 
and so . Equating the constant terms gives and so

. Finally we have

2x2
- x - 2

x + 1
 = 2x - 3 +

1

x + 1

C = -2 - B = -2 - (-3) = 1
-2 = B + CB = -1 - A = -3

-1 = A + BA = 2x2

 = Ax2
+ (A + B)x + (B + C)

 2x2
- x - 2 = (Ax + B)(x + 1) + C

x + 1

2x2
- x - 2

x + 1
 = Ax + B +

C

x + 1

Ax + B
n - d = 1

d … nd = 1n = 2

2x2
- x - 2

x + 1

The computing packages Maple and Matlab have built-in commands that enable par-
tial fractions to be found. For full details you should refer to the on-line help.

Example 6.8

Use software to express in partial fractions.R1x2 =

3x3
- 7x2

- 77x - 137

x2
- 4x - 21
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Matlab

Matlab has the facility to calculate partial fractions symbolically using the command
partfrac. An alternative is to use the residue command, but care must be taken
when interpreting the output. The input to the residue command is two arrays that con-
tain the coefficients of the numerator and the denominator. The output is three arrays that
contain the residues (the numerators of the resulting partial fractions), the poles (the val-
ues which make the denominators of the partial fractions zero), and the coefficients of the
resulting polynomial term (if any). Thus

>> n = [3 -7 -77 -137]
d = [1 -4 -21]
[r,p,k]= residue(n,d)

produces the output

r =

1.0000
5.0000

p =

7.0000
-3.0000

k =

3    5

Compare this answer with the Maple output above to understand its meaning.

Maple

It is straightforward in Maple to find a partial fractions expansion with the command
convert ( , parfrac).

> convert((3*x^3-7*x^2-77*x-137)/(x^2-4*x-21),parfrac)

gives as output

3x + 5 +

5

x + 3
+

1

x - 7

Solution

Exercises

Express the following in partial fractions:

x2
+ 2x + 2

x + 1
3

3x - 7

x - 3
2

x + 3

x + 2
1

4x5
+ 8x4

+ 23x3
+ 27x2

+ 25x + 9

(x2
+ x + 1)(2x + 1)

6

3x5
+ 4x4

- 21x3
- 40x2

- 24x - 29

(x + 2)2 (x - 3)
5

2x2
+ 7x + 7

x + 2
4
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Solutions to exercises

1 + x +

1

x + 1
3

 3 +

2

x - 3
2

 1 +

1

x + 2
1

2x2
+ x + 7 +  

1

2x + 1
+

1

x2
+ x + 1

6

1

(x + 2)2
+

1

x + 2
+

1

x - 3
 + 3x2

+ x + 25

2x + 3 +

1

x + 2
4

End of block exercises

Express in partial fractions:

(a)

(b)

(c)

(d)

(e)

Express in partial fractions

where K, and are constants.ta

K(1 + as)

(1 + ts)s

2

3s + 1

s(s - 2)

4s - 3

2s + 1

x2
+ 1

(2x + 1)(x - 1)(x - 3)

1 + x

(x + 3)2 (x + 1)

2x - 4

x(x - 1)(x - 3)

1 Express in partial fractions

(a) (b) 

Express in partial fractions

2x + 1

(x - 2)(x + 1)(x - 3)

4

2s3
+ 6s2

+ 6s + 3

s + 1

2s + 1

s5(s + 1)

3

Solutions to exercises

(a)

(b)

(c)

(d)

(e)
7

2(s - 2)
-

1

2s

2 -

5

2s + 1

5

21(2x + 1)
-

1

3(x - 1)
+

5

7(x - 3)

1

(x + 3)2

-

4

3x
+

1

x - 1
+

1

3(x - 3)
1

(a)

(b)

-

5

3(x - 2)
-

1

12(x + 1)
+

7

4(x - 3)
4

1

s + 1
+ 2s2

+ 4s + 2

1

s5
+

1

s4
-

1

s3
+

1

s2
-

1

s
+

1

s + 1
3

K

s
+

K(a - t)

1 + ts
2
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BLOCK 7
Proportionality

7.1 Definition

Consider two variables, a and b. We say that a is proportional to b if

(1)

where k is a constant. The constant k is called the constant of proportionality. We
may also write

to show that a is proportional to b. Note that if a is proportional to b, then it also follows
that b is proportional to a.

You will notice that (1) is the equation of a straight line passing through the origin;
that is, the vertical intercept is 0. The gradient of this line is k. This means that when
the value of a doubles (or trebles) then likewise the value of b doubles (or trebles). If
the value of a halves, then the value of b halves too.

Example 7.1 Mechanical Engineering – Extension of a spring
When a force, F, is applied to the end of a spring, it produces an extension, e.
Hooke’s law states that the extension is proportional to the force applied. So we may
write

or equivalently

where k is a constant of proportionality.

Example 7.2 Mechanical Engineering – Extension of a spring
When a force of 10 N is applied to the end of a spring it produces an extension of
12 cm. Given that the extension of the spring is proportional to the applied force,
calculate
(a) the extension produced when a force of 17 N is applied
(b) the force required to produce an extension of 15 cm.

Solution
Extension, e, is proportional to the applied force, F, so

We are given that when so

from which , so

e =

6F

5

k =
6
5

12 = k(10)

F = 10e = 12

e = kF

e = kF

e r F

a r b

a = kb
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(a) A force of 17 N is applied, that is . Then the extension produced is

The extension produced is 20.4 cm.
(b) The extension, e, is 15. So

The force required is 12.5 N

Sometimes it is useful to introduce a new variable when doing calculations involving
proportion. Consider the following illustration. The area, A, of a circle is given by

where r is the radius. If we introduce a new variable, x, where x is the square of the
radius, that is , then

So, area, A, is proportional to x, the square of the radius. The constant of proportion-
ality is . Note that A is not proportional to r. A graph of A against x would be a
straight line through the origin; a graph of A against r, however, would be a curve.

Example 7.3 Electronic Engineering – Resistance
Resistivity is a measure of how difficult it is for electrons to flow through a material.
If the material has length, L, cross-sectional area, A, and resistance, R, then

where is a constant called the resistivity of the material. If the cross-sectional area
is fixed (constant) then

where constant. So resistance, R, is proportional to length, L.

Example 7.4 Electrical Engineering – Power in a resistor
In an electric circuit the power, P, current, I, and resistance, R, are related by

(2)

If the resistance is constant, say, then

So for constant resistance, the power is proportional to the square of the current.
Note that power is not proportional to current, but is proportional to the square of the
current.

P = k1I
2

k1

P = I2 R

k =

r

A
=

R = kL

r

R =

rL

A

p

A = px

x = r2

A = pr2

F =

15 * 5

6
= 12.5

 15 =

6F

5

e =

6F

5
=

6(17)

5
= 20.4

F = 17
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284 Block 7 Proportionality7

Referring again to equation (2), if the current, I, is constant, then is also con-
stant; call it , giving

So for constant current, the power is proportional to resistance.

Example 7.5 Fluid Flow
The rate of flow, Q, of a fluid through a valve depends upon the pressure, P, across
the valve, according to the law

where k is a constant. Here we see that flow rate, Q, is proportional to , the
square root of the pressure. Note that Q is not proportional to P.

7.2 Inverse proportion

A variable, a, is inversely proportional to a variable, b, if a is proportional to . In
other words

which can be expressed as

where k is the constant of proportionality. Note that when b doubles, then a is halved;
when b is halved, then a doubles.

Example 7.6 Electrical Engineering – Voltage, current and resistance
Suppose that in an electric circuit

where , voltage and current. For a fixed voltage, that is
(a constant), then

and so resistance is inversely proportional to current.

Example 7.7 Mechanical Engineering – Vibration
The resonant frequency of a body, , is given by

(3)

where k is the stiffness of the body and m is its mass. We may write (3) as

v =

K

2m

v = A
k

m

v

R =

k

I

V = k
I =V =R = resistance

R =

V

I

a =

k

b

a r

1

b

1

b

2P

Q = k2P

P = k2R
k2

I2
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7.2 Inverse proportion 285 7

where . We see that the resonant frequency is inversely proportional to the
square root of the mass.

Example 7.8
It is known that a is inversely proportional to b. Measurements taken during an
experiment are recorded in Table 7.1.

K = 2k

a 5 10 15 20
b 6 3 2 1.5

Table 7.1

(a) Find the equation connecting a and b.
(b) Calculate the value of a when .

Solution
(a) We are told that a is inversely proportional to b and so

(4)

where k is a constant. From the measurements given in Table 7.1, when
. Substituting these values into (1) gives

from which . Hence (4) becomes

(5)

Note that all the pairs of values from Table 7.1 fit this equation. For example,
when , equation (5) gives

which concurs with the value in Table 7.1.
(b) Using (5), with , gives

So when , then .a = 1b = 30

a =

30

30
= 1

b = 30

a =

30

3
= 10

b = 3

a =

30

b

k = 30

5 =

k

6

b = 6
a = 5

a =

k

b

b = 30

End of block exercises

Explain what is meant by the phrase ‘a is
proportional to b’.

Explain what is meant by the phrase ‘a is
inversely proportional to b’.

2

1 Given a is proportional to b, state which of the
following are true and which are false:
(a) when a doubles, then b also doubles
(b) when a is halved, then b is doubled
(c) a graph of a against b is a straight line graph
(d) a divided by b is a constant

3
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It is known that y is proportional to x.
Experimental measurements are recorded in
Table 7.2.

4 Given that y is inversely proportional to x, state
which of the following are true and which are
false:
(a) when x is doubled, y is doubled also
(b) x is inversely proportional to y
(c) when x is halved, y is doubled
(d) a graph of y against x is a straight line with

a negative gradient

5

Solutions to exercises

(a) T (b) F (c) T (d) T

(a) (b) y(2) = 12y = 6x4

3

End of chapter exercises

Solve the equation .

Solve the equation .

Solve the equation .

Solve the simultaneous equations
, .

On a number line show the numbers , 0,
, , and .

Is the statement true or false?

Draw an coordinate frame and shade the
region for which and .

Use the method of completing the square to
derive the formula for solving a quadratic
equation.

By sketching an appropriate graph, or 

otherwise, solve the inequality .
1

2 - x
6 5

9

8

y 7 -2x 6 3
x-y7

12321>2 … 11222>36

11
19ƒ -0.5 ƒ , -(3!)- 2322

-p5

5x + 7y = 393x - 2y = 11
4

x + 2

5
+ 3 =

x

7
3

15 - 3x = 3(x - 7) + 112

4x - 20 = 91 Express in partial fractions.

Express in partial fractions .

Express in partial fractions .

Express in partial fractions

.

Calculate the poles of the rational function

.

Express in partial fractions 

where K and are constants.t

 C(s) =

K

s(1 + ts)

15

 G(s) =

s + 5

s2
+ 3s + 2

14

 G(s) =

6(s + 2)

(s + 1)(s + 3)

13

x3
+ x + 1

x2
+ 7x + 12

12

x - g

(x - a)(x - b)
11

x2
+ 2x - 1

x3
- x

10

Table 7.2

y 30 40 50 60
x 5 6.67 8.33 10

(a) Determine the equation connecting y and x.
(b) Calculate y when .x = 2

(a) F (b) T (c) T (d) F5
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Express in partial fractions 

where K and are constants.

Factorise given that
is a factor.

Factorise given that 
is a factor.

Solve the following quadratic equations by an
appropriate method.

(a) (b)
(c) (d)
(e) (f) 

Solve the equation .

Solve the inequality .

Factorise .

Show that .

Table 7.3 shows the values of x and y. Given
that y is proportional to x
(a) find an equation connecting y and x
(b) calculate the value of y when x = 36

24

3 - 2t - t2 = - (t + 3)(t - 1)23

t3 + 3t2 + 2t22

|3x + 2| … 421

x3
- 5x2

+ 2x + 8 = 020

x2
- 8 = 0x2

- 22x + 121 = 0
x2

- 4x + 1 = 02x2
- 6x - 3 = 0

x2
- 6x + 3 = 0x2

+ 16x + 64 = 0

19

x + 5x3
+ 6x2

+ 6x + 518

(n - 7)
n3

- 3n2
- 33n + 3517

t

 C(s) =

K

(1 + ts)s2

16 (c) calculate the value of x when y = 200

Solutions to exercises

,

False

and 

-

1

x + 1
+

1

x - 1
+

1

x
10

x 6
9
5x 7 29

6

y = 2x = 54

-

119

2
3

 x =

25

6
2

 x =

29

4
1

, 

C(s) =

Kt2

1 + ts
+

K

s2
-

Kt

s
16

C(s) =

K

s
-

Kt

1 + ts
15

s = -2s = -114

3

s + 3
+

3

s + 1
13

67

x + 4
-

29

x + 3
+  x - 712

a - g

(a - b)(x - a)
+

b - g

(b - a)(x - b)
11

Table 7.3

x 5 10 15 20 25
y 22.5 45 67.5 90 112.5

Table 7.4

P 24 54 96 150 216
I 2 3 4 5 6

If a is proportional to b state which of the
following are true and which are false:
(a) a multiplied by b is a constant
(b) a divided by b is a constant
(c) is proportional to 

A variable P is proportional to .
(a) Use the measurements in Table 7.4 to

determine an equation connecting P and I.

I226

2b2a

25

(b) Calculate P when .

If a is inversely proportional to b state which
of the following are true and which are false:
(a) a multiplied by b is a constant
(b) a divided by b is a constant
(c) is inversely proportional to b2a2

27

I = 10
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(a) twice (b) 

(c) (d) 

(e) twice (f)

, 2, -1x = 420

x = ;222x = 11

x = 2 ; 23x =

3

2
;

215

2

x = 3 ; 26x = -819

(x + 5)(x2
+ x + 1)18

(n - 7)(n + 5)(n - 1)17

(a) (b) (c)

(a) F (b) T (c) T

(a) (b)

(a) T (b) F (c) T27

P(10) = 600P = 6I226

25

x = 44.4y(36) = 162y = 4.5x24

t(t2 + 3t + 2) = t(t + 2)(t + 1)22

-2 … x …
2
321

288 Block 7 Proportionality
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Chapter 8
Logarithms and exponentials

This chapter examines two important functions: the exponential
function and the logarithmic function. Each function is the inverse
of the other.

The exponential function has been found to have widespread
application in many areas of science and engineering, whereas the
gain of an amplifier can be modelled using the logarithmic function.
Logarithms are used extensively in the study of sound, and the
decibel, used in defining the intensity of sound, is based on a
logarithmic scale.

The properties and laws of both functions are covered in this chapter,
and methods of solving equations involving exponentials and
logarithms are explained.
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Chapter 8 contents

Block 1 The exponential function

Block 2 Logarithms and their laws

Block 3 Solving equations involving logarithms and exponentials

Block 4 Applications of logarithms

End of chapter exercises
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BLOCK 1
The exponential function

1.1 Introduction

The exponential function has widespread application in many areas of science and
engineering. Areas that utilise the exponential function include expansion of ma-
terials, laws of cooling, radioactive decay, and the discharge of a capacitor. This
block details some properties of the exponential function and includes some of its
applications.

The hyperbolic functions are also introduced. These functions are defined in terms
of the exponential function. Identities involving the hyperbolic functions are
tabulated.

1.2 Exponential expressions

An exponent is another name for a power or index. Expressions involving exponents
are called exponential expressions. For example, and are exponential expres-
sions. In the exponential expression , a is called the base and x is the exponent.
Exponential expressions can be simplified and manipulated using the laws of
indices. These laws were given in Chapter 5, Block 2 but are stated again here for
reference.

Laws of indices

In this chapter we shall be dealing with exponential expressions in which the base
will always be a particular constant called the exponential constant. This has the
symbol e and is approximately equal to 2.718. Exponential expressions with this
base dominate engineering applications.

Example 1.1
Most calculators have powers of the exponential constant preprogrammed; these can
be calculated, probably with a button marked . Check that you can use your calcu-
lator by calculating the following:

(a) (b) (c) 2e1.5e- 1.6e3.7

ex

aman
= am + n, 

am

an = am - n, (am)n
= amn

ax
ab34
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292 Block 1 The exponential function8

Solution

(a)

(b)

(c)

1.3 Simplifying exponential expressions

The laws of indices and the rules of algebra apply to exponential expressions. The
following examples illustrate this.

Example 1.2

Simplify (a) , (b) , (c) .

Solution
(a) .

(b) . This may be written as .

(c) .

Example 1.3
Expand the brackets and simplify where possible:
(a)
(b)
(c)

Solution
(a)

(b)

(c)

= e2x
+ e-2x

e2x
+ 2 + e-2x

- 2=

exex
+ 2exe-x

+ e-xe-x
- 2(ex

+ e-x)2
- 2 =

 = e2x
+ 2ex

exex
+ 2ex

+ 1 - 1(ex
+ 1)2

- 1 =

 = 1 + ex
 = e0

+ ex
ex(e-x

+ 1) = exe-x
+ ex

(ex
+ e- x)2

- 2
(ex

+ 1)2
- 1

ex(e- x
+ 1)

(e2x)3
= e2x * 3

= e6x

1

e3x

e4x

e7x = e4x - 7x
= e-3x

e2xe3x
= e2x + 3x

= e5x

(e2x)3e4x

e7xe2xe3x

8.96342e1.5
=

0.2019e- 1.6
=

40.4473e3.7
=
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1.4 The exponential function and its graph 293 8

1.4 The exponential function and its graph

Exercises

Simplify each expression as far as possible:

(a)
(b)
(c)

(d)

Expand the brackets of the following
expressions:

(a)
(b) (ex

+ 1)(e- x
- 1)

(ex
+ 2)2

2

e-3x

2e- x

e2x(e- 2x
+ e- x

+ 1) - ex(1 + ex)
(3ex)(2e- x)
e2xe7x

1 (c)
(d)

Simplify as far as possible:

(a)

(b)

(c)

(d) e3x(e-2x
- e-3x) + 1

e2x
+ ex

ex - 1

ex
+

1

ex - e-x

ex
+ e-x

2
 +

ex
- e-x

2
 

3

(1 + e2x
+ e- 2x)(1 - ex)

(e2x
+ ex)(e- 2x

+ e- x)

Solutions to exercises

(a) (b) 6 (c) 1 (d) 

(a) (b) e- x
- exe2x

+ 4ex
+ 42

e-2x

2
 e9x1 (c) 

(d) 

(a) (b) (c) (d) exexexex3

1 - ex
+ e2x

- e3x
+ e- 2x

- e- x
2 + ex

+ e- x

Key point An exponential function has the form

where a is a positive constant called the base.

y = ax

Hence , and are all exponential functions. Note that, in
an exponential function, the independent variable appears as a power.

y = 10xy = 2.5xy = (0.4)x

Key point The most commonly used exponential function, commonly called the exponential
function, is

where the base e is the exponential constant whose value is e = 2.71828182 . . .

y = ex 

Table 1.1 gives values of the exponential function for various x values and
Figure 1.1 illustrates a graph of for .-3 … x … 3y = ex

ex
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294 Block 1 The exponential function8

From Figure 1.1 we note some properties of the exponential function:

1 As x becomes large and positive, increases without bound. We express this
mathematically as as .

2 As x becomes large and negative, approaches 0. We write as 
3 is never negative.

The property that increases as x increases is referred to as exponential growth.
Figure 1.2 shows a graph of the related function for and

Table 1.2 lists appropriate values of .e- x
-3 … x … 3y = e- x

ex

ex
x : - q .ex : 0ex

x : qex : q

ex

x x

0.05 0.5 1.65
0.08 1.0 2.72
0.14 1.5 4.48
0.22 2.0 7.39
0.37 2.5 12.18
0.61 3.0 20.09

0 1.00
-0.5
-1.0
-1.5
-2.0
-2.5
-3.0

exex

2

4

6

8

10

12

14

16

18

20

−1−2−3 321O

y

x

y = e 
x

Figure 1.1
The exponential
function, .y = ex

Table 1.1
Values of .ex

2

4

6

8

10

12

14

16

18

20

−1−2−3 321O

y

x

y = e−x

Figure 1.2
The function

exhibits
exponential decay.
y = e- x

Table 1.2
Values of .e- x x x

20.09 0.5 0.61
12.18 1.0 0.37
7.39 1.5 0.22
4.48 2.0 0.14
2.72 2.5 0.08
1.65 3.0 0.05

0 1.00 
-0.5
-1.0
-1.5
-2.0
-2.5
-3

e- xe- x

From Figure 1.2 we see that decreases as x increases: this is referred to as
exponential decay.

e-x
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Table 1.3
Values of and

.e0.7x
e0.5x

1 2 3O

y

x

y = e0.7x

y = e0.5x

1

2

3

4

5

6

7

8

9

Figure 1.3
grows

more rapidly than
.y = e0.5x

y = e0.7x

Example 1.4
Plot and for . Comment on your graphs.

Solution
Table 1.3 shows values of and for . Figure 1.3 illustrates the
graphs.

From Figure 1.3 we see that grows more rapidly than .y = e0.5xy = e0.7x

0 … x … 3e0.7xe0.5x

0 … x … 3y = e0.7xy = e0.5x

x

0 1.00 1.00
0.5 1.28 1.42
1.0 1.65 2.01
1.5 2.12 2.86
2.0 2.72 4.06
2.5 3.49 5.75
3.0 4.48 8.17

e0.7xe0.5x

Exercises

Evaluate (a) , (b) , (c) , 
(d) .

Sketch

Which value does x approach as t increases?

x = 3 + 2e-t

2

-1.9e0.5
3e0.7e-1.6e2.71 Sketch

Which value does R approach as t increases?

State the domain and range of (a) ,
(b) .y = e-x

y = ex4

R(t) = 4 - 2e-1.5t

3

Solutions to exercises

(a) 14.8797 (b) 0.2019
(c) 6.0413 (d) �3.1326

See Figure 1.4. As t increases, x approaches 3.2

1 See Figure 1.5. As t increases 
R approaches 4.

(a) , (b) , (0, q)(- q , q)(0, q)(- q , q)4

3
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296 Block 1 The exponential function8

1 2 3 4O

x

t

x � 3 � 2e�t

1

2

3

4

5

Figure 1.4

O

R

t

R(t) � 4 � 2e�1.5t

1

2

3

4

1 2 3

Figure 1.5

1.5 Applications of the exponential function

The following examples illustrate some of the applications of the exponential
function.

Example 1.5 Electrical Engineering – Discharge of a capacitor
The charge, q(t), stored on a capacitor having a capacitance C, discharging through a
resistor of resistance R, is given by

where Q is the initial charge.
(a) Find the value of the charge when given , and .
(b) If the value of R is doubled calculate the new value of the charge when .

Solution
(a)

(b)

 = 18.39
 = 50e-1

-
1

(0.25)(4)q(1) = 50e

 = 6.77
 = 50e-2

-
1

(0.25)(2)q(1) = 50e

t = 1
R = 2C = 0.25Q = 50t = 1

-
t

CRq(t) = Qe
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1.5 Applications of the exponential function 297 8

Example 1.6 Electrical Engineering – Decay of a current in a circuit
Consider a circuit with resistance R, inductance L and an initial current of . The
current i(t) will decay with time, t, according to the law

(a) Calculate the current when given , and .
(b) If L is increased from 6 to 9 calculate the new value of i(1.5).

Solution

(a)

(b) i(1.5) =

 = 7.28
 = 12e-

 
0.5

-
2(1.5)

6i(1.5) = 12e

L = 6R = 2i0 = 12t = 1.5

-   

Rt
Li(t) = i0e

i0

t t

0 120.0 3.5 23.0
0.5 80.7 4.0 21.8
1.0 56.8 4.5 21.1
1.5 42.3 5.0 20.7
2.0 33.5 5.5 20.4
2.5 28.2 6.0 20.2
3.0 25.0

∏(t) = 20 + 100e- t
∏(t) = 20 + 100e- tTable 1.4

= 8.60
-

1
3

= 12e
-

  2(1.5)
912e

Example 1.7 Chemical Engineering – Newton’s law of cooling
Newton’s law of cooling states that the rate at which a body cools is proportional to
the excess of its temperature above the temperature of the environment in which it is
placed. Let (t) be the temperature of a body at time t, its initial temperature and

the temperature of the environment. Newton’s law of cooling can be stated math-
ematically as

where k is a positive constant that depends upon the material of the body. From this
equation we see that the temperature is dropping exponentially owing to the term 

: that is, the temperature follows an exponential decay curve. In this example we
take , and , so

(a) Plot (t) for t � 0 to t � 6.
(b) Use your graph to find the temperature that the body approaches as t increases.

Solution
(a) Table 1.4 gives values of (t) for various values of t from 0 to 6. Figure 1.6

shows the graph of (t).∏

∏

∏

�(t) = 20 + 100e-t

∏0 = 120∏e = 20k = 1
e-kt

�(t) = �e + (�0 - �e)e
- kt

∏e

∏0∏
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298 Block 1 The exponential function8

(b) From Figure 1.6 we see that the temperature, (t), approaches 20 as t
increases. This is to be expected: the temperature of the body approaches the
temperature of the environment.

The result stated in Example 1.7(b) can be seen for the general case by considering
the equation

We have already noted that approaches 0 as x increases; clearly and 
approach 0 as t increases since k is positive. Hence approaches 0 as t
increases. Finally approaches as t increases.∏e∏e + (∏0 - ∏e)e-kt

(∏0 - ∏e)e-kt
e-kte-te-x

�(t) = �e + (�0 - �e)e
-kt

∏

O

Θ

t

20

40

60

80

100

120

1 2 3 4 5 6

Figure 1.6
Temperature
decays exponen-
tially with time.

Exercises

The number of particles, N(t), emitted by a
radioactive substance varies with time, t,
according to the law

(a) Calculate the number of particles emitted
when .

(b) Calculate the number of particles emitted
when .

The length, l(T), of a bar depends upon the
temperature, T, according to the law

where l0 is the length of the bar when ,
and is a positive constant.a

T = 0

l(T) = l0e
aT

2

t = 2

t = 0

N(t) = 9.63 * 1017e-0.6t t Ú 0

1 (a) Calculate the percentage change in length
when T increases from to ,
given .

(b) Calculate the percentage change in length
when T decreases from to .

Atmospheric pressure, P(h) atmospheres,
varies according to the height, h metres, above
the surface of the Earth. Given

calculate the pressure at a height of
(a) 2 km
(b) 10 km
above the Earth.

P(h) = e-0.000016h

3

T = 50T = 150

a = 0.001
T = 100T = 20
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1.6 Hyperbolic functions

Closely associated to the exponential function are the hyperbolic functions. The
hyperbolic functions are defined as follows:

Solutions to exercises

(a) (b) 

(a) 8.33% increase (b) 9.52% decrease2

2.90 * 10179.63 * 10171 (a) 0.9685 atmospheres
(b) 0.8521 atmospheres

3

Key point

 coth  x =

1

tanh  x
=

ex
+ e-x

ex
- e-x 

 

 sech  x =

1

cosh x
=

2

ex
+ e-x 

 cosech  x =

1

sinh  x
=

2

ex
- e-x 

 

hyperbolic tangent: tanh  x =

sinh  x

cosh  x
=

ex
- e-x 

ex
+ e-x 

 

 hyperbolic cosine: cosh  x =

ex
+ e-x 

2
 

 hyperbolic sine: sinh  x =

ex
- e-x

2
 

Readers already familiar with the trigonometrical functions will note the similarity
of the names. Most scientific calculators have values of the hyperbolic functions pre-
programmed. Use Example 1.8 to check that you can use your calculator to find the
values of the hyperbolic functions.

Example 1.8
Use a calculator to evaluate
(a) sinh 2.1 (b) cosh (c) tanh 1.4
(d) cosech 2.2 (e) sech (f) coth

Solution
(a) sinh 
(b) cosh
(c) tanh 

(d) cosech 2.2 =

1

sinh 2.2
= 0.2244

1.4 = 0.8854
(-1.3) = 1.9709
2.1 = 4.0219

(-2)(-1.6)
(-1.3)
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(e)

(f)

Figure 1.7 illustrates graphs of sinh x, cosh x and tanh x.y =y =y =

coth(-2) =

1

tanh(-2)
= -1.0373

sech(-1.6) =

1

cosh(-1.6)
= 0.3880

y

x

2
4
6
8

10

�10
�8
�6
�4
�2 1�2 �1 2 3�3

y

x1 2 3�1�2�3

0.2

�0.2
�0.4
�0.6
�0.8
�1.0

0.4
0.6
0.8
1.0

y

x1�2 �1 2 3�3

2
4
6
8

10

O

Figure 1.7
(a) 
(b) 
(c) y = tanh x.

y = cosh x,
y = sinh x,

(a)

(b)

(c)

Example 1.9
Express in terms of sinh x and cosh x.

Solution
We note that

 = e-x

 cosh x - sinh x =

ex
+ e-x

2
-

ex
- e-x

2

 = ex

 cosh x + sinh x =

ex
+ e-x

2
+

ex
- e-x

2

7ex
+ 3e-x
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So

Example 1.10 Mechanical Engineering – The catenary
A heavy chain, suspended at both ends, hangs in the shape defined by

Note that when we have

and that when we have

The points (0, a) and (b, 1.54a) are marked on Figure 1.8.

 = 1.54a
 = a cosh 1

y(b) = a cosh ab

b
 b

x = b

 = a
  y(0) = acosh 0

x = 0

y = a cosh a x

b
b

 = 10 cosh x + 4sinh x
7ex

+ 3e-x
= 7(cosh x + sinh x) + 3(cosh x - sinh x)

y

xO

A

a cosh 1 � 1.54a
B

a

b

Figure 1.8
A catenary is
defined by

y = a cosh a x

b
 b .

Such a curve is known as a catenary.

1.7 Hyperbolic identities

If two expressions have the same value for all values of x, we say that they are identi-
cal. For example, and have the same value for any value of x.
A statement of the form is called an identity. There are many
identities that relate different hyperbolic functions. Table 1.5 lists some of the com-
mon hyperbolic identities.

ex
= cosh x + sinh x

cosh x + sinh xex
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Example 1.11
Prove the following identities:
(a)
(b)

Solution
(a) Note that from Example 1.9

Now

(b) We have

Also

 =

e2x
- e-2x

2
 

 =

e2x
+ 1 - 1 - e-2x

2
 

 =

(ex)2
+ exe-x

- e-xex
- (e-x)2

2
 

 =

(ex
- e-x)(ex

+ e-x)

2
 

2 sinh x cosh x = 2a ex
- e-x

2
b a ex

+ e-x

2
b

sinh 2x =

e2x
- e-2x

2

 = 1
 = (ex)(e-x)

 cosh2 x - sinh2 x = (cosh x + sinh x) (cosh x - sinh x)

cosh x + sinh x = ex, cosh x - sinh x = e-x

sinh 2x = 2 sinh x cosh x
cosh2 x - sinh2 x = 1

Table 1.5
Hyperbolic
identities.

Note that means and means .(sinh x)2sinh2 x(cosh x)2cosh2 x

 sinh2 x =

cosh 2x - 1

2

 cosh2 x =

cosh 2x + 1

2

 cosh 2x = cosh2 x + sinh2 x
 sinh 2x = 2 sinh x cosh x

 cosh(x ; y) = cosh x coshy ; sinh x sinh y
 sinh(x ; y) = sinh x coshy ; cosh x sinhy
 coth2 x - 1 = cosech2 x

  1 - tanh2 x = sech2 x
 cosh2 x - sinh2 x = 1

 e-x = cosh x - sinh x
 ex = cosh x + sinh x
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Hence

Example 1.12 Electrical Engineering – Voltage in a transmission line
A transmission line is an arrangement of electrical conductors for transporting elec-
tromagnetic waves. The coaxial cable used to carry a signal from a TV aerial to a TV
set is a common example.

The voltage in a line depends upon both distance along the line, , and time, . For
any fixed time, the voltage at distance along the line has the form

where and are constants. For a particular transmission line and 
giving

Show that may be written as

Solution

(using Table 1.5)
 = 5 cosh a z + 3 sinh a z
 = (cosh a z - sinh a z) + 4(cosh a z + sinh a z)

v = e-az
+ 4eaz

v = 3 sinh a z + 5 cosh a z

v

v = e-az
+ 4eaz

B = 4A = 1BA

v(z) = Ae-az
+ Beaz

z
tz

sinh 2x = 2 sinh x cosh x

Exercises

Evaluate
(a) (b) (c)
(d) (e) (f)

Sketch for .

Sketch for .

Prove the identities
(a)

(b) sinh2 x =

cosh 2x - 1

2

1 - tanh2 x = sech2 x
4

-3 … x … 3y = sech x3

-3 … x … 3y = cosech x2

coth 0.6sech (-2.5)cosech 2
tanh (-3.2)cosh 1.9sinh (-3)

1 Express in terms of sinh and
.

Electrical Engineering – Transmission line.
The voltage in a transmission line, , is given
by

Express the voltage, , using hyperbolic
functions.

v

v = 7e-az
+ 3eaz

v
6

cosh 2x
2x4e2x

- 6e-2x5
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Solutions to exercises

(a) (b) 3.42 (c) (d) 0.28
(e) 0.16 (f) 1.86

See Figure 1.9.2

-1.00-10.021 See Figure 1.10.3

End of block exercises

Sketch for .

Simplify each of the following as much as
possible:
(a) (b) (c)

(d)

Prove the identities
(a)
(b)

The charge on a capacitor, C(t), decays
according to the law

C(t) = 100e-0.2t t Ú 0

4

sinh (x + y) = sinh x cosh y + cosh x sinh y
cosh 2x = cosh2 x + sinh2 x

3

8e6x

2e-2x
 

(3e3x)(2e2x)(-e-x)2e3xe5xe-7xe4x

2

-3 … x … 3y = coth x1 (a) Calculate the charge when .
(b) Calculate the charge when .

(a) Plot , for .
(b) What value does y approach as t increases?

Given

where a and b are constants, state the value
that y approaches as t increases.

(a) Show that

ex
+ 6

2ex
+ 5

 

7

y = a + be-t

6

0 … t … 3y = 6 + 4e-2t5

t = 5
t = 3

10 cosh a z - 4 sinh a z6

10 sinh 2x - 2 cosh 2x5

y

x

0.5

1.0

1.5

2.0

�2.0

�1.5

�1.0

�0.5

�1 1 2 3�2�3 O

Figure 1.9
.y = cosech x

y

x�1�2�3 1 2 3O

0.2

0.4

0.6

0.8
1.0

Figure 1.10
.y = sech x
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may be expressed as

(b) What value does

approach as x becomes large and positive?

Electrical Engineering – Decay of a current
in a circuit. The current, , in a circuit
changes with time, , according tot

i(t)
8

ex
+ 6

2ex
+ 5

 

1 + 6e-x

2 + 5e-x (a) Calculate the current when given
, and .

(b) Describe the effect on if the value of 
is increased, all other values remaining
constant.

(c) Describe the effect on if the value of 
is increased, all other values remaining
constant.

Li(t)

Ri(t)
L = 5R = 3i0 = 10

t = 0.5

-
Rt
Li(t) = i0e

Solutions to exercises

See Figure 1.11.1 (a) See Figure 1.12 (b) 65

y

x�1�2�3 1 2 3O

0.5

1.0

1.5

2.0

�2.0

�1.5

�1.0

�0.5

Figure 1.11
.y = coth x

y

tO

1
2
3
4
5
6
7
8
9

10

1 2 3

Figure 1.12
.y = 6 + 4e-2t

(a) (b) (c) (d)

(a) 54.88 (b) 36.794

4e8x
-6e4x2e8xe-3x2

a

(b) 0.5

(a) 7.41
(b) The current decreases as increases.
(c) The current increases as increases.L

R
8

7

6
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BLOCK 2
Logarithms and their laws

2.1 Introduction

Logarithms are an alternative way of writing expressions that involve powers, or
indices. They are used extensively in the study of sound. The decibel, used in defin-
ing the intensity of sound, is based on a logarithmic scale. In this block we define the
logarithm and give the laws that are used to simplify and manipulate expressions
involving logarithms.

2.2 Definition of the logarithm

Consider the statement that

Here 2 is the base and 4 is the power. This may be expressed in an alternative way
using logarithms as

We read this as ‘log 16, to the base 2, equals 4’. Some more examples follow:

In general we have

log10 0.1 = -110-1
= 0.1 may be written as

10000 = 104 may be written as log10 10000 = 4

log0.5 0.125 = 30.125 = (0.5)3 may be written as

log3 81 = 481 = 34 may be written as

25 = 52 may be written as log5 25 = 2

8 = 23 may be written as log2 8 = 3

log2 16 = 4

16 = 24

Key point If a is a positive constant with , and

then

loga N = x

N = ax

a Z 1
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The number a is called the base of the logarithms. Note that a is positive and 
In practice, most logarithms are to the base 10 or e. Logarithms to base e are called
natural logarithms. Natural logarithms are often denoted by ln rather than loge,
whereas logarithms to base 10 are denoted simply by log rather than .log10

a Z 1.

2.2 Definition of the logarithm 307 8

Key point If then .

If then .x = loge N = ln NN = ex

x = log10  
N = log NN = 10x

Scientific calculators are preprogrammed with both natural logarithms and logar-
ithms to base 10. Use Example 2.1 to check that you can use your calculator.

Example 2.1
Use a scientific calculator to find:
(a) log 79 (b) ln 79 (c) log 0.21 (d) ln 0.036

Solution
(a)
(b)

(c)

(d)

Example 2.2
Express each of the following statements using logarithms:
(a) (b) (c) (d)

Solution
(a) (b) (c)

(d) ln 0.1 = -2.3026

ln 12.1825 = 2.5log 0.01 = -2log 1000 = 3

e-2.3026
= 0.112.1825 = e2.510-2

= 0.01103
= 1000

-3.3242ln 0.036 =

-0.6778log 0.21 =

ln 79 = 4.3694
log 79 = 1.8976

Exercises

Write the following using logarithms:
(a) (b) (c)
(d) (e)

Write the following using logarithms:
(a) (b)
(c) (d)

Evaluate
(a) log 250 (b) ln 250 (c) log 0.46
(d) ln 0.46

3

e1.5
= 4.4817e-1.3

= 0.2725
0.001 = 10-3102

= 100
2

62
= 3643

= 64
243 = 35125 = 5332 = 25

1 Write the following using indices:
(a)
(b)
(c)
(d) ln 17 = 2.8332

log 0.0251 = -1.6
log2 256 = 8
log5 625 = 4

4
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2.3 Logarithms to any base

To calculate a logarithm to base a, knowing logarithms to base b, we use

Solutions to exercises

(a) (b)
(c) (d)
(e)

(a) (b)
(c) (d) ln 4 .4817 = 1 .5ln 0.2725 = -1.3

log 0.001 = -3log 100 = 22

log6 36 = 2
log4 64 = 3log3 243 = 5

log5 125 = 3log2 32 = 51 (a) 2.3979 (b) 5.5215
(c) (d)

(a) (b)
(c) (d) e2.8332

= 1710-1.6
= 0.0251

28
= 25654

= 6254

-0.7765-0.3372
3

Key point
loga N =

logb N

logb a
 

We prove this result later in the chapter.

Example 2.3
Evaluate .

Solution

Example 2.4
Evaluate log7 36.

Solution

log 36

log 7
= 1.842log7 36 =

 = 3.358

 =

1.6021

0.4771

 log3 40 =

log 40

log 3

log3 40

Exercises

Evaluate
(a) (b) (c) log12 10log2 9log4 36

1

Solutions to exercises

(a) 2.585 (b) 3.170 (c) 0.9271
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2.4 Laws of logarithms

Just as expressions involving indices can be simplified using appropriate laws, so
expressions involving logarithms can be simplified using the laws of logarithms. The
laws of logarithms hold true for any base. However, it is essential that the same base
is used throughout an expression before the laws can be applied.

The first law of logarithms is

Key point log A + log B = log AB

Example 2.5
Simplify each of the following to a single logarithmic expression:
(a)
(b)
(c)
(d)

Solution
(a)
(b)

(c)

(d)

The second law of logarithms states

ln(2y3y) = ln 6y2ln 2y + ln 3y =

log(xx2) = log x3log x + log x2
=

ln 9 + ln 10 = ln 90
log 7 + log 2 = log(7 * 2) = log 14

ln 2y + ln 3y
log x + log x2
ln 9 + ln 10
log 7 + log 2

Key point
log A - log B = log aA

B
b

Example 2.6
Express as a single logarithm:
(a)
(b)

(c)
(d)

Solution

(a)

(b) ln 6 - ln (0.5) = ln a 6

0.5
 b = ln 12

log 15 - log 3 = log a15

3
b = log 5

log 1 - log x
ln 6x2

- ln 2x

ln 6 - ln(0.5)
log 15 - log 3
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(c)

(d)

We use the second law of logarithms to develop another result. Clearly
. Using the second law we may also write

Hence we see that

 = log 1

 log A - log A = log aA

A
b

log A - log A = 0

log 

1
x

log 1 - log x =

ln a6x2

2x
b = ln 3xln 6x2

- ln 2x =

310 Block 2 Logarithms and their laws8

Key point log 1 = 0

The third law of logarithms states

Example 2.7
Rewrite the following in an alternative form without using a power:
(a) (b) (c) (d)

Solution

(a)

(b)

(c)

(d)

Example 2.8
Simplify each of the following as much as possible:
(a)
(b)
(c)

(d)

Solution
(a)

 = log a4

3
b

 = log a8

6
b

 = log 8 - log 6
 3 log 2 - log 6 = log 23

- log 6

ln t5 - 3 ln t2
log 3x3

+ 2 log x
ln 250 + 2 ln 2
3 log 2 - log 6

5 ln tln t5 =

2 log xlog x2
=

2 log 2log 22
=

3 log 2log 23
=

ln t5log x2log 22log 23

Key point log An
= n log A
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(b)

(c)

(d)

Note that

Example 2.9
Simplify

(a) (b) (c) (d)

Solution

(a)

(b)

(c)

(d)

(Hint: using the generalised third law of indices.)

Example 2.10
Simplify

(a)

(b)

Solution

(a) 3 log x = log x3, 2 log 
1
x

= log 
1

x2 = log x-2, and 
1

2
 log 9 = log 91>2

= log 3, so

4 log t2 - 2 log t3 + log a 1

t2
b

3 log x - 2 log a1
x
b -

1

2
  log 9

(9t2)1>2
= 91>2(t2)1>2

= 3t

ln(9t2)1>2
= ln 3t

1

2
 ln 9t2 =

log(x2)1>2
= log x

1

2
  log x2

=

1

3
  log 8 = log 81>3

= log 2

1

2
  log 25 = log 251>2

= log 5

1

2
 ln 9t2

1

2
 log x21

3
 log 8

1

2
 log 25

 = - ln t

 ln 

1

t
= ln t-1

 = ln 

1

t

 = ln 

t5

t6

 = ln t5 - ln t6
 ln t5 - 3 ln t2 = ln t5 - ln(t2)3

 = log(3x3 # x2) = log 3x5
 log 3x3

+ 2 log x = log 3x3
+ log x2

 = ln 1000
 = ln(250 * 4)
 = ln 250 + ln 4

 ln 250 + 2 ln 2 = ln 250 + ln 22
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(b)

So

 = 0

 = log 1

log a t8 t-2

t6
b =

4 log t2 - 2 log t3 + log 

1

t2
 = log t8 - log t6 + log t-2

log 

1

t2
 = log t-2

log(t3)2
= log t62 log t3 =

4 log t2 = log(t2)4
= log t8

 = log a x5

3
b

 = log a x3

3x-2 b

 3 log x - 2 log a1
x
b -

1

2
  log 9 = log x3

- log x-2
- log 3

In Section 2.3 we stated the formula that enables the calculation of a logarithm to
any base. Specifically, we looked at how to calculate the logarithm of a number, N, to
base a, knowing logarithms to base b:

We can now develop this formula using the third law.
Suppose

N = an (1)

so that

loga N = n (2)

Taking logs to base b of equation (1)

logb N = logb(a
n) (3)

= n logb a using the third law (4)

Then

loga N = n from (2) (5)

from (4) (6)

as required.

=

logb N

logb a

loga N =

logb N

logb a
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Exercises

Simplify to a single log term:
(a)
(b)
(c)
(d)
(e)

Simplify to a single log term:
(a)
(b)
(c)
(d)
(e)

Simplify to a single log term:

(a)

(b)

(c)

(d)

(e)

Simplify to a single log term:
(a) log x + log 2x

4

4

3
 log 64 +

2

3
 log 27 - log 24

3

2
 log 4 -

2

3
 log 8

1

4
 log 1 +

3

4
  log 16 +

1

2
 log 9 - 2 log 2

2

3
 log 27 - 2 log 3

1

2
 log 16 +

1

3
 log 8

3

5 log 3 - 2 log 9 + 2 log 6 - 3 log 2
2 log 12 - 3 log 6 + 2 log 2
2 log 8 - 4 log 2 + log 3
4 log 3 - log 27
2 log 3 + 3 log 2

2

log 6 - log 5 + log 4 - log 3
log 4 - log 3
log 1 + log 2 + log 3 + log 4
log 30 - log 6
log 10 + log 20

1 (b)

(c)

(d)

(e)

Simplify to a single log term:
(a)

(b)

(c)

(d)

(e)

Simplify to a single log term:

(a)

(b)

(c)

(d)

(e)
2

3
 log 

a2b

c2
+

3

2
  log 

c

ab
-

1

2
 log abc

1

2
 log 

x2

y2
-

1

3
 log 

x3

y6

4 log rs2 t - 2 log r2st2 + 3 log 
r2

st
 

2 log 
x2

y
 - 3 log 

y2

x
 

2 log 
x

y
 + 3 log 

y

x
 

6

4 log abc - 2 log a2b - 3 log bc

2 log rs + 3 log rs2
- 4 log r2s

4 log AB2
- 3 log A2B

3 log x2y + 2 log xy

2 log x2
- 3 log x

5

log A + log B - log 
1

C

log x2
+ log y2

- log z2

log x2y - log y2

log x + log 3x + log 5x

Solutions to exercises

(a) log 200 (b) log 5 (c) log 24

(d) (e) 

(a) log 72 (b) log 3 (c) log 12

(d) (e)

(a) log 8 (b) (c) log 6
(d) log 2 (e) log 96

(a) (b) (c)

(d) (e) log ABClog 

x2 y2

z2
 

log 

x2

y
log 15x3log 2x24

log 1 = 03

log 

27

2
log 

8

3
 

2

log 
8

5
log 

4

3

1 (a) log x (b) (c)

(d) (e)

(a) (b) (c)

(d) log y (e)  log 
1

a2>3 b4>3 c1>3 

log 
 r6 s3

t3
 log 

x7

y8
 log 

y

x
 6

log 

c

b
log 

s4

r3

log 

B5

A2
log x8y55
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314 Block 2 Logarithms and their laws8

2.5 The logarithmic functions

We are now ready to introduce the logarithmic functions. They are defined as
follows:

Table 2.1 shows values of x, log x and ln x. Their graphs are shown in Figure 2.1.
We note the following common properties:

1 As x increases, both log x and ln x increase indefinitely. We write this mathemat-
ically as as as 

2 As x approaches 0, both log x and ln x approach minus infinity. We express this as
as as .

3 .
4 log x and ln x are not defined when x is negative or zero. Thus the domain of the

logarithm functions is . The range of these functions is .(- q , q )x 7 0

log 1 = ln 1 = 0
x : 0x : 0, ln x : - qlog x : - q

x : q.x : q , ln x : qlog x : q

Key point y = log x and y = ln x for x 7 0

Table 2.1

1 2 3 4 5 6 7 8 9 10
O

y

x

y = ln x

y = log x
1

2

3

−3

−2

−1

Figure 2.1
The graphs of

and
.y = ln x

y = log x

x log x ln x

0.1
0.2
0.5
1 0 0
2 0.30 0.69
3 0.48 1.10
4 0.60 1.39
5 0.70 1.61
6 0.78 1.79
7 0.85 1.95
8 0.90 2.08
9 0.95 2.20
10 1 2.30

-0.69-0.30
-1.61-0.70
-2.30-1
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2.5 The logarithmic functions 315 8

End of block exercises

Express the following statements using
logarithms:
(a)
(b)
(c)
(d)
(e)

Express the following using indices:
(a)
(b)
(c)
(d)
(e) log4 0.125 = -1.5

log4 8 = 1.5
log16 8 = 0.75
log10 0.0001 = -4
log3 81 = 4

2

4-1>2
= 0.5

0.125 = 2-3
243 = 35
45

= 1024
27

= 128

1 Express as a single log term in its simplest
form:
(a)
(b)

(c)

(d)

(e)

Simplify as far as possible
(a)

(b)

Evaluate (a) (b) log12 6.log4 9,5

2 log (x - 1) - log (x2
- 1)

log (x2
+ 4x + 3) - log (x + 1)

4

log 2x - 2 log x + x log 2

1

2
 log 8x +

3

2
 log 2x

1

2
 log 4x2

-

1

3
 log x

3 log AB - 2 log B - log A
2 log y + 3 log x

3

Solutions to exercises

(a) (b)
(c) (d)
(e)

(a) (b)
(c) (d)
(e) 4-1.5

= 0.125
41.5

= 8160.75
= 8

10-4
= 0.000134

= 812

log4 0.5 = -0.5
log2 0.125 = -3log3 243 = 5
log4 1024 = 5log2 128 = 71 (a) (b) (c)

(d) (e)

(a) (b)

(a) 1.585 (b) 0.7215

log a x - 1

x + 1
blog (x + 3)4

log a2x + 1

x
blog 8x2

log 2x2>3log A2Blog x3y23
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BLOCK 3
Solving equations involving logarithms
and exponentials

3.1 Introduction

In this block we examine the techniques used in solving equations involving logar-
ithmic and exponential terms. We recall the connection between logarithmic and
exponential expressions:

Key point if then x = loga NN = ax

In particular,

Key point if then x = log NN = 10x

and

Key point if then x =  ln NN = ex

The process of finding x, having been given or , is known as taking logs.
The following examples illustrate the technique for solution.

Example 3.1
Solve
(a) (b)

Solution
(a) We have

so taking logs gives

(b) We have . Taking logs gives

 = 1.6582
 x = ln 5.25

ex
= 5.25

 = 1.2405
  x = log 17.4

10x
= 17.4

ex
= 5.2510x

= 17.4

ex10x
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3.1 Introduction 317 8

Example 3.2
Solve
(a) (b)

Solution
(a) We have . Taking logs gives

(b)

Example 3.3
Solve .

Solution

Example 3.4
Solve
(a) (b)

Solution

(a)

(b)

 = 0.61
  x = e-0.5

 ln x = -0.5

 = 25.12
  x = 101.4

 log x = 1.4

 ln x = -0.5log x = 1.4

 = 7.0103

2(log 32 + 2)   x =

log 32 + 2   0.5x =

log 32   0.5x - 2 =

 = 32

  100.5x - 2
=

96

3

  3(100.5x - 2) = 96

3(100.5x-2) = 96

 = 1.7725

 x =

ln 75 + 1

3
 

 3x = ln 75 + 1
 3x - 1 = ln 75

 e3x - 1
= 75

 = 0.7955

 x =

log 39

2
 

 2x = log 39

102x
= 39

e3x-1
= 75102x

= 39
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318 Block 3 Solving equations involving logarithms and exponentials8

Example 3.5
Solve
(a) (b)

Solution
(a)

(b)

Example 3.6 Electronic Engineering – Current through a diode
The current through a diode, I, is given by

where is the reverse saturation current and V is the voltage across the diode.
(a) Express V as the subject of the equation.
(b) Evaluate V when .

Solution
(a)

Now, taking logs,

(b) Substituting the given values of I and into the expression for V results in

  V =

1

40
 ln a 3 * 10-2

1.5 * 10-4 + 1b
Is

  V =

1

40
 ln a I

Is
+ 1b

  40V = ln a I

Is
+ 1b

 e40V =

I

Is
+ 1

 e40V
- 1 =

I

Is
 

  I = Is (e
40V

- 1)

I = 3 * 10-2, Is = 1.5 * 10-4

Is

I = Is (e
40V

- 1)

 = 4.24

x =

e3.1
- 1

5
 

 
  x =

e3.1
- 1   5x =

e3.1   5x + 1 =

 = 3.1

 ln(5x + 1) =

9.3

3

  3 ln(5x + 1) = 9.3

 = ;19.90

2102.6
- 2  x =

102.6
- 2  x2

=

102.6   x2
+ 2 =

 log(x2
+ 2) = 2.6

3 ln(5x + 1) = 9.3log(x2
+ 2) = 2.6
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Example 3.7 Electronic Engineering – Gain of an amplifier
The voltage gain, measured in decibels (dB), of an amplifier is given by

where is the input voltage and is the output voltage.
The output voltage from an amplifier is 250 mV. If the amplifier has a gain of

17 dB calculate the input voltage.

Solution
We have

where the gain is 17 dB and . So

The input voltage is 35.3 mV.

 = 35.31

  Vi =

250

100.85

 
250

Vi
= 100.85

 = 0.85

 loga250

Vi
b =

17

20

  17 = 20 log a250

Vi
b

Vo = 250 mV

gain = 20 log aVo

Vi
b

VoVi

gain = 20 log aVo 

Vi 
b

 = 0.133

 =

1

40
 ln 201

 =

1

40
 ln(200 + 1)

Exercises

Solve the following equations:
(a)
(b)
(c)
(d)

Solve
(a)
(b)
(c)
(d) ln x = -2.0000

ln x = -0.9611
ln x = 0.9611
ln x = 2.4050

2

log x = -2.3500
log x = -0.4213
log x = 1.6431
log x = 0.7531

1 Solve
(a)
(b)
(c)
(d)

Solve
(a)
(b)
(c)
(d) ex

= 0.001761
ex

= 25
ex

= 0.5
ex

= 5
4

10x
= 0.7000

10x
= 17

10x
= 70

10x
= 7

3
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320 Block 3 Solving equations involving logarithms and exponentials8

Solve
(a)
(b)
(c)
(d)

Solve
(a)

(b)

(c)

(d) 3 ln(x2
+ 1) = 3.9

 ln(x2
+ 2) = 1.3

2 ln(x2) = 3

 ln(2x2) = 3
6

4 log(5x - 6) = -0.8000
log(x2

+ 3) = 2.3671
log(3x + 1) = 2.1500
log 2x = 1.5

5 An amplifier has a gain of 25 dB. If the input
voltage is 15 mV calculate the output voltage.

The current, I, through a diode is given by

where is the reverse saturation current and
V is the voltage across the diode. If the current
is 300 times greater than the reverse saturation
current, calculate the voltage across the diode.

Is

I = Is(e
40V

- 1)

8

7

Solutions to exercises

(a) 5.6637 (b) 43.9643 (c) 0.3791
(d) 0.004467

(a) 11.0784 (b) 2.6146 (c) 0.3825
(d) 0.1353

(a) 0.8451 (b) 1.8451 (c) 1.2304
(d) 

(a) 1.6094 (b) (c) 3.2189
(d) -6.3419

-0.69314

-0.1549
3

2

1 (a) 15.8114 (b) 46.7513 (c) 
(d) 1.3262

(a) (b) (c)
(d) 

267 mV

143 mV8

7

;1.6338
;1.2920;2.1170;3.16906

;15.16125

End of block exercises

Solve
(a) 

(b)

Solve
(a) (b) 

Solve

(a) (b) log x + log(2x) = 3
103x

10x = 30

3

103-x
= 20e-2x

= 4
2

2 ln(x2
+ 4) = 3.9

log(3x - 7) = 2.6500
1 Solve

(a) (b) 

Solve

(a) (b) e
3
x =

1

3
log(5 - x2) =

1

2

5

3 ln 4x = -2.73e4x
= 2.7

4

Solutions to exercises

(a) 151.2 (b)

(a) (b) 1.6990

(a) 0.7386 (b) 22.363

-0.69312

;1.74031 (a) (b) 0.1016

(a) (b) -2.7307;1.35565

-0.026344
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BLOCK 4
Applications of logarithms

4.1 Introduction

Block 2 looked at the definition and laws of logarithms. This block concentrates on
some of the applications of logarithms.

4.2 Signal ratio and decibels

The ratio between two signal levels is often of interest to engineers. For example, the
output and input signals of an electronic system can be compared to see whether
the system has increased the level of a signal. A common case is an amplifier, where
the output signal is usually much larger than the input signal. This signal ratio is
often expressed in decibels (dB), given by

where is the power of the output signal and is the power of the input signal. The
term gain is used because if then the logarithm function is positive, corre-
sponding to an increase in power. If then the gain is negative, corresponding
to a decrease in power. A negative gain is often termed an attenuation.

The advantage of using decibels as a measure of gain is that if several electronic
systems are connected together then it is possible to obtain the overall system gain in
decibels by adding together the individual system gains. We shall show this for three
systems connected together, but the development is easily generalised to more sys-
tems. Let the power input to the first system be , and the power output from the
third system be . Suppose the three are connected so that the power output from
system 1, , is used as input to system 2: that is, . The power output from
system 2, , is then used as input to system 3: that is, . We wish to find

the overall power gain, . Now

because and . Therefore

10 logaPo3

Pi1
b = 10 logaPo3Po2Po1

Pi3Pi2Pi1
b

Pi2 = Po1Pi3 = Po2

Po3

Pi1
=

Po3Po2Po1

Pi3Pi2Pi1

10 log aPo3

Pi1
b

Pi3 = Po2Po2

Pi2 = Po1Po1

Po3

Pi1

Po 6 Pi

Po 7 Pi

PiPo

power gain (dB) = 10 log aPo 

Pi 
b

M08_CROF5939_04_SE_C08.QXD  9/21/18  11:10 AM  Page 321



322 Block 4 Applications of logarithms8

That is,

using the laws of logarithms.
It follows that the overall power gain is equal to the sum of the individual power

gains. Often engineers are more interested in voltage gain rather than power gain.
The power of a signal is proportional to the square of its voltage. We define voltage
gain (dB) by

Example 4.1 Electronic Engineering – Gain of an amplifier
Calculate the voltage gain in decibels of an amplifier where the input signal is 0.8 V
and the output signal is 1.2 V.

Solution
We have and . Then

The voltage gain is 3.52 decibels.

 = 3.52

 = 20 log 

1.2

0.8

 voltage gain (dB) = 20 log 

Vo

Vi

Vi = 0.8Vo = 1.2

voltage gain (dB) = 10 log aVo
2 

Vi
2 
b = 20 log aVo

Vi
b

10 logaPo3

Pi1
b = 10 logaPo3

Pi3
b + 10 logaPo2

Pi2
b + 10 logaPo1

Pi1
b

Exercises

Calculate the voltage gain in decibels of an
amplifier where the input signal is 0.5 V and
the output signal is 2.2 V.

1 Calculate the voltage gain in decibels of an
amplifier where the input signal is 0.15 V and
the output signal is 1.9 V.

2

Solutions to exercises

12.87 dB1 22.05 dB2
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4.3 Use of log–linear and log–log scales

We look at each kind of scale separately.

Log–linear scales

Suppose we wish to plot

This may appear a straightforward exercise, but consider the variation in the x and y
values. As x varies from 1 to 10, then y varies from 1 to 1000000, as tabulated in
Table 4.1.

y(x) = x6 1 … x … 10

x y

1 1
2 64
3 729
4 4096
5 15625
6 46656
7 117649
8 262144
9 531441

10 1000000

Table 4.1

2 4 6 8 101 3 5 7 9
O

y

x

2

4

6

log

1

3

5

x log y

1 0
2 1.81
3 2.86
4 3.61
5 4.19
6 4.67
7 5.07
8 5.42
9 5.73

10 6

Table 4.2

Several of these points would not be discernible on a graph, and so information
would be lost. This can be overcome by using a log scale, which accommodates the
large variation in y. Thus log y is plotted against x, rather than y against x.

Table 4.2 shows values of x and log y, and the corresponding graph is illustrated in
Figure 4.1.

4.3 Use of log–linear and log–log scales 323

Figure 4.1
The function 

is plotted 
on a log–linear 
graph.

y = x6

As x varies from 1 to 10, log y varies from 0 to 6. A plot in which one scale is logar-
ithmic and the other is linear is known as a log–linear graph. In effect, use of the log
scale has compressed a large variation into one that is much smaller and easier to
observe.
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324 Block 4 Applications of logarithms8

Example 4.2
Consider for . Plot a log–linear graph of this function.

Solution
We have

and so

Putting we have , which is the equation of a straight line
passing through the origin with gradient log 7. Hence when log y is plotted against x
a straight line graph is produced. This is shown in Figure 4.2. Note that, by taking
logs, the range on the vertical axis has been greatly reduced.

Y = 0.8451xY = log y

 = 0.8451x
 = x log 7

 log y = log(7x)

y = 7x

-3 … x … 3y = 7x

1 2 3�3 �2 �1

Y

x

2.5

�2.5

x y

0.003
0.020
0.143

0 1 0
1 7 0.85
2 49 1.69
3 343 2.54

-0.85-1
-1.69-2
-2.54-3

Y = log y
Figure 4.2
A log–linear plot
of pro-
duces a straight
line graph.

y = 7x

Log–log scales

A plot in which both scales are logarithmic is known as a log–log plot. Here log y is
plotted against log x.

Example 4.3
Consider for . Plot a log–log graph of this function.

Solution
We have

and so

 = 7 log x
 log y = log(x7)

y = x7

1 … x … 10y = x7
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84.3 Use of log–linear and log–log scales 325

We plot log y against log x for a log–log plot. Putting and we
have , which is a straight line through the origin with gradient 7, as shown in
Figure 4.3.

Y = 7X
X = log xY = log y

1

Y

X

7
x y

1 1 0 0
2 128 0.301 2.107
3 2187 0.477 3.340
4 16384 0.602 4.214
5 78125 0.699 4.893
6 279936 0.778 5.447
7 823543 0.845 5.916
8 2097152 0.903 6.322
9 4782969 0.954 6.680

10 10000000 1 7

Y = log yX = log x
Figure 4.3
A log–log plot of

produces a
straight line graph.
y = x7

We have seen how a log scale has the effect of compressing a very large range of val-
ues into a more meaningful size. Similarly a log scale expands a very small range
into a more meaningful size. Consider the following example.

Example 4.4
Plot a log–log graph of

Solution
The small range of x values would almost be impossible to plot. The plot is
more meaningful when a log–log scale is used. Table 4.3 shows values of x, y, log x
and log y.

y = x3 10-6
… x … 10-1

x y log x log y

-3-110-310-1
-6-210-610-2
-9-310-910-3

-12-410-1210-4
-15-510-1510-5
-18-610-1810-6

Table 4.3

From Table 4.3 we see that both x and y have a very small range but that log x
and log y have a much more meaningful range. Figure 4.4 shows a plot of log y
against log x.
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Figure 4.4 shows a straight line graph with gradient 3. This can be seen from

4.4 Use of log–linear and log–log paper

The requirement to take logarithms is a tedious process, which can be avoided by
using special graph papers called log–linear graph paper and log–log graph paper.
An example of log–linear graph paper is shown in Figure 4.5.

Note that on one axis the scale is uniform; this is the linear scale. On the other, the
scale is not uniform and is marked in cycles from 1 to 9. This is the logarithmic
scale. On this scale values of y are plotted directly, without first taking logarithms.
On the graph paper shown in Figure 4.5 there are two cycles but papers are also
available with three or more cycles. To decide which sort of graph paper is appropri-
ate it is necessary to examine the variation in size of the variable to be plotted
measured in powers of 10. If, for example, y varies from 1 to 10, then paper with one
cycle is appropriate. If y varies from 1 to , two-cycle paper is necessary. If y
varies from to , then paper with cycles would be appropriate.
To see how log–linear paper is used in practice, consider the following example.

Example 4.5
Following an experiment the following pairs of data values were recorded:

4 - (-1) = 510410-1
102

 = 3 log x

 log y = log x3

 y = x3

�6 �1

log y

log x�3

�18

Figure 4.4
A plot of log y
against log x.

A B C D

x 0 1 5 12
y 4.00 5.20 14.85 93.19

It is believed that y and x are related by the equation . By plotting a log–linear
graph verify the relationship is of this form and determine a and b.

y = abx
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Solution
If the relationship is given by , then taking logarithms yields

So, plotting log y against x should produce a straight line graph with gradient log b
and vertical intercept log a. The need to find log y is eliminated by plotting the y val-
ues directly on a logarithmic scale. Examining the table of data we see that y varies
from approximately to so that two-cycle paper is appropriate. Values of y
between 1 and 10 are plotted on the first cycle, and those between 10 and 100 are
plotted on the second. The points are plotted in Figure 4.6. Note in particular that in
this example the ‘1’ at the start of the second cycle represents the value 10, the ‘2’
represents the value 20, and so on. From the graph, the straight line relationship
between log y and x is evident. It is therefore reasonable to assume that the relation-
ship between y and x is of the form .y = abx

102100

log y = log a + x log b

y = abx

1
9
8
7

6

5

4

3

2

1
9
8
7

6

5

4

3

2
L

og
ar

ith
m

ic
 s

ca
le

Fi
rs

t c
yc

le
Se

co
nd

 c
yc

le

Linear

Figure 4.5
Two-cycle
log–linear 
graph paper.

4.4 Use of log–linear and log–log paper 327
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328 Block 4 Applications of logarithms8

To find the gradient of the graph we can choose any two points on the line, for
example C and B. The gradient is then

Recall that log b is the gradient of the line and so

that is

 = 1.2999
 b = 100.1139

 log b = 0.1139

 = 0.1139

 
log 14.85 - log 5.20

5 - 1
=

log a14.85

5.20
b

4

1
9
8
7

6

5

4

3

2

1
9
8
7

6

5

4

3

2

Fi
rs

t c
yc

le
Se

co
nd

 c
yc

le

A (0, 4)

B (1, 5.20)

0 2 4 6 8 10 121 3 5 7 9 11

C (5, 14.85)

D (12, 93.19)log y

x

Figure 4.6
The log–linear
graph is a 
straight line.
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The vertical intercept is log a. From the graph the vertical intercept is log 4 so that

that is

We conclude that the relationship between y and x is given by .

Example 4.6
The variables x and y are thought to be connected by an equation of the form

Some experimental values are tabulated below:

y = ax  

n

y = 4(1.3)x

a = 4

log a = log 4

By plotting the data on appropriate graph paper, determine the law connecting x and y.

Solution
If then

Letting and we have

This is a straight line equation with gradient n and vertical intercept log a. Since both
log x and log y are used then a log scale on both axes is needed: that is, log–log paper
is used. One cycle is needed to accommodate the x variation; three cycles are
needed to accommodate the y variation. Log–log paper comes in ,

and . Consequently, for the example in ques-
tion, paper is needed. Figure 4.7 shows the log–log paper with the
data points plotted. The straight line fit tells us that x and y are connected by a law of
the form .

Using points A and D to calculate the gradient we have

Hence we see that .n = 2.5

 = 2.5

 =

log 250

log 9

 gradient =

log 500 - log 2

log 9 - log 1

y = axn

3 cycle * 3 cycle
3 cycle * 3 cycle2 cycle * 2 cycle

1 cycle *  1 cycle

Y = nX + log a

X = log xY = log y

 = log a + n log x

 log y = log(axn)

y = axn

A B C D

x 1 3 7 9
y 2 31 255 500

4.4 Use of log–linear and log–log paper 329
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1 2 3 4 5 6 7 18 9 2 3 4 5 6 7 18 9 2 3 4 5 6 7 18 9

1 2 3 4 5 6 7 18 9 2 3 4 5 6 7 18 9 2 3 4 5 6 7 18 9

1
9
8
7
6
5
4

3

2

1
9
8
7
6
5
4

3

2

1
9
8
7
6
5
4

3

2

1

1
9
8
7
6
5
4

3

2

1
9
8
7
6
5
4

3

2

1
9
8
7
6
5
4

3

2

1

A

B

C

DD

Figure 4.7
If , 
then log–log 
paper pro-
duces a
straight line.

y = axn

From the graph the vertical intercept is log 2 and so

Hence x and y are connected by .

Examples 4.5 and 4.6 illustrate the following points.

y = 2x2.5

 a = 2

 log a = log 2

Key point If then a log–log plot produces a straight line with gradient and vertical
intercept .

If , then a log–linear plot produces a straight line with gradient and
vertical intercept .= log a

= log by = abx

= log a
= ny = axn
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Example 4.7 Electrical Engineering – Bode plot of a linear circuit
Engineers are often interested in how a circuit will respond to a sinusoidal signal. A
Bode plot helps in the analysis.

A Bode plot consists of two components:

1 The ratio of the amplitudes of the output signal and the input signal is plotted
against frequency.

2 The phase shift between the input and output signals is plotted against frequency.

A log scale is used for the frequency in order to compress its length: for example, a
typical frequency range is 0.1 Hz to , which corresponds to a range of to 6
on a log scale. A log scale is also used for the ratio of the signal amplitudes as this is
calculated in decibels. Phase shift is plotted on a linear scale. So the signal amplitude
ratio against frequency is a log–log graph and the phase shift against frequency is a
linear–log graph.

-1106 Hz

Exercises

It is thought that x and y are connected by a
law of the form .
Measurements of x and y are

y = axn
1

(a) By using appropriate paper find the law
connecting x and y.

(b) Predict the y measurement when .

It is thought that x and y are connected by a
law of the form .
Measurements of x and y are

y = abx
4

x = 6
x 1.5 3 5 10 20 25
y 7.2 23 55 180 600 860

(a) By using appropriate paper find the law
connecting x and y.

(b) Predict the y measurement when .

It is thought that x and y are connected by a
law of the form .
Measurements of x and y are

y = axn
2

x = 30

x 0.25 0.5 0.8 1.3 4 7
y 0.18 0.30 0.42 0.61 1.41 2.2

(a) By using appropriate paper find the law
connecting x and y.

(b) Predict the y measurement when .

It is thought that x and y are connected by a
law of the form .
Measurements of x and y are

y = abx
3

x = 10

x 2 3 4 4.5 5 5.5
y 18 54 160 280 500 840

x 2 5 10 20 30 35 38
y 1 1.75 4.33 27 170 400 700

(a) By using appropriate paper find the law
connecting x and y.

(b) Predict the y measurement when .

The time of swing of a pendulum, T seconds,
is measured for different lengths of the
pendulum, l metres. The results are

5

x = 40

l 0.2 0.4 0.6 0.8 1.0 1.2
T 0.9 1.3 1.5 1.8 2.0 2.2

If use appropriate graph paper to find
the values of k and n.

T = kln

4.4 Use of log–linear and log–log paper 331
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x 1.5 2.0 2.5 3.0 3.5
y 1.76 1.47 1.23 1.03 0.86

Solutions to exercises

(a) (b) 1168

(a) (b) 2.81

(a) (b) 1458y = 2(3x)3

y = 0.5x0.752

y = 3.6x1.71 (a) (b) 1029

, n = 0.5k = 25

y = 0.7(1.2x)4

End of block exercises

Measurements of the variables x and y are
recorded as follows

1 (b) If the voltage is increased to 12 V,
calculate the power.

(c) Calculate the minimum voltage required if
the power must exceed 1000 W.

Calculate the voltage gain (dB) of an amplifier
that produces an output signal of 2.35 V when
the input signal is 40 mV.

An amplifier consists of a preamplifier and
a main amplifier. The input signal to the
preamplifier is 5 mV and the output signal is
80 mV. The input to the main amplifier is
80 mV and the output signal is 3 V.
(a) Calculate the voltage gain of the

preamplifier.
(b) Calculate the voltage gain of the main

amplifier.
(c) Calculate the overall gain of the amplifier.

4

3

P 11 45 125 245 405
V 1.5 3 5 7 9

(a) Given , use appropriate graph
paper to find a and b.

(b) Predict y when .

It is believed that in a particular circuit the
power, P, and voltage, V, are related by a law of
the form . Measurements of P and V areP = kVn

2

x = 4

y = abx

(a) By plotting the data on appropriate paper,
find the values of k and n.

Solutions to exercises

(a) (b) 0.72

(a) (b) 720 (c) 14.2k = 5, n = 22

a = 3, b = 0.71 35.4

(a) 24.08 (b) 31.48 (c) 55.64

3

End of chapter exercises

Evaluate (a) , (b) , (c) .

The current in a circuit, , is given by

i(t) = 25e-0.2t  t Ú 0

i(t)2

1

e1.6
 e-1.6e1.61 (a) State the current when .

(b) Calculate the value of the current when
.

(c) Calculate the time when the value of the
current is 12.5.

t = 2

t = 0
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End of chapter exercises 333 8

Simplify as far as possible:

(a) (b)

(c) (d)

Simplify as far as possible:

(a) (b) (c) (d)

Evaluate (a) sinh 4.7, (b) cosh ,
(c) tanh 1.2.

Express in terms of the hyperbolic
functions sinh x and cosh x.

Prove the hyperbolic identity

Express the following statements using
logarithms:
(a) (b) (c)

Express the following using indices:
(a) (b)
(c) (d)

Evaluate (a) , (b) .

Simplify to a single logarithmic expression:
(a)
(b)
(c)
(d)

Solve
(a)

(b)

(c)

(d)

Solve
(a)
(b)
(c)
(d)

Solve
(a)
(b)
(c)
(d) 102x

= 30(10x)
10x102x

= 90
102 log x

= 17
10log x

= 17
14

103x-6
= 40

3e-x
= 20

10x>2
- 20 = 0

e4x
= 90

13

 ln 5x

2
= 1.6

3 log 4x - 8 = 0

log(x3
+ 1) = 2.4

2 ln(3x - 10) = 8.5
12

log 2x + log 5x - 1
3 log t - log 3t
3 ln t2 - 2 ln t
ln 4y + ln x

11

log7 2log2 2010

log9 3 = 0.5ln 50 = 3.9120
log6 1296 = 4log 35 = 1.5441

9

26
= 6443

= 6482
= 64

8

cosh 2x = sinh2 x + cosh2 x

7

6ex
+ 3e-x6

(-1.6)5

A
e4x

9

(ex)2

e2x
 3e2te-te2te3t

4

e4x
- (e2x

+ 1)22e  

x
+ 1

2
+

2 - e  

x

3
 

(4e2x)(3e-x)
e 

2xe  

x

e-3x
 

3 Solve
(a)
(b)

(c)

(d)

Simplify (a) , (b) .

The temperature, T, of a chemical reaction is
given by

Calculate the time needed for the temperature
to (a) double its initial value, (b) treble its
initial value.

Calculate the voltage gain in decibels of an
amplifier where the input voltage is 17 mV
and the output voltage is 300 mV.

The voltage input to an amplifier is 30 mV.
(a) Calculate the output voltage if the

amplifier has a gain of 16 dB.
(b) Calculate the output voltage if the

amplifier has a gain of 32 dB.

The variables x and y are believed to be
connected by a law of the form .
Measurements of x and y are

y = axn
20

19

18

T = 120e0.02t  t Ú 0

17

log(100x)2e 

2   ln    x 16

log a x

2
+ 1b = 1.5

2

3
 ln(x2

+ 9) = 3

ln(ex
+ 10) = 5

ln(ex) = 5000
15

x 2 5 7 10 15 20
y 7.9 28.6 46.0 74.7 134.1 200.0

t 2 4 6 8 10
y 0.80 2.62 8.50 27.8 90.0

(a) By using appropriate graph paper find the
law connecting y and t.

(b) Predict y when .
(c) Predict the value of t when y first exceeds

1000.

t = 12

(a) By drawing an appropriate graph, find the
law connecting x and y.

(b) Predict y when .

Variables y and t are thought to be connected
by a law of the form

Measurements of t and y are

y =

at

k

21

x = 17
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Solutions to exercises

(a) 4.9530 (b) 0.2019 (c) 0.2019

(a) 25 (b) 16.76 (c) 3.4657

(a) (b) (c) (d)

(a) (b) (c) 1 (d)

(a) 54.9690 (b) 2.5775 (c) 0.8337

(a) (b)
(c)

(a) (b)
(c) (d)

(a) 4.3219 (b) 0.3562

(a) (b) (c) (d) log x2loga t2

3
b ln t4 ln 4xy11

10

90.5
= 3e3.9120

= 50
64

= 1296101.5441
= 359

log2 64 = 6
log4 64 = 3log8 64 = 28

9 cosh x +  3 sinh x6

5

e  

2x

3
 3ete5t4

- (2e2x
+ 1)

2e  

x

3
+

7

6
12exe6x3

2

1 (a) 26.7018 (b) 6.3012 (c) 116.0397
(d) 4.9065

(a) 1.1250 (b) 2.6021 (c)
(d) 2.5340

(a) 17 (b) (c) 0.6514 (d) 1.4771

(a) 5000 (b) 4.9302 (c) 9.0010 (d) 61.2456

(a) x (b) 2x

(a) 34.66 (b) 54.93

24.93 dB

(a) 189.3 (b) 1194.3

(a) (b) 158

(a) (b) 289 (c) 14.11y =

1.8t

4
21

y = 3x1.420

19

18

17

16

15

21714

-1.897113

12

334 Block 4 Applications of logarithms
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Chapter 9
Trigonometry

This chapter opens with a treatment of the two common units used for
measuring angles: degrees and radians. The trigonometrical ratios of
sine, cosine and tangent are then introduced. Initially the ratios of
angles between 0° and 90° are dealt with and then the ratios of angles
of any size are incorporated. The common identities involving
trigonometrical ratios are studied together with the solution of
trigonometrical equations. The application of trigonometry to
combining two waves into a single wave concludes the chapter.
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Chapter 9 contents

Block 1 Angles

Block 2 The trigonometrical ratios

Block 3 The trigonometrical ratios in all quadrants

Block 4 Trigonometrical functions and their graphs

Block 5 Trigonometrical identities

Block 6 Trigonometrical equations

Block 7 Engineering waves

End of chapter exercises
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BLOCK 1
Angles

1.1 Introduction

Angles measure the amount through which a line or object has been turned. The
Greek letters , and are commonly used to denote angles. In Figure 1.1 the angle
between lines AB and AC is .u

fua

BA

C

q

Figure 1.1
The angle between
AB and AC is .u

We can think of the line AB as being turned through or rotated an angle to the
new position AC.

1.2 Units

There are two main units used to measure angles: the degree and the radian. Both
units are defined with reference to a circle.

Degree

Consider a circle, centre O, as shown in Figure 1.2.
A typical radius, OA, is shown. If the radius OA is rotated as indicated so that it ends

up in its original position we say it has been turned through a complete revolution. The
angle that is equivalent to a complete revolution is 360 degrees, denoted 360°.

u

O

A

360°O

Figure 1.2
One complete
revolution is 360°.
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338 Block 1 Angles9

Radian

Consider a circle of radius r, centre O. An arc AB of length r is shown. The situation
is illustrated in Figure 1.3. We say that the arc AB subtends an angle at the centre O.
This is angle AOB. Note that there is no symbol to denote that an angle is being mea-
sured in radians. Hence if an angle is given and no symbol is present then you must
assume the angle is measured in radians.

Then the angle AOB is defined to be 1 radian.

r
rO

A

B

A
Figure 1.3
The arc AB has
length r.

Key point 1 complete revolution = 360°

Key point subtended at centre by an arc whose length is one radius1 radian = angle

An arc length r subtends an angle of 1 radian. Then an arc of length 2r subtends an
angle of 2 radians and in general an arc of length subtends an angle of radians.
Let us examine the case where . An arc length of is the entire circumfer-
ence of the circle, and this subtends an angle of radians. But the circumference
subtends a complete revolution at the centre, that is 360°, and so

Hence we have

2p radians = 360°

2p
2pra = 2p

aar

Key point p radians = 180°

Some common angles, marked in both degrees and radians, are shown in Figure 1.4.

Example 1.1
Convert 37° to radians.

Solution
We have

and so

 = 0.6458 radians

37° = 37 *

p

180
 radians

 1° =

p

180
  radians

180° = p radians
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1.2 Units 339 9

Example 1.2
Convert 1.2 radians to degrees.

Solution

Commonly, angles measured in radians are expressed as multiples of : for example,
radians, radians and radians.

Example 1.3
Express 72° in the form radians.

Solution
We have

 =

2p

5
 radians

 72° =

72

180
* p radians

 1° =

1

180
* p radians

180° = p radians

ap

2p
3

p

23p
p

 = 68.75°

1.2  radians = 1.2 *

180°

p

  1 radian =

180°

p

 p radians = 180°

30° �    radiansπ
6

45° �    radiansπ
4

60° �    radiansπ
3

90° �    radiansπ
2

180° � π radians 270° �      radians3π
2

Figure 1.4
Some common
angles.

(a)

(e)

(f)

(b) (c) (d)
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340 Block 1 Angles9

Example 1.4
Express 117° in radians.

Solution
We have

Example 1.5
Express 3.12 radians in degrees.

Solution

 3.12 *

180° 
p

= 178.8°3.12 radians =

180° 
p

   1 radian =

p radians = 180°

117 *

p

180
= 2.0420 radians117° =

p

180
 radians 1° =

180° = p radians

End of block exercises

Convert the following angles in radians to
degrees:
(a) 0.3609 (b) 0.4771 (c) 1.3692 (d) 

(e) (f) (g) (h) 

Convert the following angles in degrees to
radians:
(a) 12° (b) 65° (c) 200° (d) 340° (e) 1000°

2

3p
2

p

56p2p
3

p

3

1 Express the following angles in the form 
radians:
(a) 90° (b) 45° (c) 60° (d) 120° (e) 240°
(f) 72° (g) 216° (h) 135° (i) 108° (j) 270°

ap3

Solutions to exercises

(a) 20.68° (b) 27.34° (c) 78.45° (d) 60°
(e) 120° (f) 1080° (g) 36° (h) 270°

(a) 0.2094 (b) 1.1345 (c) 3.4907 (d) 5.9341
(e) 17.4533

2

1 (a) (b) (c) (d) (e) (f) 

(g) (h) (i) (j) 3p2
3p
5

3p
4

6p
5

2p
5

4p
3

2p
3

p

3
p

4
p

23
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BLOCK 2
The trigonometrical ratios

2.1 Introduction

The three common trigonometrical ratios of sine, cosine and tangent are defined with
reference to a right-angled triangle. Some simple properties of the ratios are devel-
oped. The use of scientific calculators to find the trigonometrical ratios and their
inverses is explained.

2.2 Some terms associated with a right-angled triangle

A right angle is an angle of 90°. In Figure 2.1, has a right angle at C. The
side opposite a right angle is called the hypotenuse. In Figure 2.1, AB is the
hypotenuse.

^ABC

B

CA

Figure 2.1
The hypotenuse is
AB. The
hypotenuse is
always opposite
the right angle.

Consider now the angle at A. We often write just A when referring to the angle at
A; similarly with B. The side opposite A is BC. The side adjacent to A is AC. Sim-
ilarly the side opposite B is AC; the side adjacent to B is BC.

2.3 Definition of the trigonometrical ratios

We refer to the right-angled triangle in Figure 2.1 to define the trigonometrical
ratios, sine, cosine and tangent. The sine of A is written sin A, the cosine of A is
written cos A, and the tangent of A is written tan A. We define:

Key point
 sin A =

length of side opposite

length of hypotenuse
=

BC

AB
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342 Block 2 The trigonometrical ratios9

The sine, cosine and tangent of B are defined in exactly the same way, leading to

2.4 Properties of the trigonometrical ratios

We note some properties of the trigonometrical ratios:

1 Since all are defined as the ratio of two lengths, none of the trigonometrical ratios
has any units.

2 Since the hypotenuse is always the longest side of a right-angled triangle, the sine
and cosine ratios can never be greater than 1.

3 The tangent ratio does not involve the hypotenuse and so this ratio can be greater
than 1.

4

Similarly we see that

Indeed, for any angle, , we haveu

tan B =

sin B

cos B

 =

sin A

cos A
 

 =

BC>AB

AC>AB
 

 =

BC 

AB 
  

AB

AC
 

tan A =

BC

AC

sin B =

AC

AB
, cos B =

BC

AB
, tan B =

AC

BC

 tan A =

length of side opposite

length of side adjacent
=

BC

AC
 

 cos A =

length of side adjacent

length of hypotenuse
 =

AC

AB
 

Key point
tan u =

sin u

cos u

5

 = cos B

 sin A =

BC

AB
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2.4 Properties of the trigonometrical ratios 343 9

We note that . Hence we have for any angle AB = 90° - A

 = sin B

 cos A =

AC

AB

Key point
 cos A = sin(90° - A)
sin A = cos(90° - A)

6 We have

We also note that and soB = 90° - A

 =

1

tan B
 

 =

1

AC>BC
 

 tan A =

BC

AC

We now look at some examples.

Example 2.1
Figure 2.2 shows a right-angled triangle with the lengths of the sides labelled.
Calculate
(a) sin A (b) cos A (c) tan A (d) sin B (e) cos B (f) tan B

Key point
tan A =

1

tan(90° - A)

B

A 3

45

C

Figure 2.2

Solution

(a) sin A =

BC

AB
=

4

5
= 0.8
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344 Block 2 The trigonometrical ratios9

(b)

(c)

(d)

(e)

(f)

Example 2.2
Figure 2.3 shows . The angle at X is 90°. Calculate
(a) sin Y (b) cos Y (c) sin Z (d) tan Y (e) tan Z (f) cos Z

^XYZ

tan B =

AC

BC
=

3

4
= 0.75

cos B =

BC

AB
= 0.8

sin B =

AC

AB
= 0.6

tan A =

BC

AC
=

4

3
= 1.3333

cos A =

AC

AB
=

3

5
= 0.6

Z 12 X

Y

513

Figure 2.3

Solution

(a)

(b)

(c)

(d)

(e)

(f)

When an angle is known, a scientific calculator can be used to find its trigonometrical
ratios. The angle may be expressed in degrees or radians.

XZ

YZ
=

12

13
cos Z =

XY

XZ
=

5

12
tan Z =

XZ

XY
=

12

5
tan Y =

opposite

adjacent
 =

XY

YZ
=

5

13
sin Z =

XY

YZ
=

5

13
cos Y =

adjacent

hypotenuse
=

XZ

YZ
=

12

13
sin Y =

opposite

hypotenuse
=
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2.4 Properties of the trigonometrical ratios 345 9

Example 2.3
Use a scientific calculator to evaluate the following:
(a) sin 37° (b) cos 80° (c) tan 53° (d) sin 1.1 (e) cos 0.6321 (f) tan 0.5016

Solution
Using a scientific calculator we find:
(a)
(b)
(c)

For (d), (e) and (f) the angles are given in radians. Make sure your calculator is set to
RADIAN mode.
(d)
(e)
(f) tan 0.5016 = 0.5484

0.8068cos 0.6321 =

sin 1.1 = 0.8912

1.3270tan 53° =

cos 80° = 0.1736
sin 37° = 0.6018

12 m

A B

37 m
1 m

O

C
q

√

Figure 2.4
Using
trigonometrical
ratios to calculate
the tension in a
cable.

Example 2.4 Mechanics – The tension in a cable
Traffic lights are suspended from a gantry above a carriageway as shown in Figure 2.4.
The cable anchor points are 12 metres apart and the traffic light unit must hang 1 m
below the gantry. By resolving forces vertically it can be shown that the tension, T,
in each of the cables suspending the lights is given by 

where is the angle between a cable and the upward vertical, m is the mass of the
traffic light unit and g is a constant – the acceleration due to gravity – nominally
9.81 m s�2. In this model, the mass of the cables has been ignored on the assumption
that they are light compared with the mass of the traffic light unit. From this formula
it can be deduced that as the angle increases – as will happen if the anchor points
are placed further apart – then the tension in the cable will also increase.

u

u

T =

mg

2 cos u

(a) Find the tension T when the mass of the traffic light unit is 18 kg.
(b) If the maximum permitted tension in the cable is 400 N and the traffic light unit

must remain 1 m below the gantry, calculate how far apart the suspension
points, A and B, must be.

Solution

(a) By inspection of the right-angled triangle OBC we see that . Then

T =

18 * 9.81

2 *

1

237

= 537 N (3 s.f.)

cos u =

1

237
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346 Block 2 The trigonometrical ratios9

Note that when the traffic light unit is in this position,

(b) Let us calculate the corresponding angle when N: 

Here cos�1 is the inverse cosine function described in detail on page 349, and
which can be found using a calculator. Therefore, referring to Figure 2.5, 

 u = cos-1 0.2207 = 77.25°

 cos u =

mg

2T
=

18 * 9.81

2 * 400
= 0.2207

T = 400

u = cos-1 1

237
= 80.5°

so that 

We deduce that the suspension points must be no more than 8.84 metres apart.

Example 2.5 Structural Engineering – Trigonometry for the method of
sections

A truss is a structure consisting of straight members connected at joints. An example
is shown in Figure 2.6. In the study of structural mechanics, the method of sections is
a technique used to find the forces in the different members of the truss. 

x = tan 77.25 = 4.42 m

tan u = tan 77.25 =

x

1

O B

C

1

x

q

Figure 2.5

A D

B

E

CFigure 2.6
A truss consisting
of several
members.

A D

B

E

C

Section

Figure 2.7
A section, or cut,
through the truss.

The method consists of isolating a particular part of the truss and considering only
those forces which act on that isolated part. Figure 2.7 shows the part which could be
isolated in order to find the forces in members BC, BE and DE. 
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A D

B

F
a

E

C

Section
3 m 3 m

2 m

4 m

Figure 2.8

To calculate the forces it is necessary to use trigonometry to find angles and
lengths which are not immediately available. In particular it is necessary to find the
perpendicular distance of the member BC from the point E if an engineer wants to
calculate the moment of the force in BC about the point E. Use the information pro-
vided in Figure 2.8 to find this distance (EF).

Solution
Note that the required length EF is one side of the right-angled triangle EFC, another
side of which is already known ( ). The angle at C, labelled , in this trian-
gle can be found by considering the larger triangle ACE.

Note that 

Then, in triangle EFC, 

that is . Knowing this distance enables a structural engineer to write
down an expression for the moment about E of the force in member BC. In turn, and
with knowledge of other moments, the force in BC can be calculated.

EF = 3.3 m

 = 3.3 (1 d.p.)
 = 4 sin 56.3°

 EF = 4 sin a

 sin a =

EF

4

tan a =

6

4
, a = tan- 1a6

4
b = 56.3° (1 d.p.)

aCE = 4 m

Exercises

In is a right angle. The lengths of
CD, DE and CE are , and respectively.
State
(a) sin C (b) cos C (c) tan C (d) sin E
(e) tan E (f) cos E

gba

^CDE, D1 Use a scientific calculator to evaluate
(a) cos 61° (b) tan 0.4 (c) sin 70°
(d) cos 0.7613 (e) tan 51° (f) sin 1.2

2

Solutions to exercises

(a) (b) (c) (d) (e) (f ) 
b

g

a

b

a

g

b

a

a

g

b

g
1 (a) 0.4848 (b) 0.4228 (c) 0.9397 (d) 0.7239

(e) 1.2349 (f) 0.9320
2
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348 Block 2 The trigonometrical ratios9

Key point

 cosec A =

1

sin A
 

 sec A =

1

cos A
 

2.5 Secant, cosecant and cotangent ratios

These ratios are the reciprocals of the cosine, sine and tangent ratios. Secant, cosecant
and cotangent are usually abbreviated to sec, cosec and cot, respectively.

Example 2.6
Evaluate
(a) cosec 50° (b) cot 20° (c) sec 70° (d) cot 0.7

Solution

(a)

(b)

(c)

(d) Note that the angle is in radians.

 = 1.1872

 cot 0.7 =

1

tan 0.7

1

cos 70°
= 2.9238sec 70° =

 = 2.7475

 cot 20° =

1

tan 20° 

 = 1.3054 

 cosec 50° =

1

sin 50° 

 cot A =

1

tan A

Exercise

Evaluate the following:
(a) cot 1.2 (b) sec 45° (c) cosec 0.6391
(d) cot 57° (e) sec 0.9600

1

Solution to exercise

(a) 0.3888 (b) 1.4142 (c) 1.6765 (d) 0.6494
(e) 1.7436

1
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2.6 The inverse trigonometrical ratios

Suppose we know the value of sin A, but not the value of A. For example, let
sin , and we wish to find the value of A. Given

we write

This states that A is the angle whose sine is 0.6513. We read this as A is the inverse
sine of 0.6513. So the notation means ‘the angle whose sine is . . .’. The 
should not be interpreted as a power. Other notations are sometimes used, namely

Similarly if we write ; if then
.C = tan- 1(1.4703)

 tan C = 1.4703B =  cos- 1(0.3619) cos  B = 0.3619

A = inv sin(0.6513) and A = arcsin(0.6513)

-1 sin 
- 1

A = sin-  1(0.6513)

sin A = 0.6513

A = 0.6513

Key point means ‘the angle whose sine is . . .’
means ‘the angle whose cosine is . . .’
means ‘the angle whose tangent is . . .’tan- 1

cos- 1
sin- 1

We use a scientific calculator to find the inverse sine, inverse cosine and inverse
tangent of a number.

Example 2.7
Find A given
(a) (b) (c)

Solution
(a) We have

and so

Using a scientific calculator we see

If your calculator is in radian mode you will obtain the equivalent answer in
radians, that is 0.4349 radians.

(b)

(c)

 = 60.26°

  A = tan- 1(1.7503)
 tan A = 1.7503

 = 57.89°

  A = cos- 1(0.5316)
 cos A = 0.5316

A = 24.92°

A = sin- 1 (0.4213)

sin A = 0.4213

 tan A = 1.7503 cos A = 0.5316 sin A = 0.4213
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350 Block 2 The trigonometrical ratios9

Example 2.8
Find B given
(a) (b) (c)

Solution

(a)

(b)

(c)

51.34°  B =

 tan B = 1.2500

27.46°  B =

 sin B = 0.4611

36.28°=

  B = cos- 1(0.8061)
 cos B = 0.8061

 tan B = 1.2500 sin B = 0.4611 cos B = 0.8061

End of block exercises

is an angle between 0° and 90°. In each case
find given:
(a)
(b)
(c)
(d)
(e)
(f)

Evaluate sec 37°.

Evaluate cot 75°.

Evaluate cosec 17°.

Evaluate cosec 1.

is an angle between 0° and 90°. In each case,
find .
(a)
(b) sin u = 2 cos u

sin u = cos u

u

u6

5

4

3

2

cos u = 0.3507
tan u = 0.5050
sin u = 0.7396
tan u = 1.7500
cos u = 0.6419
sin u = 0.3467
u

u1 has a right angle at C, ,
and . Find

(a) sin A
(b) cos A
(c) tan A
(d) sin B
(e) cos B
(f) tan B
(g) A
(h) B

We have seen that means ‘the angle

whose sine is x’ and not the reciprocal . 
How would you write the reciprocal
using a negative power?

1

sin x

 sin- 1 x8

AB = 11.66 cmBC = 10 cm
AC = 6 cm^ABC7

Solutions to exercises

(a) 20.29° (b) 50.07° (c) 60.26° (d) 47.70°
(e) 26.79° (f) 69.47°

1.25212

1 0.2679

3.42034

3
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2.6 The inverse trigonometrical ratios 351 9

1.1884

(a) 45° (b) 63.43°

(a) 0.8576 (b) 0.5146 (c) 1.6667 (d) 0.5146
(e) 0.8576 (f) 0.6 (g) 59.04° (h) 30.96°

7

6

5 Brackets would be inserted to show the
intention, that is

1

sin x
= (sin x)- 1

8
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BLOCK 3
The trigonometrical ratios in all quadrants

3.1 Introduction

Block 2 defined the trigonometrical ratios sine, cosine and tangent with reference to
the sides of a right-angled triangle. No angle in a right-angled triangle is greater than
90°. So, if we wish to define the trigonometrical ratios of angles greater than 90° we
need a method that does not use right-angled triangles. This block looks at how this
is achieved.

3.2 The four quadrants

Figure 3.1 shows the x and y axes intersecting at the origin O. The axes divide the
plane into four sections, called quadrants. These are numbered 1 to 4 as

indicated in Figure 3.1.
x-y

y

x

2 1

3 4

O

Figure 3.1
The x and y axes
divide the plane
into four
quadrants.

We now consider a rotating arm, OC. The arm is fixed at the origin, O. We measure
the angle from the positive x axis to the arm, measuring in an anticlockwise
direction. Figure 3.2 shows the arm in each of the four quadrants.

Note that in quadrant 1, lies between 0° and 90°; in quadrant 2, is between 90°
and 180°; in quadrant 3, is between 180° and 270°; and in quadrant 4, is between
270° and 360°. Figure 3.3 illustrates this.

uu

uu

u
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3.3 Projections onto the x and y axes 353 9

3.3 Projections onto the x and y axes

We now introduce projections of the arm OC onto the x and y axes. The projection
of OC onto the x axis is OA; the projection onto the y axis is OB. Figure 3.4 shows
the x and y projections as the arm rotates into the four quadrants.

Note that the projections may be positive or negative. For example, when OC is
in the second quadrant, the x projection, OA, is on the negative x axis and so is

y

xO

C

θ

y

xO

C
θ

y

xO

C

θ y

xO

C

θ

Figure 3.2
The arm OC
rotates
anticlockwise into
each of the four
quadrants.

y

xO

90°

0°

y

xO

90°

180°

y

xO180°

270°

y

xO 360°

270°

Figure 3.3
(a) In quadrant 1, 
lies between 0°
and 90°; (b) in
quadrant 2, lies
between 90° and
180°; (c) in
quadrant 3, lies
between 180° and
270°; (d) in
quadrant 4, lies
between 270° and
360°.

u

u

u

u

(a) (b)

(c)

(a) (b)

(c) (d)

(d)
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354 Block 3 The trigonometrical ratios in all quadrants9

negative. The y projection, OB, is on the positive y axis and so is positive. The arm
OC is considered to be always positive.

Table 3.1 gives the signs of the x and y projections of OC as it rotates through the
four quadrants.

y

xO

B C

A

y

xO

BC

A

y

xO

BC

A

y

xO

B C

A

Figure 3.4
The x projection is
OA, the y
projection is OB.

(a) (b)

(c) (d)

3.4 Extended definition of the trigonometrical ratios

We define the trigonometrical ratios in terms of the x and y projections of a rotating
arm, OC.

Key point

tan u =

y projection of OC

x projection of OC

cos u =

x projection of OC

OC

sin u =

y projection of OC

OC

First quadrant Second quadrant Third quadrant Fourth quadrant

x projection
y projection --++

+--+

Table 3.1
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3.4 Extended definition of the trigonometrical ratios 355 9

By examining the signs of the x and y projections in Table 3.1 it is easy to determine
the signs of , and for the four quadrants. For example, consider in
the second quadrant. Since the y projection is positive, then is positive.
Similarly, as the x projection is negative, then is negative. The sign of is
negative since it is given by the ratio of a positive number and a negative number.
Table 3.2 shows the sign of , and for in the four quadrants.utan ucos usin u

tan ucos u
sin u

utan ucos usin u

Example 3.1
An angle is such that and . In which quadrant does lie?

Solution
Referring to Table 3.2 we see that when lies in the third or fourth quad-
rants. When , lies in the first or fourth quadrants. Hence for both con-
ditions to be satisfied simultaneously must be in the fourth quadrant.

Example 3.2
Show .

Solution
Although sin 17° and sin 163° can easily be evaluated using a calculator and hence
shown to be equal, it is instructive to show their equality using the definition of sin .u

sin 17° = sin 163°

u

ucos u 7 0
usin u 6 0

ucos u 7 0sin u 6 0u

First quadrant Second quadrant Third quadrant Fourth quadrant

-+-+tan u
+--+cos u
--++sin u

y

xO

163°

CBC'

17°

Figure 3.5
OC and OC�
have the same y
projection and so 

.sin 17° = sin 163°

Consider two arms, OC and OC�, of equal length. Figure 3.5 shows the arm OC
forming an angle of 17° with the positive x axis, and the arm OC� forming an angle
of 163° with the positive x axis. Noting that , we can see that
OC is the reflection of OC in the y axis. By symmetry both the y projections of
OC and OC will be OB. Since the y projections are equal and the arms are of equal
length, then from the definition of we have .

Example 3.2 illustrates a general rule that is true for any value of :u

sin 17° =  sin 163°sin u

¿

¿

163° = 180° - 17°

Key point sin(180° - u) = sin u

Table 3.2
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356 Block 3 The trigonometrical ratios in all quadrants9

Example 3.3
An angle is such that and . In which quadrant does lie?

Solution
Using Table 3.2, we see that when lies in the

Also, when lies in the

Hence lies in the quadrant. thirdu

third and fourthquadrantsand

usin u 6 0

first and thirdquadrantsand

utan u 7 0

usin u 6 0tan u 7 0u

Exercises

An angle is such that and
. In which quadrant does lie?ucos u 6 0

sin u 6 0u1 An angle is such that and
. State the range of possible values

of .b
tan b 6 0

cos b 7 0b2

Solutions to exercises

third1 270° 6 b 6 360°2

3.5 Adding and subtracting multiples of 360°

The sine of an angle is governed by the position of the rotating arm, OC. We note
that 360° corresponds to exactly one complete revolution. Thus rotating the arm,
either clockwise or anticlockwise, through multiples of 360° will leave it in exactly
the same position, and consequently the value of the sine remains unchanged. This
may be stated mathematically as

and also

 =
Á

 = sin(u + 1080°)
 = sin(u + 720°)

 sin u = sin(u + 360°)

 = sin(u - 720°)
 sin u = sin(u - 360°)
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3.5 Adding and subtracting multiples of 360° 357 9

Written compactly we have

 =
Á

 = sin(u - 1080°)

Key point sin u = sin(u ; n 360°)  n = 1, 2, 3, . . .

Key point cos u = cos(u ; n 360°)  n = 1, 2, 3, . . .

Key point tan u = tan(u ; n 180°)  n = 1, 2, 3, . . .

An exactly similar argument can be applied to cos . Thusu

We now consider tan . Recall that tan is defined by

The corresponding result for tan isu

tan u =

y projection

x projection

uu

Hence, adding 180° to, or subtracting 180° from, an angle leaves the tangent un-
altered. Note that with sine and cosine we can add or subtract multiples of 360°, but
with the tangent we can add and subtract multiples of 180°.

Expressions that repeat their values at regular intervals are called periodic. Hence
sin , cos and tan are all periodic.

Example 3.4
Simplify .

Solution
Subtracting multiples of 360° from leaves the sine unchanged. Hence

Example 3.5
Simplify .

Solution
Adding multiples of 360° to leaves the cosine unchanged. Hence

 = cos(x + 180°)
 cos(x - 900°) = cos[x - 900° + 3(360°)]

x - 900°

cos(x - 900°)

 = sin(u + 280°) 
 sin(u + 1000°) = sin[u + 1000° - 2(360°)]

u + 1000°

sin(u + 1000°)

uuu
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358 Block 3 The trigonometrical ratios in all quadrants9

Example 3.6
Simplify .

Solution
Adding multiples of 180° to leaves the tangent unchanged. So we have

Example 3.7
Simplify .

Solution
Adding 360° to an angle leaves the sine unchanged. Hence

Using the result following Example 3.2, we can further simplify this to

Hence

sin(-180° - u) = sin u

sin u

sin(180° - u) =

sin(-180° - u) = sin(-180° - u + 360°)

sin(-180° -  u)

 = tan z
 tan(z - 540°) = tan[z - 540° + 3(180°)]

z - 540°

tan(z - 540°)

Exercises

Simplify
(a) 
(b) 
(c) 
(d) 
(e) sin(2u + 1080°)

sin(u + 1000°)
sin(a - 450°)
sin(b - 500°)
sin(a + 400°)

1 Simplify
(a) 
(b) 
(c) 
(d) 
(e) cos(b + 500°)

tan(x - 540°)
tan(x + 200°)
cos(u - 810°)
cos(x - 300°)

2

Solutions to exercises

(a) (b) 
(c) (d) 
(e) sin 2u

sin(u - 80°)sin(a - 90°)
sin(b - 140°)sin(a + 40°)1 (a) (b) 

(c) (d) (e) cos(b + 140°)tan xtan(x + 20°)
cos(u - 90°) = sin ucos(x + 60°)2
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3.5 Adding and subtracting multiples of 360° 359 9

End of block exercises

The angles are given in radians. Evaluate the
following:
(a) sin 30
(b) cos 27
(c) tan 31

An angle is such that and
. In which quadrant does lie?

Simplify .

Simplify .

Simplify .

An angle is such that and
. In which quadrant does lie?bsin b 6 0

tan b 7 0b6

sin(-1260° - u)5

tan(y + 1260°)4

cos(450° - u)3

acos a 7 0
 sin a 6 0a2

1 An angle is such that and
. State the range of possible values

of .

An angle is such that and
. State the range of possible

values for .

An angle is such that and
. State the range of possible values

of .

An angle is such that and
. State the range of possible values

of .f
cos 2f 6 0

sin f 7 0f10

u

tan u2 6 0
tan u 7 0u9

u

cos 2u 7 0
cos u 6 0u8

a

sin 2a Ú 0
sin a Ú 0a7

Solutions to exercises

(a) (b) (c) 

fourth quadrant

sin 

tan y

sin u5

4

u3

2

-0.4417-0.2921-0.98801 third quadrant

45° 6 f 6 135°10

180° 6 u 6 270°9

135° 6 u 6 180°8

0° … a … 90°7

6
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BLOCK 4
Trigonometrical functions and their graphs

4.1 Introduction

Having introduced the trigonometrical ratios of sine, cosine and tangent we are ready
to consider the three trigonometrical functions , and .
A number of properties and graphs of these functions are considered. Extensions are
made to include the functions , and for various
values of k.

4.2 The function y � sin x

Table 4.1 gives values of x in degrees and the corresponding values of sin x found
using a scientific calculator.

y =  tan kxy = cos  kxy = sin  kx

y = tan  xy = cos  xy = sin x

Figure 4.1
A graph of

for
.0° … x … 360°

y = sin x

x 0 30 60 90 120 150 180
sin x 0 0.500 0.866 1 0.866 0.500 0

x 210 240 270 300 330 360
sin x 0-0.500-0.866-1-0.866-0.500

Table 4.1

Plotting these values produces the graph shown in Figure 4.1.
Note that the maximum value of sin x is 1; the minimum value of sin x is .-1

sin x

x90° 180° 270° 360°

1

�1
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4.2 The function y � sin x 361 9

If we had been working in radians, then would be replaced by
. The shape of the sine function is often referred to as a sine wave or

a cycle.
We saw in Block 3 that and 

, and so on. In other words, adding or subtracting
multiples of 360° to an angle does not alter the sine of the angle. Hence the graph in
Figure 4.1 can be extended to the left and to the right by repeating cycles of the same
shape every 360°. Figure 4.2 illustrates this.

sin(x - 360°) = sin(x - 720°)
sin  x =sin  x = sin(x + 360°) = sin(x + 720°)

0 … x … 2p
0° … x … 360°

Figure 4.2
Cycles are
repeated every
360°.

sin x

x360°�360° 720°

1

�1

When using radian measure, cycles are repeated every radians.2p

Exercises

Use the graphs in Figures 4.1 and 4.2 to answer the
following questions:

What is the maximum possible domain of the
function 

What is the range of y = sin  x?2

y = sin  x?
1 Is the function one-to-one or

many-to-one?
y = sin  x3

Solutions to exercises

all x

3-1, 142

1 many-to-one3
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362 Block 4 Trigonometrical functions and their graphs9

4.3 The function y � cos x

Using a scientific calculator values of cos x are found for various values of x
measured in degrees. These are recorded in Table 4.2.

x 0 30 60 90 120 150 180
cos x 1 0.866 0.500 0

x 210 240 270 300 330 360
cos x 0 0.500 0.866 1-0.500-0.866

-1-0.866-0.500

Table 4.2

The values are graphed in Figure 4.3.

Figure 4.3
The function

for
.0° … x … 360°

y =  cos  x

cos x

x180° 360°

1

�1

As with , the function may be extended to the left and to the
right. Since adding or subtracting multiples of 360° to an angle leaves its cosine
unchanged, then full cycles will be repeated every 360°. Figure 4.4 illustrates this.

y = cos  xy = sin  x

Figure 4.4
The function

completes a
full cycle
every 360°.

y = cos x

cos x

x360°�360°�720 720°

1

�1

Note that completes a full cycle every 360° or radians. The maximum
value of cos x is 1; the minimum value is .-1

2py = cos  x
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4.4 The function y � tan x

Table 4.3 gives values of x in degrees and corresponding values of tan x.

Exercises

Use the graphs in Figures 4.3 and 4.4 to answer the
following questions:

What is the maximum possible domain of the
function 

What is the range of y = cos  x?2

y = cos  x?
1 Is the function one-to-one or 

many-to-one?
y = cos  x3

Solutions to exercises

all x

3-1, 142

1 many-to-one3

Figure 4.5 shows a graph of for .0° … x … 360°y = tan  x

Figure 4.5
The function

for
.0° … x … 360°

y =  tan x

x 0 30 60 90 120 150 180
tan x 0 0.577 1.732 - 0

x 210 240 270 300 330 360
tan x 0.577 1.732 – 0-0.577-1.732

-0.577-1.732

Table 4.3

tan x

x90° 180° 270° 360°

1

2

3

�1

�2

�3
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Note that the graph is radically different from those of and .
The function has no maximum or minimum value.

Recalling from Block 3 that adding or subtracting multiples of 180° to an angle
leaves its tangent unchanged, we see that extending the graph in Figure 4.5 to the left
and right produces that shown in Figure 4.6.

y = tan x
y = cos xy = sin x

4.5 The amplitude of y � A sin x and y � A cos x

Consider the function , where A is a positive constant, that is . The
number A is called the amplitude. It is the maximum value of y. The minimum value
of y is . Thus has an amplitude of 3. The maximum value of 3 sin x is
3; the minimum value is . Note that the amplitude of is 1. Figure 4.7
shows graphs of and for .0° … x … 360°y = 3  sin  xy = sin  x

y = sin  x-3
y = 3  sin  x-A

A 7 0y = A sin  x

Note that the function is discontinuous at x =
Á

-270°, -90°, 90°, 270°, . . ..

Figure 4.6
For ,
cycles are repeated
every 180° or 
radians.

p

y = tan x
tan x

x180°�180° 360°

Exercises

Use the graphs in Figures 4.5 and 4.6 to answer the
following questions:

What is the maximum possible domain of the
function 

What is the range of y = tan  x?2

y = tan  x?
1 Is the function one-to-one or many-

to-one?
y = tan x3

Solutions to exercises

All values except 
. These values must be

excluded from the domain.
-90°, 90°, 270°, Á

x =
Á

-270°,1

many-to-one3

(- q , q)2
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Note that a full cycle of is completed in 360°. The amplitude does not
affect the periodic properties of : that is, it takes 360° for both and 

to complete a full cycle. In general, completes a cycle every 360°.
Similar comments apply to . The amplitude of A cos x is A. It takes

360° for a full cycle of A cos x to be completed.
y = A  cos  x

y = A  sin  x3 sin  x
y =y = sin  xsin  x

y = 3  sin  x

Figure 4.7
The amplitude of

is 1; the
amplitude of

is 3.y = 3 sin x

y = sin x

x

1

90° 180° 270° 360°

2

3

�1

�2

�3

y � 3 sin x

y � sin x

Example 4.1
State the amplitude of each of the following functions:
(a)
(b)

(c)

(d)

Solution
(a) 2 (b) 4.7 (c) (d) 0.82

3

y = 0.8  cos  x

y =

2 sin x

3
 

y = 4.7  cos  x
y = 2  sin  x

Key point The amplitude of and is A.y = A  cos  xy = A  sin  x

Exercise

State the amplitude of
(a) 10 sin x (b) 7.3 cos x (c) 0.01 sin t
(d) 1.2 cos u

1

Solution to exercise

(a) 10 (b) 7.3 (c) 0.01 (d) 1.21
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366 Block 4 Trigonometrical functions and their graphs9

4.6 The functions y � A sin kx and y � A cos kx

We have already seen that A is the amplitude and this is the maximum value of y. We
now consider the effect of the parameter k in A sin kx. To allow us to focus on k we
take A to be 1. Thus we examine the function for various values of k, for

example , , and . We can deduce the

graphs of these functions by reference to the graph of .
We begin by looking at . Recall that completes one full cycle

as x varies from 0° to 360°. Then completes one full cycle as 2x varies
from 0° to 360°, that is as x varies from 0° to . If x is measured in radians
then completes a full cycle as x varies from 0 to radians. A graph of the
function is illustrated in Figure 4.8.

py = sin  2x

360°

 2 = 180°

y = sin 2x
y = sin  xy = sin 2x

y = sin  x

y = sin 
3x

2
 y = sin 

x

2
y = sin 3xy = sin  2x

y = sin  kx

Figure 4.8
The function

completes a full
cycle every 180° or

radians.p

y = sin 2x

x

1

O

�1

45° 90° 135° 180°

sin 2 x

We have noted previously that the amplitude does not affect the periodic prop-
erty of . Since completes a cycle every 180°, then in general

completes a cycle every 180° also. Note that the amplitude of
is 1.

As another example consider . A full cycle is completed as varies 

from 0° to 360°: that is, as x varies from 0° to . A graph of is 
illustrated in Figure 4.9.

Similarly, completes a cycle every 240°.

In general, completes a full cycle in or radians.

The function also has these properties. We havey = A  cos  kx

2p

k

360°

k
y = A  sin  kx

y = A sin 
3x

2

y = sin 
3x

2
360°
3>2 = 240°

3x

2
y = sin 

3x

2

y = sin 2x
y = A  sin  2x

y = sin 2xy = sin  x

Key point
The functions and complete a cycle every or 
radians.

2p

k

360°

k
y = A  cos  kxy = A  sin  kx
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Example 4.2
State the number of cycles of y in 360° given
(a)
(b)

(c)

(d)

Solution
(a) sin 4x completes a cycle every . In 360°, four cycles are

completed.
(b) completes a cycle every . In 360° three cycles are

completed.

(c) completes a cycle every . In 360°, 0.5 of a cycle is

completed.

(d) completes a cycle every . In 360°, 0.75 of a cycle is

completed.

Example 4.2 illustrates the following general statement.

360°

3>4 = 480°y = 5 sin 
3x

4

360°

1>2 = 720°y =

1

2
 cos 

x

2

360°

3
= 120°y = 4  cos  3x

360°

4
= 90°y = 3

y = 5sin 

3x

4
 

y =

1

2
 cos 

x
2

 

y = 4  cos  3x
y = 3 sin 4x

Figure 4.9

completes a cycle 

every 240° or 
radians.

4p

3

y = sin 

3x

2
 

x

1

O

�1

60° 120° 180° 240°

(    )sin 3x
2

Key point The functions and complete k cycles every 360° or every
radians.2p

y = A cos kxy = A sin  kx

Example 4.3
For each function, state (i) the minimum value and (ii) the increase in x required for
y to complete a full cycle.
(a)
(b)

(c)

(d) y = -2 cos 
5x

3

y =

4

5
  sin  

x

3

y = 0.65  cos  6x
y = 3  sin  5x
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Solution
(a) The amplitude is 3 and so the minimum value is . A full cycle requires x to

increase by .

(b) The minimum value is . A full cycle requires x to increase by .

(c) The minimum value is . A full cycle requires x to increase by .

(d) The minimum value is . A full cycle requires x to increase by .

Example 4.4
State the maximum value, the minimum value and the number of cycles completed

in 720° for the function .

Solution

The amplitude of is . Hence the maximum value is 

and the minimum value is 

The function completes cycles every 360°.

Hence in 720° the function completes cycles. 5

5

2
y =

3

2
 cos 

5x

2

-

3

2

3

2

3

2
y =

3

2
 cos 

5x

2

y =

3

2
 cos 

5x

2

360°

5>3 = 216°-2

360°

1>3 = 1080°-

4

5

360°

6
= 60°-0.65

360°

5
= 72°

-3

Example 4.5 Electronic Engineering – Rectified half sine wave
A rectified half sine wave, f(t), is illustrated in Figure 4.10. Recall (from Chapter 6,
Block 6) that any function that has a pattern which repeats at regular intervals is said
to be periodic and the interval over which the repetition takes place is called the
period. Hence f(t) is a periodic function with period T. Write a mathematical expres-
sion for this rectified half sine wave. Note that, in this example, the independent vari-
able is t, not x, and that angles are measured in radians.

t

f(t)

2

O T
2

T 2T 3T3T
2

5T
2

Figure 4.10
A rectified half
sine wave.
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4.7 The function y � A tan kx

We consider the function . As with and , the
factor A does not affect the periodic properties of the tangent function. Recall that

completes a cycle as x increases by 180° or radians. Hence tan kx

completes a cycle as kx increases through 180°, that is as x increases through . So,

for example, completes a cycle every , completes

a cycle every , and completes a cycle every . 

A graph of for is shown in Figure 4.11.-30° … x … 150°y = 2  tan 3x

180°

2>3 = 270°y = A tan 
2x

3

180°

3
= 60°

y = A tan 3x
180°

2
= 90°y = A tan 2x

180°

k

py = tan x

y = A  cos  kxy = A  sin  kxy = A  tan  kx

Solution

For the rectified half-wave is a sine wave of amplitude 2 and period T.  

Note again the Key point above which states that sin kt completes a cycle every , 

that is the period is . Applying this to the current function we see that 

from which . So f(t) can be expressed as

For then f(t) � 0. Note also that the rectified half-wave has period T. So

and f(t) � f(t � T) for all values of t.

f(t) = d 2 sin a2pt

T
b for 0 … t 6

T

2

0 for 
T

2
… t 6 T

T

2
… t … T

f(t) = 2 sina2pt

T
b

k =

2p

T

T =

2p

k

2p

k

2p

k

0 … t 6 T>2

Figure 4.11

completes a cycle
every 60°.

y = 2 tan 3x
2 tan 3x

x60°�30° 120°30°
O

90° 150°

4

3

2

1
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End of block exercises

State the amplitude of the functions given in
questions 1–6.

State the number of cycles completed every 360°
for the functions given in questions 7–12.

y = 2  sin  3x7

y =

4 cos x

7
 6

y = -0.6  sin  3x5

y = -2  cos  7x4

y = 0.96  sin  x3

y =
3
7 cos 2x2

y = 3  sin  4x1

Sketch for .

Sketch for .

State two properties that are common to both
and .y = A  cos  kxy = A  sin  kx

15

0° … x … 360°y = tan 

x

2
14

0° … x … 360°y = sin(-x)13

y = -3  tan  9x12

y = 6  tan  6x11

y = 0.5  cos  0.5x10

y = 4 cos 
5x

6
9

y = -2  sin  3x8

Solution
(a) For , the ‘3’ does not affect the periodic properties.

Now completes cycles every 180° and so in 360°, 

cycles are completed.

(b) completes cycles every 180° and hence completes

cycles every 360°.

(c) completes cycles every 180° and so completes

cycles every 360°. 3

3

2
y = -

1

2
 tan 

3x

2

4

2y = 7  tan  2x

2

1y = 3  tan  x

y = 3  tan  x

In general completes a cycle every . In other words, k cycles
are completed every 180°.

Example 4.6
State the number of cycles completed every 360° for
(a)
(b)

(c) y = -

1

2
 tan 

3x

2

y = 7  tan  2x
y = 3  tan  x

180°

k
y = A  tan  kx
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Solutions to exercises

3

0.96

2

0.6

4
76

5

4

3

3
72

1 3

3

0.5

12

1812

11

10

5
69

8

7
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BLOCK 5
Trigonometrical identities

5.1 Introduction

Consider the two expressions sin and . These two expressions have
the same value for every value of x. Try evaluating the expressions for, say, ,
60°, 1.2 radians.

If two expressions are equal for all values of the variables used, then we say the
expressions are identical. Hence and are identical, that is equal
for all values of x. A statement such as is known as an
identity. In this block we provide a table of important identities and show how
expressions involving the trigonometrical ratios can be simplified using them.

5.2 Common trigonometrical identities

There are several commonly used trigonometrical identities. These are listed in
Table 5.1.

sin 2x = 2 sin x cos x
2 sin x cos xsin 2x

x = 25°

2 sin x  cos  x2x

cos2 A =
1
2 (1 + cos 2A)

sin2 A =
1
2 (1 - cos 2A)

2 sin A sin B = cos(A - B) - cos(A + B)
2 cos A cos B = cos(A + B) + cos(A - B)
2 sin A cos B = sin(A + B) + sin(A - B)

tan(A - B) =

 tan A - tan B

1 + tan A tan B

tan(A + B) =

 tan A + tan B

1 - tan A tan B

cos 2A = 1 - 2 sin2 A = 2 cos2 A - 1 =  cos2 A -  sin2 A
sin 2A = 2 sin A cos A
cos(A - B) = cos A cos B + sin A sin B
cos(A + B) = cos A cos B - sin A sin B
sin(A - B) = sin A cos B - sin B cos A
sin(A + B) = sin A cos B + sin B cos A

sin A

cos A
= tan A

 sin2 A + cos2 A = 1
Table 5.1
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5.2 Common trigonometrical identities 373 9

Note that we write to mean . Similarly, is the accepted nota-
tion for . The identities can be used to simplify trigonometrical expressions.

The first entry in the table is particularly important and should be remembered.
(cos A)2

cos2 A(sin A)2sin2 A

Key point sin2 A + cos2 A = 1

Example 5.1
Use trigonometrical identities to simplify cos A tan A.

Solution

We note that and so

Hence cos A tan A is identical to sin A.

Example 5.2
(a) Use the identity for sin (A + B) to show that .
(b) Use the identity for cos (A + B) to show that .

Solution
(a) We use the identity

A special case of this identity occurs when . We then have

that is

(b) We use the identity

A special case of this identity occurs when . We then have

that is

cos 2A = cos2 A - sin2 A

cos 2A = cos A cos A - sin A sin A

B = A

cos(A + B) = cos A cos B - sin A sin B

sin 2A = 2 sin A cos A

sin 2A = sin A cos A + sin A cos A

B = A

sin(A + B) = sin A cos B + sin B cos A

cos 2A = cos2 A - sin2 A
sin 2A = 2 sin A cos A

 = sin A

 cos A tan A = cos A
sin A

cos A

tan A =

sin A

cos A

Choose any angle A for yourself and verify that this identity is true.
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374 Block 5 Trigonometrical identities9

Example 5.3
Show that .

Solution
We use the identity for cos with and .

Now from Table 5.1

With and this becomes

Noting that and this simplifies to

Hence as required.

Example 5.4
Show that

Solution
We use the identity

Putting and gives

Now and so

Example 5.5
Simplify

Solution
We write the expression with a common denominator of cos A:

sin3 A

cos A
+ sin A cos A =

sin3 A + sin A cos2 A

cos A

sin3 A

cos A
+ sin A cos A

 =

1 + tanu

1 - tanu
 

 tan(u + 45°) =

tanu + 1

1 - tanu

tan 45° = 1

tan(u + 45°) =

tan u + tan 45°

1 - tan u tan 45° 

B = 45°A = u

tan(A + B) =

tan A + tan B

1 - tan A tan B

tan(u + 45°) =

1 + tan u

1 - tan u

cos(-u) = cos u

cos u

cos 0 = 1sin 0 = 0

cos 0 cos u + sin 0 sin ucos(-u) =

B = uA = 0

cos(A - B) = cos A cos B + sin A sin B

B = uA = 0(A - B)

cos(-u) = cos u
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5.2 Common trigonometrical identities 375 9

Now

Hence simplifies to tan A.

Example 5.6
Simplify

Solution
From Table 5.1 we have and so

Also from Table 5.1, . Hence

�

Example 5.7 Electrical Engineering – Amplitude modulation
Amplitude modulation is a technique which allows a signal of a certain frequency
(the signal frequency) to be transmitted at a different frequency (the carrier fre-
quency). (Note that the term frequency is explained in Block 7.)

The signal can be represented by the cosine wave . The carrier can
be represented by . The modulated signal is given by the product .
Use a trigonometrical identity to show that the modulated signal can be written as
the sum of two cosine waves.

Solution
The modulated signal is

Using the identity (Table 5.1), we can
write

ycys =

1

2
 CS(cos(vc + vs)t + cos(vc - vs)t)

2 cos A cos B = cos(A + B) + cos(A - B)

 = CS(cos vct cos vst)

 ycys = (C cos vct) * (S cos vst)

ycysyc = C cos vct
ys = S cos vst

sin2 A + cos2 A - sin2 A = cos2 A

sin 2A sin A

2cos A
+ cos 2A

cos 2A = cos2 A - sin 
2 A

2 sin Acos Asin A

2 cos A
= sin2 A 

sin2A sin A

2 cos A
 =

 sin 2A = 2 sin A cos A

sin 2A sin A

2 cos A
+ cos 2A

sin3 A

cos A
 + sin A cos A

 = tan A

 =

sin A

cos A
           since sin2 A + cos2 A = 1

 
sin3 A + sin A cos2 A

cos A
 =

sin A(sin2 A + cos2 A)

cos A
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End of block exercises

From Table 5.1 we have

Verify this identity when and .

Verify the identity

with and .

Verify

with and .

Show .

Show .

Show .

Show .

Show .

Show .

Show .

Show .tan(180° - u) = - tan u11

cos(180° - u) = -cos u10

sin(180° - u) = sin u9

cosau +

p

2
 b = -sin u8

sinau +

p

2
 b = cos u7

cosap
2

- ub = sin u6

sinap
2

- ub = cos u5

 sin(-u) = -sin u4

B = 30°A = 65°

tan(A - B) =

tan A - tan B

1 + tan A tan B

3

B = 15°A = 50°

2 sin A sin B = cos(A - B) - cos(A + B)

2

B = 30°A = 80°

cos(A - B) = cos A cos B + sin A sin B

1 Show .

Show .

Show .

Show .

Show .

Show .

Show .

Show .

Show .

Show .

Simplify

Simplify

Show

sin3A

sin2A
 = 2cosA -

1

2cos A

24

tan A +

1

tan A

23

sin A cos A tanA +

2 sinA cos3 A

sin 2A

22

cos 4A = 8 cos4 A - 8 cos2 A + 121

sin 4A = 4 sin A cos A(cos2 A - sin2 A)20

cos 3A = 4 cos3 A - 3 cos A19

sin 3A = 3 sin A cos2 A - sin3 A18

tan(360° - u) = - tan u17

cos(360° - u) = cos u16

sin(360° - u) = -sin u15

tan(180° + u) = tan u14

cos(180° + u) = -cos u13

sin(180° + u) = -sin u12

which is the sum of two cosine waves, oscillating at different frequencies from the
original signal. This result enables the design of an antenna which can be used to
transmit the original signal efficiently.

Solutions to exercises

122 which may be written as 
2

sin2A
 

1

cos A sin A
 23
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BLOCK 6
Trigonometrical equations

6.1 Introduction

We examine the method of solving equations of the form , and
, where k is a constant. Because , and are periodic func-

tions, then there are an infinite number of solutions of trigonometrical equations.
Often the values of are restricted to a limited range. This restriction means there
are then only a finite number of solutions.

6.2 Notation

If

then we write

This is read as ‘ equals the inverse sine of k’. Similarly if then 
and if then . The inverse functions , and are
available on scientific calculators. Sometimes is written as ‘inv sin’ or ‘arcsin’.

Example 6.1
Given find using a scientific calculator.

Solution

and so

using a scientific calculator.

Example 6.2
Given find using a scientific calculator.

Solution

sin- 1(-0.2000) = -11.54° u =

sin u = -0.2000

u sin u = -0.2000

 = 18.75°

 u = sin- 1(0.3214)

sin u = 0.3214

u sin u = 0.3214

sin- 1
tan- 1cos- 1sin- 1u = tan- 1 ktan u = k

u = cos- 1 kcos u = ku

u = sin- 1 k

sin u = k

u

tan ucos usin utan u = k
cos u = ksin u = k
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Example 6.3
Given find using a scientific calculator.

Solution

A scientific calculator returns only one solution to a trigonometrical equation. As
, and are periodic functions, then trigonometrical equations involving

these functions have many solutions. The following section illustrates how these
equations are solved.

6.3 Solving trigonometrical equations

The method of solution is illustrated by examples.

Example 6.4
Solve

Solution
Figure 6.1 illustrates a graph of for . We require solutions
between 0° and 360°. The values of such that are marked as A and B.

From Figure 6.1 we see there are two solutions, one between 0° and 90°, that is the
first quadrant, and one between 90° and 180°, that is the second quadrant. Using a
scientific calculator gives

u = sin- 1(0.7215) = 46.18°

 sin u = 0.7215u

0° … u … 360°y = sin u

sin u = 0.7215 0° … u … 360°

tan ucos usin u

cos- 1(-0.6132) = 127.82°u =

cos u = -0.6132

ucos u = -0.6132

Figure 6.1
has

a solution in the
first quadrant and a
solution in the
second quadrant.

sin u = 0.7215

θ

1

O

0.7215

�1

90°
A B

180° 270° 360°

sin θ
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6.3 Solving trigonometrical equations 379 9

This is the solution represented by point A. By symmetry, the solution at B is given by

The required solutions are .

Example 6.5
Solve

Solution
A graph of for is shown in Figure 6.2. Note that in this
example angles are measured in radians.

0 … x … 2py =  cos x

cos x = 0.3456 0 … x … 2p

u = 46.18°, 133.82°

u = 180° - 46.18° = 133.82°

Figure 6.2

has a solution in
the first quadrant
and a solution in
the fourth
quadrant.

cos x = 0.3456

x

1

0.3456

O

�1

π 2π

cos x

π
2

3π
2

A B

From Figure 6.2 there are two solutions, A and B. Solution A is in the first quad-
rant, that is between 0 and , and solution B is in the fourth quadrant, that is between

and .
We have

Using a scientific calculator we find

This is the solution represented by A. Using symmetry the solution in the fourth
quadrant is found from

The required solutions are .

Example 6.6
Solve

tan t = -1.3000 0 … t … 2p

x = 1.2179, 5.0653

x = 2p - 1.2179 = 5.0653

x = cos- 1(0.3456) = 1.2179

cos x = 0.3456

2p3p
2

p

2
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Solution
Figure 6.3 illustrates and marks the solution points A and B.

Point A lies between 

Point B lies between 

Using a scientific calculator we have

Clearly the value of t returned by a calculator is not within the range of values of
interest, namely 0 to .

Recall from Block 3 that adding radians to an angle does not change its tangent,
and so another solution is given by . This is the solution
represented in the second quadrant by point A.

-0.9151 + p = 2.2265
p

2p

tan- 1(-1.3000) = -0.9151  t =

tan t = -1.3000

3p

2
 and 2p

p

2
 and p

y = tan t

Figure 6.3

has solutions at 
A and B.

tan t = -1.3000

t
O

0.5

1.0

1.5

2.0

2.5

�0.5

�1.0

�1.3000

�1.5

�2.0

�2.5

tan t

π 2ππ
2

3π
2

A B
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By examining the graph in Figure 6.3, we see the solution at point B is radians
above point A. So the solution at point B is given by .

The required solutions are .

Example 6.7
Solve

Solution
From Figure 6.4, has solutions at A and B.sin u = -0.6500

sin u = -0.6500 0 … u … 2p

t = 2.2265, 5.3681
2.2265 + p = 5.3681

p

Figure 6.4

has solutions at
A and B.

sin u = -0.6500

θ

1

O

�1

�0.6500

π

A B

2π

sin θ

Point A is between 

Point B is between 

We have

and so

Clearly this solution is not within the range of interest.
Recall from Block 3 that adding to an angle does not change its sine.

Hence is a solution.

This solution is represented by point 

Using the symmetry of Figure 6.4 we see that point A is above by the same
amount that B is below .

Hence the solution at point A is given by

The required solutions are .u = 3.8492, 5.5756

p + 0.7076 = 3.8492

2p
p

B

-0.7076 + 2p = 5.5756
2p (360°)

sin- 1(-0.6500) = -0.7076u =

sin u = -0.6500

3p

2
 and 2p

p and 
3p

2
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Example 6.8
Solve

Solution
Sketch and mark the points where .

There are two solutions.

One is between and the other is between

We have

and so

Using the symmetry of the cosine curve, the other solution is

 360° - 114.93° = 245.07°u =

cos- 1(-0.4215) = 114.93°u =

cos u = -0.4215

180° and 270°

90° and 180°

O
90° 180° 270° 360°

−0.4215

cos u = -0.4215y =  cos u

cos u = -0.4215 0° … u … 360°

Exercises

Solve
(a)
(b)
(c) cos t = -0.3778, 0 … t … 2p

sin u = -0.4161, 0 … u … 2p
sin u = 0.3510, 0° … u … 360°

1
(d)
(e)
(f) tan y = -0.3006, 0° … y … 360°

tan y = 1.7136, 0° … y … 360°
cos x = 0.7654, 0° … x … 360°

Solutions to exercises

(a) 20.55°, 159.45° (b) 3.5707, 5.8540

(c) 1.9582, 4.3250 (d) 40.06°, 319.94°

1 (e) 59.73°, 239.73° (f) 163.27°, 343.27°
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6.4 Further trigonometrical equations

We now consider more complex trigonometrical equations.

Example 6.9
Solve

Solution
We introduce a new variable, z, defined by . As moves from 0° to 360° then 
z moves through 0° to 1080°. Hence the problem may be written as one of finding z
given

Using Example 6.4, the solutions between 0° and 360° are

Recognising that adding 360° to an angle does not change its sine, we see that the
solutions between 360° and 720° are

Similarly the solutions between 720° and 1080° are

Hence

Recall that , that is , and so

Example 6.10
Solve

Solution

We define 

As moves from 0° to 360°, then z moves from 0° to 180°. Hence the problem may
be recast as one of finding z given

cos z = -0.4215    0° … z … 180°

u

u

2
z =

cos 
u

2
 = -0.4215    0° … u … 360°

u = 15.39°, 44.61°, 135.39°, 164.61°, 255.39°, 284.61°

u =
z
3z = 3u

z = 46.18°, 133.82°, 406.18°, 493.82°, 766.18°, 853.82°

 = 766.18°, 853.82°

  z = 406.18° + 360°, 493.82° + 360°

 = 406.18°, 493.82°

  z = 46.18° + 360°, 133.82° + 360°

z = 46.18°, 133.82°

sin z = 0.7215    0° … z … 1080°

uz = 3u

sin 3u = 0.7215     0° … u … 360°

M09_CROF5939_04_SE_C09.QXD  9/21/18  11:54 AM  Page 383



384 Block 6 Trigonometrical equations9

In Example 6.8 we solved

and found . Since z is restricted to 0° to 180°, then the only

solution is . Recall that , that is , and so

Example 6.11
Solve

Solution
We define z �

As ranges through 0° to 360° then z ranges through 
Hence the problem becomes one of solving

Using a scientific calculator we see

This is outside the range of interest.
Adding 180° to an angle does not change the value of its tangent.
Hence the required solutions are

Recall that , that is , and so

 62.57°, 152.57°, 242.57°, 332.57°u =

u =
z
2z = 2u

125.13°, 305.13°, 485.13°, 665.13°z =

tan- 1(-1.4213) = -54.87°z =

tan z = -1.4213    0° … z … 720°

0° to 720°u

2u

tan 2u = -1.4213    0° … u … 360°

u = 2 * 114.93° = 229.86°

u = 2zz =
u

2z = 114.93°

u = 114.93°, 245.07°

cos u = -0.4215    0° … u … 360°

Exercise

Solve the following:
(a)

(b) , 

(c)  cos 2u = -0.8314, 0° … u … 360°

0° … u … 360°tan 
u

2
= 1.0137

sin 3u = 0.7614, 0° … u … 360°
1 (d) , 

(e) , 

(f) , 0° … u … 360°tan  
4u

3
= -1

0° … u … 360°cos 
u

3
= 0.4162

0° … u … 360°sin  
2u

3
= -0.5000

Solution to exercise

(a) 16.53°, 43.47°, 136.53°, 163.47°, 256.53°,
283.47°

(b) 90.78°

1 (c) 73.12°, 106.88°, 253.12°, 286.88°
(d) 315° (e) 196.22° (f) 101.25°, 236.25°

M09_CROF5939_04_SE_C09.QXD  9/21/18  11:54 AM  Page 384



6.4 Further trigonometrical equations 385 9

End of block exercises

Solve the following trigonometrical equations:

tan t = 2.1630, 0 … t … 4p12

tan u = 0.4906, 0° … u … 360°11

5 cos x + 3 = 0, 0 … x … 2p10

3 cos u - 1.4216 = 0, 0° … u … 360°9

cos t = 0.8020, 0 … t … 2p8

cos t = 0.4500, 0 … t … 2p7

3 sin u + 1.5 = 0, 0 … u … 2p6

2 sin x = -1.4600, 0 … x … 2p5

sin t = -0.3490, 0 … t … 2p4

3 sin u = 2, 0° … u … 360°3

sin x = 0.2913, 0 … x … 2p2

sin u = 0.7506, 0° … u … 360°1

, 

, 

, 

, -270° … u … 270°tanau + 30°

4
 b = -1.631923

0° … u … 360°cosa u
2

- 20°b = -0.551622

sin(2u + 10°) = 0.7516, 0° … u … 360°21

tan(u - 20°) = 0.5614, 0° … u … 360°20

-180° … u … 180°tan 
2u

3
= -119

2 cos 2u = -1.3146, 0° … u … 360°18

0 … t … 3pcos 
t

3
= -0.400017

sin 3u = -0.2556, 0° … u … 180°16

sin 4u = 0.6000, 0° … u … 180°15

4 tan f + 2.5 = 0, 0° … f … 540°14

tan z = -0.1421, 0 … z … 4p13

Solutions to exercises

48.64°, 131.36°

0.2956, 2.8460

41.81°, 138.19°

3.4981, 5.9267

3.9599, 5.4649

3.6652, 5.7596

1.1040, 5.1792

2.5014, 3.7818

61.71°, 298.29°

2.2143, 4.0689

26.13°, 206.13°

1.1377, 4.2793, 7.4209, 10.562512

11

10

9

8

7

6

5

4

3

2

1 3.0004, 6.1420, 9.2836, 12.4252

147.99°, 327.99°, 507.99°

9.22°, 35.78°, 99.22°, 125.78°

64.94°, 115.06°

5.9469°

65.55°, 114.45°, 245.55°, 294.45°

49.31°, 229.31°

19.36°, 60.64°, 199.36°, 240.64°

286.95°

-264.00°23

22

21

20

-67.5°19

18

17

16

15

14

13
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BLOCK 7
Engineering waves

7.1 Introduction

Often voltages and currents vary with time, and can be modelled by sine and cosine
functions. Important parameters such as amplitude, frequency, period and phase are
used in the description of these waves. These terms are described in the following
sections.

Two or more waves may be added together, producing a new single wave. The
method of doing this is explained and illustrated.

7.2 Time-varying waves

The functions and were described in Block 4. There we saw that
the graphs of these functions look like waves. The angle may be measured in
degrees or radians.

Voltages and currents encountered in electric circuits usually vary with time, t.
Hence we consider sine and cosine waves in which the independent variable is t. For
example, consider . As t increases from 0 seconds to seconds, one com-
plete cycle is produced. This is illustrated in Figure 7.1.

2py = sin t

u

y = cos uy = sin u

t

1

O

0.5

π 2π

sin tFigure 7.1
As time t varies
from 0 to 
seconds one
complete cycle is
produced.

2p
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7.4 Angular frequency of a wave 387 9

7.3 Amplitude of a wave

We introduced the amplitude in Block 4 and simply recap here. Consider the func-
tion for . Then A is the amplitude of the wave. This is the highest
value attained by the wave. Similarly the amplitude of cos t is A.y = A

A 7 0y = A sin t

Key point The angular frequency of and is radians per second.vy = A cos vty = A sin vt

Note that the amplitude, A, has no effect upon the angular frequency of a function.

Example 7.2
State the angular frequency of each of the following waves:
(a)

(b)

(c) y = cos 
2t

3

y = 7 cos 
t

2

y = 5 sin 3t

Key point The amplitude of both sin t and cos t is A.y = Ay = A

Example 7.1
State the amplitude of each of the following functions:
(a)

(b)

(c)

Solution
(a)

(b)
(c) Noting that the amplitude of a wave is the largest value attained, the amplitude

of t is 1.

7.4 Angular frequency of a wave

Consider the wave . We call the angular frequency of the wave. The
units of are radians per second. Noting that t is measured in seconds, then has
units of radians. For example, has an angular frequency of 4 radians per
second. Note that has an angular frequency of 1 radian per second. In like
manner the angular frequency of is radians per second.vy = A cos vt

y = sin t
y = sin 4t

vtv

vy = A sin vt

-sin

amplitude =
2
3

amplitude = 3

y = -sin t

y =
2
3 cos t

y = 3 sin t

M09_CROF5939_04_SE_C09.QXD  9/21/18  11:54 AM  Page 387
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Solution
(a) Comparing 5 sin 3t with A , we see that : that is, the angular

frequency is 3 radians per second.

(b)

(c) 2
3 radians per secondangular frequency =

1
2 radian per secondangular frequency =

v = 3sin vt

Exercises

State (i) the amplitude and (ii) the angular
frequency of the following waves:
(a) (b) y = 3 cos 6ty = 2 sin 5t

1 (c) (d) (e) 

(f) y = -4 sin pt

y =

3

2
 sin 

2t

3
y = cos 

4t

3
y = sin 

t

2

Solutions to exercises

(a) 2, 5 (b) 3, 6 (c) 1, (d) 1, (e) (f) 4, p3
2 , 23

4
3

1
21

7.5 Period of a wave

The time taken to complete one full cycle is called the period of the wave. It is
closely connected to the angular frequency of the wave.

Consider . When seconds, then radians. When 

seconds, then radians. Hence as t increases by seconds, the 

angle, t, increases by radians. Recall from Block 4 that a sine function completes
one full cycle as the angle increases by radians. Hence completes a

full cycle as t increases by seconds: that is, the period of y is seconds. Similarly

the period of is also seconds. The period is denoted by T.
2p
v

y = A cos vt

2p
v

2p
v

y = A sin vt2p
2pv

2p
v

vt = va2p
v
b = 2p

t =

2p
v

vt = 0t = 0y = A sin vt

Key point
The period of both and is given by .T =

2p

v
y = A cos vty = A sin vt

Example 7.3
State the period of each of the following functions:
(a)
(b)
(c) y = 50 sin 100pt

y = 5.6 cos pt
y = 3 sin 6t
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7.5 Period of a wave 389 9

Solution
(a) Here and so

The period is seconds.

(b) Here and so

The period is 2 seconds.

(c) Here and so

The period is 0.02 seconds.

Example 7.4 Electrical Engineering – Oscilloscope trace
Figure 7.2 shows an oscilloscope trace of a sine wave. State the equation of the wave.

2p

100p
= 0.02T =

100pv =

2p
p

= 2T =

v = p

p

3

 =

p

3

 T =

2p

6

v = 6

Figure 7.2
Oscilloscope trace.

t
O

3

�3

2 4 6

Solution
The wave has an equation of the form

The maximum value of the wave is 3: that is, the amplitude, A, is 3. A full cycle is
completed in 4 seconds: that is, . So

 = 4

 T =

2p
v

 

T = 4

y = A sin vt
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from which

The equation of the wave is .

Example 7.5 Electrical Engineering – Oscilloscope trace
Figure 7.3 shows an oscilloscope trace of a cosine wave. State the equation of the wave.

y = 3 sin 
pt

2

v =

p

2

Figure 7.3
Oscilloscope trace
of a cosine wave.

t
O

4
4.2

3

2

1

�4
�4.2

�3

�2

�1
1.5 4.5 7.5

Solution
The wave has an equation of the form

The highest value of the wave is 

Hence the value of the amplitude is 4.2.

A cycle is completed in seconds, and so

Hence

The equation of the wave is therefore 4.2 cos 
pt

3

2p

6
=

p

3
v =

 = 6

 T =

2p
v

6

4.2

y = A cos vt
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7.6 The frequency of a wave

The frequency, f, of a wave is the number of cycles completed in 1 second. It is mea-
sured in hertz (Hz). One hertz is one cycle per second.

Consider again the function . The period is seconds: that is, one

cycle is completed in seconds. Hence cycles are completed in 2 seconds and 

cycles are completed in 1 second. Thus we have
v

2p

pv
2p
v

2p
v

y = A sin vt

Key point frequency f =

v

2p
 

We note that

and so

period T =

2p
v

 ,  frequency f =

v

2p

Key point T =

1

f
 

Example 7.6
State the period and frequency of the following waves:
(a)
(b)
(c)

Solution
(a) Comparing 2 sin 4t with we see that . Hence the frequency, f, is

found from

So 0.6366 cycles are completed every second. The period, T, is found from

It takes 1.5708 seconds to complete one cycle.

 = 1.5708

 =

p

2

 T =

1

f

 = 0.6366 Hz

 =

2
p

 =

4

2p

 f =

v

2p

v = 4A sin vt

y =  sin pt
y = 3 cos 2t
y = 2 sin 4t
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(b) Here and so

Thus, 0.3183 of a cycle is completed every second. 
The period, T, is found using

It takes seconds to complete one cycle.
(c) Here and so

and

Thus, 0.5 of a cycle is completed each second. It takes 2 seconds to complete
one full cycle.

1

f
= 2T =

v

2p
=

p

2p
=

1

2
  Hzf =

v = p

p

1

f
= p = 3.1416T =

v

2p
=

2

2p
=

1
p

= 0.3183 Hzf =

v = 2

Exercises

State (i) the period and (ii) the frequency of the
following waves:
(a) (b) y = cos 3ty = 6 sin 4t

1 (c) (d) 
(e) y = p sin 1.5t

y =
1
2 cos 100pty = -4 sin t

Solutions to exercises

(a) (b) (c) 2p, 
1

2p

2p

3
 , 

3

2p

p

2
 , 

2
p

1 (d) 0.02, 50 (e) 
4p

3
 , 

3

4p

7.7 Phase and time displacement of a wave

We now introduce waves of the form and .
Introducing has the effect of moving the wave to either the left or the right.
Figure 7.4 shows graphs of and .

From Figure 7.4 we note that the peak of occurs 0.5 seconds
before the peak of . We say leads sin 2t by 0.5 seconds. The
quantity, 0.5 seconds, is known as the time displacement of .y = sin(2t + 1)

sin(2t + 1)y = sin 2t
y = sin(2t + 1)

y = sin(2t + 1)y = sin 2t
a

y = A cos(vt + a)y = A sin(vt + a)
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7.7 Phase and time displacement of a wave 393 9

Figure 7.5 shows graphs of and .
The peak of is reached 0.5 seconds after the peak of .

We say lags sin 2t by 0.5 seconds. The time displacement of 
is seconds.

These examples lead us to the following general treatment.
Consider the wave . The angle is called the phase angle, or

simply the phase. We note that y may be written as

We call the time displacement of the wave.
a

v

y = A sin cva t +

a

v
 b d

ay = A sin(vt + a)

-0.5
sin(2t - 1)sin(2t - 1)
y = sin 2ty = sin(2t - 1)

y = sin(2t - 1)y = sin 2t

Figure 7.4
The waves

and
.y = sin(2t + 1)

y = sin 2t

Figure 7.5
The waves

and
.y = sin(2t - 1)

y = sin 2t

t

y

O

y 5 sin 2t

y 5 sin(2t 1 1)

1

21

ππ
2

0.5

t

y

O

y 5 sin(2t 2 1)

y 5 sin2t

1

21

0.5

ππ
2

Key point The phase of is radians.

The time displacement of is seconds.
a

v
y = A sin(vt + a)

ay = A sin(vt + a)

In similar manner the phase and time displacement of are 

radians and seconds.
a

v

ay = A cos(vt + a)
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Example 7.7
State the phase and time displacement of each of the following waves:
(a)
(b)

(c)

Solution
(a) Here , and so the phase is 1 radian and the time displacement is

This wave is illustrated in Figure 7.4.
(b) Here , and so the phase is radian and the time displacement is

This wave is illustrated in Figure 7.5.

(c) Here and 

and so the phase is 3 radians and the time displacement is seconds.
3

(0.5)
= 6

0.5, 3a =v =

a

v
=

-1

2
= -0.5 seconds

-1a = -1v = 2

a

v
=

1

2
= 0.5 seconds

a = 1v = 2

y = 3 cosa t

2
 + 3b

y = sin(2t - 1)
y = sin(2t + 1)

Exercises

State (i) the phase and (ii) the time
displacement of the following waves:
(a)
(b)
(c) y = 2 cos(t + 0.5)

y = sin(4t - 6)
y = 4 sin(3t + 12)

1 (d)

(e) y = 3cosa t +  4

3
b

y = sin(0.5t - 2)

Solutions to exercises

(a) 12, 4 (b) , (c) 0.5, 0.5-1.5-61 (d) , (e) , 44
3-4-2

7.8 Adding waves of the same frequency

Waves of the same angular frequency may be added together to form a new wave.
The new wave has the same angular frequency as the original waves. The trigono-
metrical identities (see Block 5) are used, especially the formulae for
and . The following examples illustrate the technique. cos(A ; B)

 sin(A ; B)

M09_CROF5939_04_SE_C09.QXD  9/21/18  11:54 AM  Page 394



7.8 Adding waves of the same frequency 395 9

Example 7.8
Express 2 in the form A , .

Solution
The angular frequency of both 2 sin 3t and 6 cos 3t is 3 radians per second. Hence,
on adding the waves, the angular frequency of the sum is also 3 radians per second
and so . Recall the trigonometrical identity from Block 5:

and so

We now compare the coefficients of sin 3t and cos 3t on the left-hand and right-
hand sides.

Comparing the sin 3t coefficients we have

(1)

Comparing the cos 3t coefficients we have

(2)

Equations (1) and (2) must be solved for A and . To find A, is eliminated. This is
accomplished by squaring equations (1) and (2) and then adding the results.

Squaring equation (1) gives

(3)

Squaring equation (2) gives

(4)

Adding equations (3) and (4) gives

Hence .

To find , A is eliminated from equations (1) and (2). This is achieved by dividing

equation (1) by equation (2) and using the identity .
Dividing equation (1) by equation (2) gives

Hence

tan a = -

1

3

2

6
= -

A sin a

A cos a
 = - tan a

sin a
cos a

= tan a

a

A = 240

 = A2     using sin2 a + cos2 a = 1

 = A2(sin2 a + cos2 a)

  40 = A2 sin2 a + A2 cos2 a 

36 = A2 cos2 a

4 = A2 sin2 a 

aa

6 = A cos a

2 = -A sin a

 = -(A sin a) sin 3t + (A cos a) cos 3t

 = (A cos a) cos 3t - (A sin a) sin 3t

 = A(cos 3t cos a - sin 3t sin a)

 = A cos(3t + a)

  2 sin 3t + 6 cos 3t = A cos(vt + a)

cos(A + B) = cos A cos B - sin A sin B

v = 3

a Ú 0cos(vt + a)sin 3t + 6 cos 3t

M09_CROF5939_04_SE_C09.QXD  9/21/18  11:54 AM  Page 395



396 Block 7 Engineering waves9

Since , then lies in either the second quadrant or the fourth quadrant.
Noting from equation (1) that , then must be in the fourth quadrant.

Solving with in the fourth quadrant gives . So finally

The resulting wave has an amplitude of , an angular frequency of 3 radians per
second and a phase of 5.9614 radians.

Example 7.9
Express 2 cos 5t in the form A , .

Solution
The angular frequency of both 2 sin 5t and 5 cos 5t is 5, and so the resultant wave has
an angular frequency of 5, that is .

Recall the trigonometrical identity for :

Hence

Comparing the sin 5t terms on both sides gives

(5)

Comparing the cos 5t terms on both sides gives

(6)

To eliminate from equations (5) and (6), the equations are squared and then added.
Squaring the equations gives

and then adding gives

Hence .
To eliminate A, equation (6) is divided by equation (5) to give

 tan a = 2.5

 = tan a

 
5

2
=

A sin a

A cos a
 

A = 229

 = A2

 = A2(cos2 a + sin2 a)

  29 = A2 cos2 a + A2 sin2 a

  25 = A2  sin2 a

  4 = A2  cos2 a

a

5 = A sin a

2 = A cos a

 = (A cos a) sin 5t - (A sin a) cos 5t

 = A(sin 5t cos  a - sina cos 5t)

 = A sin(5t - a)

  2 sin 5t - 5 cos 5t = A sin(vt - a)

sin(A - B) = sin A cos B - sin B cos A

sin(A - B)
v = 5

a Ú 0sin(vt - a) sin 5t - 5

240

2 sin 3t + 6 cos 3t = 240 cos(3t + 5.9614) 

a = 5.9614atan a = -

1

3

asin a 6 0
atan a 6 0
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We note that and from equation (5) that , so must be in the
first quadrant:

So

Example 7.10
Express sin 2t in the form A , .

Solution
The angular frequency of both cos 2t and 2 sin 2t is

Hence the angular frequency of the resulting wave is also 2, that is .
Recall from Block 5 the trigonometrical identity

Hence

So we have

Comparing the sin 2t terms on both sides of the equation gives

(7)

Comparing the cos 2t terms on both sides of the equation gives

(8) 

Squaring equations (7) and (8) and then adding gives

and so .
To determine , equation (8) is divided by equation (7). This gives

Recognising that is in the quadrant we see that

Hence

25 sin(2t + 2.6779)cos 2t - 2 sin 2t =

tan- 1(-0.5) = 2.6779a =

seconda

-0.5tan a =

a

A = 25

 5A2
=

 A sin a1 =

 A cos a-2 =

cos 2t - 2 sin 2t = A cos a sin 2t + A sin a cos 2t

A cos a, A sin acos 2t sin 2t + =

A(sin 2t cos a + sin a cos 2t) =

 = A sin(2t + a)

 cos 2t - 2 sin 2t = A sin(vt + a)

sin A cos B + sin B cos Asin(A + B) =

v = 2

2

a Ú 0 sin(vt + a)cos 2t - 2

2 sin 5t - 5 cos 5t = 229 sin(5t - 1.1903)

a = tan- 1 2.5 = 1.1903

a cos a 7 0 tan a 7 0
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Exercises

Express 6 cos 3t in the form
A , .

Express 2 sin t in the form
A sin( ), . State the maximum
value of 2 sin t.cos t + 6

a Ú 0vt - a

 cos  t + 62

a Ú 0cos(vt + a)
sin 3t - 71 Express 5 in the form

A , .

Show that the maximum value of

a cos is .2a2
+ b2vtsin vt + b

4

a Ú 0cos(vt - a)
sin 2t + cos 2t3

Solutions to exercises

240 sin(t - 5.9614),240 2

285 cos(3t + 3.8502)1 226 cos(2t - 1.3734)3

End of block exercises

State the amplitude of the functions in questions 1–5.

sin 2t

cos 3t

For questions 6–10 state the angular frequency of
the functions given in questions 1–5.

For questions 11–15 state the period of the functions
in questions 1–5.

For questions 16–20 state the frequency of the
functions in questions 1–5.

State the phase of the functions in questions 21–25.

y = sin(0.5t + 3)24

y = cosa 3t - 1

2
b23

y = 2.3 cos(4t - 2)22

y = 3 sin(t + 2)21

y =

5 cos 3t

3
 5

y = cosa 2t

3
b4

y =

4

3
 sina t

2
b3

y = 22

y = 31

For questions 26–30 state the time displacement of
the functions in questions 21–25.

Express 3 cos 5t in the form
A , .

Express 2 in the form
A , .

Express sin cos 4t in the form
A , .

Express cos sin t in the form
A , .

Express 4 cos 2t in the form
A , .

Express 5 cos 3t in the form
A , .

Express cos t in the form
A , .

Express cos 2t in the form
A , .a Ú 0cos(vt - a)

sin 2t + 4-238

f Ú 0cos(vt - f)
sin t - 337

a Ú 0sin(vt - a)
sin 3t - 336

f Ú 0sin(vt - f)
sin 2t + 535

a Ú 0cos(vt + a)
t - 734

f Ú 0cos(vt + f)
4t + 333

f Ú 0sin(vt + f)
cos 3t - sin 3t32

a Ú 0sin(vt + a)
sin 5t + 631

y = sina2t

3
-

p

2
b25
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End of chapter exercises 399

2

6

220 cos(2t - 5.8195)38

210 cos(t - 2.8198)37

234 sin(3t - 0.5404) 36

241 sin(2t - 5.3871)35

250 cos(t + 1.4289)34

210 cos(4t + 5.9614)33

25 sin(3t + 2.0344)32

245 sin(5t + 1.1071) 31

-

3p

4
30

29

-

1

3
28

-

1

2
27

26

9

Solutions to exercises

3

2

1

2

3

3

4p13

2p

3
12

p11

10

2
39

1
28

7

6

5
35

4

4
33

2

1

2

3

-

p

2
25

24

-

1

2
23

-222

21

3

2p
20

1

3p
19

1

4p
18

3

2p
17

1
p

16

2p

3
15

3p14

End of chapter exercises

Convert the following angles to radians, giving
your answer to 4 d.p.:
(a) 40° (b) 100° (c) 527° (d) 

Convert the following angles in radians to
degrees:

(a) (b) (c) (d) (e) 1.25

(f) 9.6314 (g) 3

Evaluate
(a) cosec 37° (b) cot 1.3 (c) sec 40°

An arc of a circle, radius 5 cm, subtends an
angle of radians at the centre. Calculate the
length of the arc.

A sector of a circle, radius 9 cm, has an area of
. Calculate the angle subtended at the

centre by the sector.
100 cm2

5

3p
4

4

3

1.25p
4p

3

p

3

p

2

2

-200°

1 Express 6 cos 2t in the form
A , .

If and , state the
quadrant in which lies.

If and , state the
quadrant in which lies.

Express cos sin t in the form
A , .

A voltage source, v(t), varies with time, t,
according to

State (a) the angular frequency, (b) the phase,
(c) the amplitude, (d) the period, (e) the time
displacement, (f) the frequency of the voltage.

v(t) = 50 sin(pt + 10)

10

a Ú 0sin(vt - a)
t +

1
29

f

sin f 7 0tan f 6 08

f

cos f 7 0sin f 6 07

a Ú 0cos(vt - a)
sin 2t - 36
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9

Solve

Solve

Simplify .

Express 5 sin 3t in the form
A , .

Show that
(a)
(b)

(a) Sketch , 
.

(b) On the same axes, sketch .
(c) Use your graphs to obtain approximate

solutions of

A current, i(t), varies with time, t, and is given by

(a) Find the time when the current is first zero.
(b) Find the time when the current reaches its

first peak.

i(t) = 30 cos(t - 0.4) t Ú 0

17

sin x = cos(x - 20°)

y = sin x
0° … x … 360°

y = cos(x - 20°)16

1 + cot2 u = cosec2 u

tan2 u + 1 = sec2 u

15

a Ú 0cos(vt + a)
 cos 3t + 214

sin u cos u tan u + cos2 u13

sin 2u = -0.4010 0 … u … 2p

12

3 cos u = 1.2 0 … u … 2p

11 Solve

If and , state the
range of possible values for .

Simplify

Solve

Solve

A voltage, v(t), has the form

(a) Calculate the maximum value of v.
(b) Calculate the first time that this maximum

value occurs.

2 sin t + cos t t Ú 0

23

cosa u - 30°

3
b = -0.6010 0 … u … 720°

22

tana2x

3
b = 0.7 0 … x … 2p

21

(sin u + cos u)2
- sin 2u

20

u

 cos 2u 6 00 … u … 2p19

  0° … u … 360°

 sin u cos 41° + sin 41° cos u = 0.6100

18

Solutions to exercises

(a) 0.6981 (b) 1.7453 (c) 9.1979
(d)

(a) 90° (b) 60° (c) 240° (d) 225° (e) 71.62°
(f) 551.84° (g) 171.89°

(a) 1.6616 (b) 0.2776 (c) 1.3054

11.78 cm

2.4691 radians

fourth quadrant

second quadrant

1.1180 

(a) (b) 10 (c) 50 (d) 2 (e) (f) 0.5
10
p

p10

sin(t - 5.8195)9

8

7

245 cos(2t - 2.0344)6

5

4

3

2

-3.4907
1 1.1593, 5.1239

1.7771, 2.9353, 4.9187, 6.0769

1

(c) 55°, 235°

(a) 1.9708 (b) 0.4

101.41°, 356.59°

1

0.9161, 5.6285

410.82°

(a) (b) 1.10712523

22

21

20

p

4
6 u 6

3p

4
, 

5p

4
6 u 6

7p

4
19

18

17

16

229 cos(3t + 5.9027)14

13

12

11

400 Block 7 Engineering waves
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Chapter 10
Further trigonometry

The chapter opens with a statement of Pythagoras’s theorem. This
famous theorem relates the lengths of the sides of a right-angled
triangle. A triangle is solved when all its angles and the lengths of all
its sides have been found. Methods are covered for solving right-
angled triangles.

Blocks 2 and 3 deal with the sine and cosine rules. These are used to
solve any triangle. Conditions under which the rules can be applied are
clearly stated.

The application of the solution of triangles in surveying is covered in
Block 4. Finally trigonometry is applied to the resolution and addition
of forces.
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Chapter 10 contents

Block 1 Pythagoras’s theorem and the solution of right-angled
triangles

Block 2 Solving triangles using the sine rule

Block 3 Solving triangles using the cosine rule

Block 4 Surveying

Block 5 Resolution and resultant of forces

End of chapter exercises
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BLOCK 1
Pythagoras’s theorem and the solution 
of right-angled triangles

1.1 Introduction

We introduce some common terms and notation used for right-angled triangles.
Consider a right-angled as shown in Figure 1.1.^ ABC

B

CA AC � b

BC � aAB � c

Figure 1.1
A right-angled

.^ABC

There is a right angle at C; the hypotenuse is AB. The side AC is opposite B. A
common notation is to refer to the length of AC as b. Similarly, BC is opposite A and
so the length of BC is written as a. Finally, the hypotenuse AB is opposite C and so
is labelled c. In summary we have

The convention of referring to sides of a triangle in such a way is not restricted to
right-angled triangles. It is used for any triangle.

1.2 Pythagoras’s theorem

Pythagoras’s theorem can only be applied to right-angled triangles. Consider the
right-angled in Figure 1.1. Then Pythagoras’s theorem states^ABC

a = BC, b = AC, c = AB

c 2
= a 2

+ b 2Key point

Thus the square of the hypotenuse equals the sum of the squares of the other two
sides.
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404 Block 1 Pythagoras’s theorem and the solution of right-angled triangles10

Example 1.1
In in Figure 1.1, and . Calculate AB.

Solution
We have and . We need to find AB, that is c. By
Pythagoras’s theorem we know

The hypotenuse, AB, is 16.64 cm.

Example 1.2
Consider in Figure 1.1. Given and calculate BC.

Solution
We have and  
We seek BC, that is a. Using Pythagoras’s theorem

The length of BC is 14.31 cm.

2204.75 = 14.31 a =

192 - 12.52
= 204.75 a2

=

12.52 192
= a2

+

c2
= a2

+ b2

12.5b =c = AB = 19

AC = 12.5 cmAB = 19 cm^ABC

  c = 2277 = 16.64

 = 277

 = 142
+ 92

 c2 = a2
+ b2

a = BC = 14b = AC = 9

BC = 14 cmAC = 9 cm^ABC

Exercises

has a right angle at B. Given
, , calculate the

length of AC.

has a right angle at P. If ,
, calculate the length of PQ.QR = 4.9 m

PR = 3.2 m^PQR2

BC = 12 cmAB = 7 cm
^ABC1 has a right angle at E. Given

and , calculate the
length of CE.

DE = 37 mmCD = 55 mm
^CDE3

Solutions to exercises

13.89 cm

3.71 m2

1 40.69 mm3

M10_CROF5939_04_SE_C10.QXD  9/21/18  12:31 PM  Page 404



1.3 Solving right-angled triangles 405 10

1.3 Solving right-angled triangles

When asked to solve a triangle we need to calculate all the unknown angles and all
the unknown sides. Sometimes we are asked to calculate only specified angle(s)
and/or side(s). The following examples illustrate the method. You should be aware
that the sum of the angles in any triangle is 180°.

Example 1.3
As shown in Figure 1.2, has a right angle at C, and .
Calculate (a) AC and (b) AB.

BC = 9 cmA = 53°^ABC

B

C

9 cm

A
53°

Figure 1.2

Solution

(a)

(b)

Example 1.4
has a right angle at Y, and .

(a) Sketch .
(b) Calculate XY.
(c) Calculate YZ.

Solution
(a) is illustrated in Figure 1.3.^XYZ

^XYZ
XZ = 12 cmX = 26°^XYZ

 = 11.2692

 AB =

9

sin 53°
 

 sin 53° =

9

AB

 sin A =

BC

AB

 = 6.7820

 AC =

9

tan 53°
 

 tan 53° =

9

AC

 tan A =

BC

AC
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406 Block 1 Pythagoras’s theorem and the solution of right-angled triangles10

(b)

(c)

Example 1.5
has a right angle at L, and . It is illustrated in

Figure 1.4. Calculate (a) KL and (b) KM.
ML = 14 cmM = 25°^KLM

 12 sin 26° = 5.2605 YZ =

YZ

12
  sin 26° =

 sin X =

YZ

XZ

 12 cos 26° = 10.7855 XY =

 cos 26° =

XY

12

 cos X =

XY

XZ

X

Y Z

26°
12 cm

Figure 1.3

M

LK

25°
14 cm

Figure 1.4

Solution

(a)

6.5283 KL =

 tan 25° =

KL

14

 tan M =

KL

ML
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1.3 Solving right-angled triangles 407 10

(b)

Example 1.6
has a right angle at P, and .

(a) Sketch .
(b) Calculate PQ.
(c) Calculate PR.

Solution
(a) is illustrated in Figure 1.5.^PQR

^PQR
QR = 18 cmQ = 39°^PQR

14

cos 25°
= 15.4473 KM =

ML

KM
 =

14

KM
  cos M =

P

R

Q
39°

18 cm

Figure 1.5

(b)

(c)

Example 1.7
has , and .

(a) Sketch .
(b) Solve .

Solution
(a) is illustrated in Figure 1.6.^ABC

^ABC
^ABC

BC = 9 cmAC = 14 cmC = 90°^ABC

18 sin 39° = 11.3278 PR =

PR

QR
=

PR

18
  sin 39° =

 18 cos 39° = 13.9886 PQ =

PQ

QR
=

PQ

18
 cos 39° =

14 cm C

B

A

9 cm

Figure 1.6
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408 Block 1 Pythagoras’s theorem and the solution of right-angled triangles10

(b) We need to find A, B and AB. First we find A.

B may now be found. The sum of the angles in any triangle is 180° and so

Finally using Pythagoras’s theorem we have

Example 1.8
XYZ is a right-angled triangle as shown in Figure 1.7, with and

. Solve .^XYZYZ = 14 cm
XY = 23 cm

 = 16.64
 AB = 2277

 = 277
 = 92

+ 142
  (AB)2

= (BC)2
+ (AC)2

  B = 57.26°

 = 180° - 32.74° - 90°

  B = 180° - A - C
  A + B + C = 180°

 = 32.74°

  A = tan-1a 9

14
b

 =

9

14

 tan A =

BC

AC

23 cm

Z

Y

X

14 cm

Figure 1.7

Solution
We need to find X, Y and XZ. We find X first.

Y may now be found.

52.50°  Y =

180°  X + Y + Z =

sin-1a14

23
b = 37.50°  X =

14

23
 sin X =

M10_CROF5939_04_SE_C10.QXD  9/21/18  12:31 PM  Page 408



Example 1.9 Materials Engineering – Measuring the hardness 
of a material

We have already noted in Example 7.7 in Chapter 5 that measuring the hardness of a
material is important in materials engineering. This is particularly the case in life-
critical systems which experience significant stresses, such as aircraft parts where
material failure can be, and has been, catastrophic. The Vickers hardness test
involves applying a known force through a square-based pyramid-shaped indenter
(Figure 1.8(a), where point Q is the apex of the pyramid) into a metal surface. 
The surface area, , of the resulting indentation is then calculated and the Vickers
hardness (HV) is given by the formula 

where is the applied force (in newtons) and the surface area, is measured 
in mm2. 

To calculate the surface area of the indentation a microscope is used to measure
the lengths of the two diagonals, and (Figure 1.8(b)). Ideally but
material imperfections mean that this is not necessarily the case. Their average is 

calculated as . We then assume that the diagonal length is accurately

represented by the value of 

(a) Show that the surface area of the indentation is given by 

where is the angle between opposite faces of the pyramid indenter as shown
in Figure 1.8(c, d). 

(b) A hardness test is performed by using a square-based diamond pyramid
indenter in which the angle between the opposite faces of the pyramid is 
and the applied force is 1000 N. The two diagonal distances are measured as

Calculate the surface area, of the indentation
and deduce the Vickers hardness, HV. 

A,d1 = 0.88 mm, d2 = 0.90 mm.

136°

u

A =

D2

2 sin (u>2)

D.

D =

d1 + d2

2

d1 = d2,d2d1

A,F

HV =  0.102 *

F

A

A

1.3 Solving right-angled triangles 409 10

Using Pythagoras’s theorem we can find XZ.

2333 = 18.25XZ =

(XY)2 - (YZ)2
= 333(XZ)2

=

(XY)2
= (XZ)2

+ (YZ)2

Figure 1.8 Q

d2

d1

Q

R

P P R

Q

q

(a) (b)

(c) (d)
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Solution
(a) Note that the surface area of the indentation is made up of four triangular sides.

We first calculate the length of the base of the triangular sides using the known
diagonal length and Pythagoras’s theorem. Figure 1.9 shows the base of the
pyramid and the diagonal length We have labelled the unknown length 

Then, using Pythagoras’s theorem,

from which 

This is the length of the side of the square base. Figure 1.10 shows one of the tri-
angular sides of the pyramid with the base length now shown. 

x =

D

12

 x2
=

D2

2

 D2
= x2

+ x2
= 2x2

x.D.
D

410 Block 1 Pythagoras’s theorem and the solution of right-angled triangles10

Figure 1.10

Figure 1.9

To calculate its area we need to know the length PQ; this can be determined
from Figure 1.8(d) using the right-angled triangle shown: 

and so 

Finally we can calculate the area of the triangular side of the pyramid as 

 =

D2

8 sin  
u

2

 =

1

2
*

D

12
*

D

212 sin u2

 area =  
1

2
* base * height

PQ =

1
2 D>12

sin u2
=

D

212 sin u2

sin 
u

2
=

1
2 PR

PQ

D
x

x

Q

P

D

√2
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1.3 Solving right-angled triangles 411 10

Exercises

Questions 1–3 refer to in Figure 1.1.

Find A given and .

Find B given and .

Find A given and .BC = 12 cmAC = 10 cm3

AB = 21 cmBC = 14 cm2

AB = 19 cmBC = 13 cm1

^ABC

has a right angle at R, and
. Calculate (a) PQ, (b) QR, (c) Q.

has a right angle at A, and
. Solve .^ABCAC = 17.2 cm

B = 25°^ABC5

PR = 11 cm
P = 62°^PQR4

Solutions to exercises

End of block exercises

43.17°

48.19°

50.19°3

2

1 (a) 23.43 cm (b) 20.69 cm (c) 28°

C = 65°BC = 40.70 cmAB = 36.89 cm5

4

Questions 1–3 refer to in Figure 1.1.

Find AB given and 
.

Find AC given and
.BC = 9.6 cm

AB = 12.3 cm2

BC = 6 cm
AC = 3 cm1

^ABC

Find BC given and
.

has a right angle at C, 
and . Calculate the length of BC.AC = 17 cm

AB = 21 cm^ABC4

AC = 142 cm
AB = 190 cm3

Given there are four triangular sides, the surface area of the indentation is then 

(b) The average diagonal distance is 

Then

Thus

A hardness number of this magnitude would be typical for a mild steel. 

HV = 0.102 *

F

A
= 0.102 *

1000

0.43
= 237 N>mm- 2

A =

D2

2 sin (u>2)
=

0.892

2 sin (136>2)
= 0.43 mm2

D =

d1 + d2

2
=

0.88 + 0.90

2
= 0.89

A =

D2

2 sin  
u

2
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412 Block 1 Pythagoras’s theorem and the solution of right-angled triangles10

has a right angle at Z, and
. Calculate (a) XZ, (b) YZ, (c) X.

has a right angle at D, 
and . Solve .

has a right angle at M, 
and . Calculate (a) K, (b) L, 
(c) LM.

has a right angle at T, and
. Solve .

has a right angle at V, 
and . Solve .

has a right angle at E, 
and . Calculate (a) CD, (b) C, 
(c) D.

has a right angle at K, and
. Calculate (a) KL, (b) KM,

(c) M.

has a right angle at Y, and
. Calculate (a) XY, (b) XZ, (c) Z.YZ = 13 cm

X = 42°^XYZ12

ML = 10 cm
L = 51°^KLM11

DE = 14 cm
CE = 19 cm^CDE10

^UVWVW = 6 cm
UV = 15 cm^UVW9

^RSTST = 15 cm
S = 36°^RST8

KM = 10 cm
KL = 14 cm^KLM7

^CDEDE = 19 cm
CD = 17 cm^CDE6

XY = 17 cm
Y = 47°^XYZ5

CD
6

17

B

A
θ 2θ

Figure 1.11

Figure 1.11 illustrates and ,
where C is a right angle, and

. Given and
, find .

has a right angle at F, and
. Solve .

has a right angle at Y, 
and . Solve .

has a right angle at C, 
and . Solve .^ABCAC = 2BC

AB = 30 cm^ABC16

^XYZYZ = 57 cm
XY = 40 cm^XYZ15

^DEFDF = 14 cm
E = 38°^DEF14

u∠BAD = u

∠BDC = 2uDC = 6 cm
AC = 17 cm

^BDC^ABC13

Solutions to exercises

6.71 cm

7.69 cm

126.24 cm

12.33 cm

(a) 12.43 cm (b) 11.59 cm (c) 43°

, , 

(a) 44.42° (b) 45.58° (c) 9.80

, , 

, , UW = 16.16 cmU = 21.80°W = 68.20°9

RS = 18.54 cmRT = 10.90 cmR = 54°8

7

CE = 25.50 cmC = 48.18°E = 41.82°6

5

4

3

2

1 (a) 23.60 cm (b) 36.38° (c) 53.62°

(a) 6.29 cm (b) 7.77 cm (c) 39°

(a) 14.44 cm (b) 19.43 cm (c) 48°

28.47°

, , 

, , 

, , ,
AC = 26.83 cm

BC = 13.42 cmB = 63.43°A = 26.57°16

XZ = 69.63 cmZ = 35.06°X = 54.94°15

D = 52°DE = 22.74 cmEF = 17.92 cm14

13

12

11

10
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BLOCK 2
Solving triangles using the sine rule

2.1 Introduction

Recall that by solving a triangle we mean calculating all the unknown angles and
sides. In Block 1 we solved right-angled triangles. In this block and the next we
solve triangles where there is no right angle. This is done by using either the sine rule
or the cosine rule. This block focuses on the sine rule.

2.2 The sine rule

Consider any as shown in Figure 2.1.^ABC

C

A

B

a � BC

c � AB

b � AC

Figure 2.1

c = AB.
a = BC, b = AC,

We have used the convention that the side opposite A is labelled a, and so on. The
sine rule states:

a

sin A
=

b

sin B
=

c

sin C
Key point

The rule can be used to solve a triangle when we are given either (a) one side and two
angles or (b) two sides and one angle that is not included by the given sides. The two
cases are illustrated by the following examples.
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414 Block 2 Solving triangles using the sine rule10

Example 2.1
Solve given and 

Solution
We are given two angles and a side and so the triangle can be solved using the sine
rule. We have and , and need to find C, AB and
AC.

First we calculate C.

We now apply the sine rule.

so

that is

Hence 

It is worth noting that the largest angle is always opposite the longest side, and the
smallest angle is opposite the shortest side.

Example 2.2
In , and . Solve .

Solution
Figure 2.2 illustrates the situation.

^ABCBC = 14 cmA = 21°, AC = 17 cm^ABC

C = 102°, b = AC = 9.58 cm, c = AB = 17.68 cm.

 b = 9.58 and c = 17.68

 b =

13 sin 32°

sin 46°
  and c =

13 sin 102°

sin 46°
 

 
13

sin 46°
=

b

sin 32°
=

c

sin 102°
 

 
a

sin A
=

b

sin B
=

c

sin C
 

 = 102°

 = 180° - 46° - 32°

  C = 180° - A - B

  A + B + C = 180°

a = BC = 13 cmA = 46°, B = 32°

BC = 13 cm.A = 46°, B = 32°^ABC

21°
C

B

A 17

14

Figure 2.2
Two sides and a
non-included angle
are known.
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2.2 The sine rule 415 10

We know and Since two sides and a
non-included angle are given the sine rule can be applied. We need to calculate B, C
and AB. The sine rule states

so

Hence

So

Note that there are two possible solutions for B. Both are acceptable.

Case 1: 

We calculate C.

Applying the sine rule gives

So

Solution 1 is 

Case 2: 

Here 
Applying the sine rule gives

and so

 
14

sin 21°
 =

17

sin 154.20°
=

c

sin 4.8°

 
a

sin A
 =

b

sin B
 =

c

sin C
 

C = 180° - A - B = 4.80°.

B = 154.20°

B = 25.8°, C = 133.2°, c = AB = 28.47 cm.

17 sin 133.2°

sin 25.8°
= 28.47c =

 
14

sin 21°
 =

17

sin 25.8°
 =

c

sin 133.2°
 

 
a

sin A
 =

b

sin B
 =

c

sin C
 

 = 133.2°

  C = 180° - A - B

B = 25.80°

25.80° and 154.20° =

B = sin-1(0.4352)

17 sin 21°

14
 = 0.4352sin B =

 
14

sin 21°
 =

17

sin B
 =

c

sin C
 

 
a

sin A
 =

b

sin B
 =

c

sin C
 

b = AC = 17.A = 21°, a = BC = 14
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416 Block 2 Solving triangles using the sine rule10

Hence

Solution 2 is 

Example 2.3
In , and Solve .

Solution
We are given two sides and a non-included angle and so the sine rule can be applied.
We have and We need to calculate A, B and
BC. Using the sine rule,

and so

Hence

The solution is rejected because we are given and the sum of
the angles in a triangle must equal 180°. We now calculate A.

Finally

Thus we have 

Example 2.4
Solve given and 

Solution
We are given two angles and a side, so the sine rule can be applied. We have

and We need to calculate Y, and
First we calculate Y.

75°Y =

XY = z.
XZ = yx = YZ = 11.3.X = 63°, Z = 42°

YZ = 11.3 cm.X = 63°, Z = 42°^XYZ

A = 108.61°, B = 29.39°, a = BC = 21.25 cm.

 = 21.25

 =

15 sin 108.61°

sin 42°

 a =

15 sin A

sin 42°

 = 108.61°

 A = 180° - B - C

C = 42°B = 150.61°

 = 29.39° and 150.61°

  B = sin-1(0.4907)
 = 0.4907

 sin B =

11 sin 42°

15

 
a

sin A
 =

11

sin B
 =

15

sin 42°
 

 
a

sin A
 =

b

sin B
 =

c

sin C
 

c = AB = 15.C = 42°, b = AC = 11

^ABCAC = 11 cm.C = 42°, AB = 15 cm^ABC

B = 154.20°, C = 4.80°, c = AB = 3.27 cm.

17 sin 4.8°

sin 154.20°
= 3.27c =
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2.2 The sine rule 417 10

The sine rule states

and so

Hence

Example 2.5
Solve given and 

Solution
We are given two sides and a non-included angle and so the sine rule can be applied.
We know and We need to calculate A, B
and a. Using the sine rule

we have

Hence

Both solutions are acceptable.

Case 1: 

and from the sine rule

Solution 1 is: A = 88.91°, B = 51.09°, BC = 29.55 cm.

19 sin 88.91°

sin 40°
= 29.55a =

180° - 40° - 51.09° = 88.91°Then A =

B = 51.09°

51.09° or 128.91°  B =

23 sin 40°

19
 = 0.7781 sin B =

 
a

sin A
 =

23

sin B
 =

19

sin 40°
 

 
a

sin A
 =

b

sin B
 =

c

sin C
 

AC = b = 23.C = 40°, AB = c = 19

c = 19 cm.C = 40°, b = 23 cm^ABC

11.3 sin 42°

sin 63°
= 8.49z =

11.3 sin 75°

sin 63°
= 12.25y =

 
11.3

sin 63°
 =

y

sin 75°
=

z

sin 42°

 
x

sin X
 =

y

sin Y
 =

z

sin Z
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418 Block 2 Solving triangles using the sine rule10

Case 2:

Then

and

Solution 2 is A = 11.09°, B = 128.91°, BC = 5.69 cm.

19 sin 11.09°

sin 40°
= 5.69a =

180° - 40° - 128.91° = 11.09°A =

B = 128.91°

End of block exercises

For questions 1–10 solve given

B = 18°, C = 110°, BC = 12.3 cm5

B = 21°, C = 46°, AB = 9 cm4

AB = 10 cm, BC = 6 cm, A = 32°3

AB = 15 cm, AC = 23 cm, B = 57°2

A = 36°, B = 79°, AC = 11.63 cm1

^ABC

B = 42°, C = 93°, BC = 13 cm10

AB = 27 cm, AC = 36 cm, B = 17°9

BC = 14 cm, AB = 20 cm, C = 50°8

A = 37°, B = 47°, AB = 17 cm7

AC = 29 cm, BC = 19 cm, B = 49°6

Solutions to exercises

solution 1: 
solution 2: 

A = 52°, AC = 4.82 cm, AB = 14.67 cm5

A = 113°, BC = 11.52 cm, AC = 4.48 cm4

B = 30.03°, AC = 5.67 cm
C = 117.97°,AC = 11.29 cm;

C = 62.03°, B = 85.97°,3

C = 33.16°, A = 89.84°, BC = 27.42 cm2

C = 65°, BC = 6.96 cm, AB = 10.74 cm1

A = 45°, AC = 12.30 cm, AB = 18.36 cm10

A = 150.33°, C = 12.67°, BC = 60.95 cm9

A = 32.43°, B = 97.57°, AC = 25.88 cm8

C = 96°, AC = 12.50 cm, BC = 10.29 cm7

A = 29.63°, C = 101.37°, AB = 37.67 cm6
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BLOCK 3
Solving triangles using the cosine rule

3.1 Introduction

The cosine rule, like the sine rule, can be applied to any triangle. It is used to solve a
triangle when we are given either (a) three sides or (b) two sides and the included
angle.

3.2 The cosine rule

For any the cosine rule states

  c2
= a2

+ b2
- 2ab cos C

  b2
= a2

+ c2
- 2ac cos B

  a2
= b2

+ c2
- 2bc cos A

^ABCKey point

Example 3.1
In , , and . Solve .

Solution
Figure 3.1 illustrates the given information.

^ABCB = 71°BC = 23.9 cmAB = 17.3 cm^ABC

B

A

C a � 23.9

c � 17.3

71°

Figure 3.1
Given two sides
and the included
angle, the cosine
rule can be
applied.

We are given two sides and the included angle and so the cosine rule can be used.
We have , and . We need to find A, C and
AC: that is, b. We find b first using the cosine rule.

  b = 24.52
 = 601.27
 = 23.92

+ 17.32
- 2(23.9)(17.3) cos 71°

  b2
= a2

+ c2
- 2ac cos B

B = 71°c = AB = 17.3a = BC = 23.9
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420 Block 3 Solving triangles using the cosine rule10

We now find A. We can use either the sine rule or the cosine rule to find A. Using the
sine rule,

that is

The solution is rejected because we already have and the
sum of the angles of a triangle must be 180°. Finally

Hence , , .

Example 3.2
Solve given , and .

Solution
Figure 3.2 illustrates the situation.

XZ = 29.3 cmYZ = 19.6 cmXY = 18.4 cm^XYZ

AC = 24.52 cmC = 41.84°A = 67.16°

 = 41.84°

 C = 180° - A - B

B = 71°A = 112.84°

  A = 67.16° or 112.84°

 = 0.9216

 sin A =

23.9 sin 71°

24.52

 
23.9

sin A
=

24.52

sin 71°
 

a

sin A
=

b

sin B
 

Z

Y

X y � 29.3

x � 19.6z � 18.4

Figure 3.2
Three sides of the
triangle are known
and so the cosine
rule can be
applied.

We are given three sides and so the cosine rule can be applied. We have 
19.6, and . Using the cosine rule we find X.

41.07°  X =

29.32
+ 18.42

- 19.62 

2(29.3)(18.4)
= 0.7539 cos X =

19.62
= 29.32

+ 18.42
- 2(29.3)(18.4) cos X

  x2
= y2

+ z2
- 2yz cos X

z = XY = 18.4y = XZ = 29.3
x = YZ =
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3.2 The cosine rule 421 10

Now we find Y.

Finally

Hence , , .

Example 3.3
In , , and . Figure 3.3 illustrates the
triangle. Solve .^RST

S = 105°ST = 104 cmRS = 85 cm^RST

Z = 38.08°Y = 100.85°X = 41.07°

 = 38.08°

 Z = 180° - X - Y

100.85°  Y =

19.62
+ 18.42

- 29.32 

2(19.6)(18.4)
= -0.1882

cos Y =

29.32
= 19.62

+ 18.42
- 2(19.6)(18.4) cos Y

  y2
= x2

+ z2
- 2xz cos Y

T

R

S 104

105°

85

Figure 3.3
When given two
sides and the
included angle, the
cosine rule can be
applied.

Solution
We are given two sides and the included angle and so the cosine rule can be applied.
We have , and . We need to calculate R, T
and . First s is found using the cosine rule.

s = 150.39

 = 22616.92

2(104)(85) cos 105° = 1042
+ 852

-

2rt cos Ss2
= r2

+ t2 -

s = RT
S = 105°r = ST = 104t = RS = 85
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422 Block 3 Solving triangles using the cosine rule10

Using the sine rule, R is found. We have

from which

Finally .
Hence , , .

Example 3.4
In , , and . The triangle is illustrated
in Figure 3.4. Solve .^XYZ

XZ = 81 cmYZ = 57 cmXY = 40 cm^XYZ

T = 33.09°R = 41.91°RT = 150.39
T = 180° - R - S = 33.09°

  R = 41.91°

104 sin 105°

150.39
 = 0.6680 sin R =

 
104

sin R
 =

150.39

sin 105° 
  

r

sin R
 =

s

sin S
 

Y

X

Z 57

40
81

Figure 3.4
When all three
sides of a triangle
are known, the
cosine rule can be
applied.

Solution
We are given three sides and so the cosine rule can be applied. We have

and . We need to calculate X, Y and Z. First X is
calculated. From the cosine rule we have

Substituting in the known values of x, y and z, and rearranging for cos X, gives

Now Y is found.

x2
+ z2

- 2xz cos Yy2
=

  X = 40.71°

812
+ 402 - 572 

2(81)(40)
= 0.7580 cos X =

y2
+ z2 - 2yz cos Xx2

=

z = XY = 40y = XZ = 81
x = YZ = 57,
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3.2 The cosine rule 423 10

Rearranging for cos Y yields

Finally .
Hence , , .Z = 27.24°Y = 112.05°X = 40.71°

Z = 180° - X - Y = 27.24°

  112.05°Y =

572
+ 402

- 812 

2(57)(40)
= -0.3754cos Y =

End of block exercises

In questions 1–10 solve given

, , 

, , 

, , 

, , 

, , AC = 49 cmBC = 52 cmAB = 69 cm5

C = 51°AC = 92 cmBC = 36 cm4

A = 29°AB = 76 cmAC = 105 cm3

B = 100°BC = 41 cmAB = 29 cm2

AC = 26 cmBC = 37 cmAB = 42 cm1

^ABC

, , 

, , 

, , 

, , 

, , AC = 62 cmBC = 70 cmAB = 80 cm10

A = 42°AC = 30 cmAB = 21 cm9

B = 60°BC = 36 cmAB = 36 cm8

C = 45°AC = 27 cmBC = 17 cm7

AC = 41 cmBC = 30 cmAB = 32 cm6

Solutions to exercises

, , 

, , 

, , 

, , 

, , C = 86.13°B = 45.11°A = 48.76°5

A = 21.97°B = 107.03°AB = 74.78 cm4

C = 43.72°B = 107.28°a = BC = 53.31 cm3

C = 31.81°A = 48.19°AC = 54.18 cm2

C = 81.61°B = 37.76°A = 60.63°1 , , 

, , 

, , 

, , 

, , C = 74.33°B = 48.26°A = 57.40°10

C = 44.31°B = 93.69°a = BC = 20.12 cm9

C = 60°A = 60°AC = 36 cm8

c = AB = 19.21 cmB = 96.25°A = 38.75°7

C = 50.73°B = 82.73°A = 46.54°6
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The angle 36 degrees 21 minutes and 4 seconds is written as 36°21�04�. Many
calculations express angles in decimal format, for example 36.3511°. It is useful to
be able to convert from decimal format to degrees/minutes/seconds and vice versa.
To retain the accuracy required for surveying, angles in decimal format should be
given to 4 decimal places.

Example 4.1
Convert 36°21�04� to decimal format.

Solution
We note there are 60 minutes in 1 degree and 60 seconds in each minute. Hence there
are seconds in 1 degree.

To write 36°21�04� in decimal format we consider the fractional part, that is
21�04�, and express this in seconds.

and so

 21¿04¿¿ = 1264¿¿

 = 1260¿¿

 21¿ = 21 * 60

60 * 60 = 3600

BLOCK 4
Surveying

4.1 Introduction

This block considers the application of mathematics to surveying. The three areas
covered are (a) units to measure angles, (b) angles of elevation and depression, and
(c) bearings. Typical calculations in each area are included.

4.2 Units of angles

We have already introduced the units degree and radian in Chapter 9. Surveyors use
the degree. For greater accuracy the degree is subdivided into minutes denoted � and
seconds denoted �.

Key point
  1¿ = 60 seconds = 60–

  1° = 60 minutes = 60¿
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We now express 1264� as a decimal fraction.

Hence and so .

Example 4.2
Convert 42.9614° to degree/minute/second format.

Solution
The fractional part 0.9614° needs to be converted to minutes and seconds. Each
degree comprises 60 minutes and so to convert from degrees to minutes we multiply
by a factor of 60.

We now look at the fractional part, 0.684, and convert this to seconds. Each minute
comprises 60 seconds and so to convert from minutes to seconds we multiply by 60.

Hence 42.9614° may be written as 42°57�41�.

 = 41.04¿¿

 0.684¿ = 0.684 * 60¿¿

 = 57.684¿

 0.9614° = 0.9614 * 60¿

36°21¿04– = 36.3511°21¿04– = 0.3511°

 1264¿¿ =

1264°

3600
= 0.3511°

4.3 Angles of elevation and depression 425 10

Exercises

Express the following angles in degree/minute/
second format.
(a) 11.1731° (b) 14.0017° (c) 36.9213°

1 Express the following angles in decimal
format.
(a) 12°17�46� (b) 32°32�56� (c) 1°1�40�

2

Solutions to exercises

(a) 11°10�23� (b) 14°0�6� (c) 36°55�17�1 (a) 12.2961° (b) 32.5489° (c) 1.0278°2

4.3 Angles of elevation and depression

Consider a tower AB and an observer at O, as shown in Figure 4.1.
The angle e is called the angle of elevation of the tower from the point O. It is the

angle, measured from the horizontal, through which an observer must turn his or her
eyes to look at the top of the tower.
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Now consider an observer at the top of the tower, B. The angle d is called the
angle of depression. This is the angle, again measured from the horizontal, through
which an observer turns his or her eyes to look at a point O. Note that e and d have
equal magnitude.

Example 4.3 Civil Engineering – Height of a tower
An observer is 50 m from the base of a vertical tower. The angle of elevation is
11°3�17�. Calculate the height of the tower.

Solution
Figure 4.1 illustrates the situation, with and . First e is
expressed in decimal format as 11.0547°. Now consider the right-angled .

The tower is 9.77 m high.

Example 4.4 Civil Engineering – Angle of depression
An observer is on top of a vertical tower, AB, 23.7 m high. The angle of depression
of a point O is 15°42�18�. Calculate the distance of O from the foot of the tower.

Solution
Figure 4.1 illustrates the problem, with and .

First d is expressed in decimal format as

Noting that we consider .

AB

OA
 =

23.7

OA
  =

 tan e = tan 15.705°

^OBAe = d

15.705°

d = 15°42¿18–AB = 23.7 m

 50 tan 11.0547° = 9.77 AB =

AB

OA
 =

AB

50
  =

 tan e = tan 11.0547°

^OAB
e = 11°3¿17–OA = 50 m

426 Block 4 Surveying10

O A

B
d

e

Figure 4.1
The angle of
elevation is e and
the angle of
depression is d.
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4.3 Angles of elevation and depression 427 10

The point O is 84.29 m from the foot of the tower.

Example 4.5 Civil Engineering – Finding the height of a tower using
three angles of elevation

A, B and C are three points lying in a straight line. The distance AB is known to be
x, and the distance BC is known to be y. It is required to find the height, h, of a verti-
cal tower, DE. From A, B and C the angles of elevation to the top of the tower are 

, and respectively. Figure 4.2 illustrates the position.
Determine the height, h, in terms of the known quantities, x, y, , and .gba

gba

23.7

tan 15.705°
= 84.29 OA =

A x B

D

φ

h cot α
h cot β

Figure 4.3
The cosine rule is
applied to .^ADB

A CB

D

E

α β
γ

h

x y

Figure 4.2
The height, h, can
be expressed in
terms of known
distances, x and y,
and known angles

, and .gba

Solution
Consider . In this triangle, and so

Similarly by considering and we see and
We now consider and let . Figure 4.3 illustrates this triangle.∠DAB = f^ADB

CD = h cot g.BD = h cot b^CDE^BDE

 = h cot a

 AD =

h

tan a

 =

h

AD
 

 tan a =

DE

AD

∠ADE = 90°^ADE
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428 Block 4 Surveying10

Applying the cosine rule to gives

from which

(1)

Next we consider , as illustrated in Figure 4.4.^ADC

cos f =

(h cot a)2
+ x2 - (h cot b)2 

2xh cot a

(h cot b)2
= (h cot a)2

+ x2 - 2xh cot a(cos f)

^ADB

A x � y C

D

φ

h cot α
h cot γ

Figure 4.4
The cosine rule is
applied to .^ADC

Applying the cosine rule to gives

from which

(2)

We have two expressions for given by (1) and (2). Equating these yields

This equation is rearranged to make h the subject.

 h = A
xy(x + y)

x (cot2 g - cot2 b) + y (cot2 a - cot2 b)
 

h2
=

xy(x + y)

x (cot2 g - cot2 b) + y (cot2  a - cot2 b)
 

  h2 [x(cot2 g - cot2 b) + y(cot2 a - cot2 b)] = xy(x + y)

 -xh2 cot2 b + yh2 cot2 a - yh2 cot2 b = x2 y + xy2
- xh2 cot2 g

 (x + y)(h2 cot2 a + x2
- h2 cot2  b) = x(h2  cot2 a + x2

+ 2xy + y2
- h2  cot2 g)

 
h2 cot2 a + x2

- h2 cot2  b

x
=

h2 cot2 a + x2
+ 2xy + y2

- h2 cot2  g

x + y

(h cot a)2
+ x2

- (h cot b)2 

2xh cot a
=

(h cot a)2
+ (x + y)2

- (h cot g)2 

2(x + y)h cot a
 

cos f

cos f =

(h cot a)2
+ (x + y)2

- (h cot g)2 

2(x + y)h cot a

(h cot g)2
= (h cot a)2

+ (x + y)2 - 2(x + y)h cot a (cos f)

^ADC
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Example 4.6
A, B and C are points lying on a straight line. The distance from A to B is 40 m, the
distance from B to C is 70 m. The angles of elevation to the top of a tower from A, B
and C are 21°, 27° and 24° respectively. Calculate the height of the tower.

Solution
We use the notation and result of Example 4.5, that is , ,

, , .
If h is the height of the tower then

The tower is 34.88 m high.

 = 34.88

  h = A
40(70)(40 + 70)

40(cot2 24° - cot2 27°) + 70(cot2 21° - cot2 27°)
 

g = 24°b = 27°a = 21°

BC = y = 70AB = x = 40

4.4 Bearings 429 10

Exercises

From a point 26.3 m from the foot of a tower
the angle of elevation to the top of the tower is
29.27°. Calculate the height of the tower.

A tower is 36 m high. Calculate the angle of
elevation to the top of the tower from a point
50 m from the base of the tower.

2

1 The angle of depression to the point O from
the top of a tower 17 m high is 12°17�.
Calculate the distance of O from the foot of
the tower.

3

Solutions to exercises

14.74 m

35.75°2

1 78.08 m3

4.4 Bearings

A bearing is the angle that a line makes with some reference direction, usually north.
Bearings are measured clockwise from north. (Note the different conventions: in
mathematics clockwise angles are considered negative; in surveying clockwise
angles are considered positive.) In Figure 4.5, OA has a bearing of 58°31�, OB has a
bearing of 100°17� and OC has a bearing of 301°49�.

Example 4.7
A ship leaves harbour and sails for 19.1 km on a bearing of 47°17�. It then changes
direction and travels for 12 km on a bearing of 100°25�. Calculate the distance from
the harbour to the ship.
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Solution
Figure 4.6 illustrates the ship’s movement, starting from the harbour at O.

430 Block 4 Surveying10

The ship travels 19.1 km on a bearing of 47°17�. This is represented by OA. It then
travels 12 km on a bearing of 100°25�: this is represented by AB. The final position of
the ship is B. We seek the distance OB.

Clearly and . Consider .

Now

Hence

 = 126.8667°

 = 126°52¿

 = 47°17¿ + 79°35¿

 ∠OAB = ∠OAC + ∠BAC

 = 79°35¿

 ∠BAC = 180° - 100°25¿

 = 47°17¿

 = 90° - 42°43¿

 ∠OAC = 90° - ∠AOC
 = 42°43¿

 ∠AOC = 90° - 47°17¿

^OACAB = 12.0OA = 19.1

O

C

A

B

58°31'

301°49'

100°17'

NorthFigure 4.5
Bearings are
measured
clockwise from
north.

O C

North

47°17'

A

B

100°25'

12 km
19.1 km

Figure 4.6
The ship moves
from the harbour at
O to A and then B.

M10_CROF5939_04_SE_C10.QXD  9/21/18  12:31 PM  Page 430



We now apply the cosine rule to .

The ship is 28 km from the harbour.

Example 4.8
A ship travels 17.1 km on a bearing of 120°35�. It then travels 24 km on a bearing of
275°20�.
(a) Find the distance of the ship from its starting position.
(b) Find the bearing the ship must take so that it can travel in a straight line back to

its starting position.

Solution
Figure 4.7 illustrates the movement of the ship, starting at O. The final position of
the ship is B.

 OB = 28.00

 = 783.83

 = (19.1)2
+ 122

- 2(19.1)(12) cos 126.8667°

 OB2
= OA2

+ AB2
- 2(OA)(AB) cos 126.8667°

¢OAB

4.4 Bearings 431 10

O

C
B

North

A

120°35'

275°20'

α

αβ

γ

17.1

24

Figure 4.7
The ship travels on
a bearing of
120°35� to A, and
then on a bearing
of 275°20� to B.

(a) We need to find the distance OB. The angles and are determined, and then
the cosine rule is applied to .

The cosine rule is applied to .

The ship is 11.23 km from its starting position.

OB = 11.23

126.0332(OB)2
=

^OAB

 = 25°15¿

 = 360° - 275°20¿ - 59°25¿

 b = 360° - 275°20¿ - a

180° - 120°35¿ = 59°25¿a =

^OAB
ba
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432 Block 4 Surveying10

(b) The bearing that the ship must take to return to its starting point is . We note
that

and 

The sine rule is applied to .

from which

, 

In any triangle the longest side is always opposite the largest angle. Referring
to Figure 4.7, in which the longest side is AB � 24km, it follows that 
must equal 114�16� and hence � 54�51� is accepted as the required
bearing. 

g

a + g

54°51¿ g = 6°19¿

65°44¿, 114°16¿ a + g =

24 sin 25°15¿

11.23
= 0.91163sin(a + g) =

 
24

sin(a + g)
=

11.23

sin 25°15¿

 

 
24

sin BOA
 =

11.23

sin BAO
 

^OAB

a + g∠BOA =∠BOC = g

g

Exercises

A ship travels for 10 km on a bearing of 30°. It
then follows a bearing of 60° for 20 km.
Calculate the distance of the ship from the
starting position.

An aeroplane flies 150 miles on a bearing of
105° and then 107 miles on a bearing of 217°.
Find the bearing that the aeroplane must take
to fly directly back to the starting position.

2

1 A ship travels 50 km from O on a bearing of
290° to get to position A. From A it heads
directly to B. Position B is 90 km from O on a
bearing of 190°.
(a) Calculate the distance AB.
(b) Calculate the bearing the ship must follow

from A to arrive directly at B.

3

Solutions to exercises

29.09 km

327.07°2

1 (a) 110.29 km (b) 163.48°3
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4.4 Bearings 433 10

End of block exercises

Convert the following angles to degree/
minute/second format:
(a) 39.4613° (b) 101.0913° (c) 1.0036°

Convert the following angles to decimal
format:
(a) 21°31�46� (b) 19°49�17� (c) 1°1�1�

The angle of elevation to the top of an aerial is
21°31�2� when measured from a point 41.6 m
from the base of the aerial. Calculate the
height of the aerial.

The angle of elevation to the top of a tower is
23°0�17� when measured from a point 51.5 m
from the base of the tower. Calculate the
height of the tower.

A vertical tower AB is situated on a ramp, as
shown in Figure 4.8.

5

4

3

2

1 (a) Find the distance of the ship from its
starting point.

(b) Calculate the bearing the ship must take to
go directly back to its starting point.

The angle of elevation to the top of a tower is
when measured from a point
from the base of the tower.

Calculate the maximum and minimum
possible heights of the tower.

A tower AB leans, being 3° from the vertical
position. From C the angle of elevation to the
top of the tower is 42°. C is 17 m from the
base of the tower. Figure 4.9 illustrates the
problem.

8

27.00 ; 0.5 m
19°30¿ ; 15¿

7

From C, the angle of elevation to the top of
the tower is 17°; the angle of depression to the
foot of the tower is 12°. Given that C is 35 m
from the tower, calculate the height of the
tower.

A ship travels for 9.3 km on a bearing of
36°19�. It then changes its bearing to 100°00�
and travels for 12.2 km.

6

Calculate
(a) the length of the tower AB
(b) the height of B above the horizontal AC.

A ship starts at O and travels for 10 km on a
bearing of 42°10� to arrive at A. From O point
B has a bearing of 90° (i.e. due east of O) and
is distant 21 km from O. Calculate the bearing
the ship must take from A so as to travel
directly to B.

9

A

B

C
42°

3° 

17 m

Figure 4.9

C

A

B

17°
12°

35 m

Figure 4.8
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434 Block 4 Surveying10

Solutions to exercises

(a) 39°27�41� (b) 101°5�29� (c) 1°0�13�

(a) 21.5294° (b) 19.8214° (c) 1.0169°

16.40 m

21.87 m

18.14 m5

4

3

2

1 (a) 18.33 km (b) 252°57�12�

Minimum height is 9.25 m, maximum height
is 9.87 m.

(a) 14.64 m (b) 14.62 m

117°25�11�9

8

7

6
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BLOCK 5
Resolution and resultant of forces

5.1 Introduction

Many engineering problems involve calculations involving forces. To specify a force
both its magnitude and its direction must be known. The unit of force is the newton,
N. For example, a force may be described as 10 N acting at 40° to the horizontal. This
force is illustrated in Figure 5.1.

The length of the line represents the magnitude of the force and the direction of
the line shows the direction of the force.

5.2 Resolution of a force

A single force may be replaced by two forces acting at right angles to each other.
Together these forces are equivalent to the original single force. The process of
replacing a single force by two perpendicular forces is called resolution. The single
force is said to have been resolved into two forces at right angles to one another. The
following example shows how to resolve a force.

Example 5.1
Resolve the force shown in Figure 5.1 into a horizontal and vertical force.

Solution
Figure 5.2 illustrates the resolution of the 10 N force.

Consider the magnitude of the horizontal component. contains the relevant
information, with OB representing the horizontal force. Then

^OAB

y

xO

10 N

40°

Figure 5.1
A force has
magnitude and
direction.
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436 Block 5 Resolution and resultant of forces10

The horizontal force is 7.66 N.
Similarly the vertical force may be calculated using . OC represents the

vertical force. Then

The vertical force is 6.43 N. It is useful to note that the vertical force can also be
found by calculating AB in . In this triangle

The vertical force is 6.43 N.
Hence the 10 N force in Figure 5.1 may be resolved into a 7.66 N force acting

horizontally and a 6.43 N force acting vertically.

 = 6.43

 AB = 10 sin 40°

 =

AB

10
 

 sin 40° =

AB

OA

^OAB

 = 6.43

 OC = 10 cos 50°

 =

OC

10
 

 cos 50° =

OC

OA

 = 50°

 ∠COA = 90° - 40°

^OCA

 = 7.66

 OB = 10 cos 40°

 =

OB

10
 

 cos 40° =

OB

OA

y

xO

10 N

40° 40°

y

xO

C

B

A

10

Figure 5.2
A force may be
resolved into two
perpendicular
forces.
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5.2 Resolution of a force 437 10

Example 5.2
A force of 17 N acts at 35° to the negative x axis as shown in Figure 5.3. Resolve the
force into two forces, one in the x direction and one in the y direction.

y

xO

17 N

35°

A

Figure 5.3
A force of 17 N
acts at 35° to the
negative x axis.

O

17

35°

A

B

Figure 5.4
The horizontal
force is represented
by OB; the vertical
force is represented
by BA.

Solution
The horizontal force is represented by OB as shown in Figure 5.4.

From 

The vertical force is represented by BA. From 

The 17 N force is equivalent to 13.93 N acting in the negative x direction and 9.75 N
acting in the y direction.

17 sin 35° = 9.75 AB =

AB

OA
=

AB

17
  sin 35° =

^OBA

17 cos 35° = 13.93 OB =

 =

OB

17
 

 cos 35° =

OB

OA

^OBA
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438 Block 5 Resolution and resultant of forces10

Example 5.2 illustrates the general result:

Key point The horizontal component

The vertical component = R sin u

= R cos uy

x

R

θ

Figure 5.5

Exercises

A 23 N force acts at 71° to the horizontal axis.
Resolve the force into forces acting
horizontally and vertically.

A 40 N force acts at 54° to the horizontal.
Resolve the force into horizontal and vertical
forces.

2

1 A 12 N force acts at 43° to the vertical.
Resolve the force into horizontal and vertical
forces.

3

Solutions to exercises

7.49 N horizontally, 21.75 N vertically

23.51 N horizontally, 32.36 N vertically2

1 8.18 N horizontally, 8.78 N vertically3

5.3 Resolving on an inclined plane

Figure 5.6 illustrates a plane inclined at angle to the horizontal. Resting on the
plane at O is a body of mass m kg. The body experiences a vertical force mg N due
to its weight, as illustrated. Here, g is a constant called the acceleration due to grav-
ity. It is often required to resolve this force into forces that are parallel and perpen-
dicular to the plane.

Figure 5.7 shows the force resolved into forces OA down the plane, and OB per-
pendicular to the plane. Note that has been labelled and .
Side OC is the hypotenuse of the right-angled triangle OAC. Furthermore,

sin a = cos u and cos a = sin u

a = 90° -  ua∠AOC

u
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5.3 Resolving on an inclined plane 439 10

In 

so

Also

so

Note also that

So the component parallel to the plane is

The component perpendicular to the plane is

Note the limiting case. If then the plane is horizontal and intuitively there is
no component parallel to the plane. Evaluating the component parallel to the plane,
mg sin with agrees with the intuitive result.u = 0°u

u = 0°

 = mg cos u

 OB = OC cos u

 = mg sin u

 OA = OC sin u

OB = AC = OC cos u

 = OC cos u

 AC = OC sin a

sin a =

AC

OC

 = OC sin u

 OA = OC cos a

cos a =

OA

OC

^AOC

θ

O

mg

Figure 5.6

θ

α

O

C

A

B

Figure 5.7

For a vertical force mg N and a plane inclined at to the horizontal:

• Component parallel to plane
• Component perpendicular to plane = mg cos u

= mg sin u

u°Key point
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440 Block 5 Resolution and resultant of forces10

Example 5.3
A body of mass 6 kg rests on a plane inclined at 15° to the horizontal. Find the com-
ponent of the weight (a) perpendicular to the plane, (b) parallel to the plane.

Solution
Here and .
(a) The force perpendicular to the plane is

(b) The force parallel to the plane is

 = 1.5529g N

 mg sin u =  6g sin 15°

 = 5.7956g N

 mg cos u = 6g cos 15°

u = 15°m = 6

Exercises

A body of mass 10 kg rests on a plane inclined
at 20° to the horizontal. Calculate the
component of the weight
(a) perpendicular to the plane
(b) parallel to the plane.

1 A body of mass 1 kg rests on an inclined
plane. The force perpendicular to the plane is
0.9g N. Calculate the angle of the inclined
plane.

2

Solutions to exercises

(a) 9.3969g N (b) 3.420g N1 25.84°2

5.4 Resultant of a set of forces

In Section 5.2 we saw how a single force can be resolved: that is, expressed as 
two forces acting at right angles to one another. We now examine a related 
problem, that of replacing two or more forces acting at a point by a single 
equivalent force. A single force that is equivalent to two or more forces is called 
the resultant.
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5.4 Resultant of a set of forces 441 10

Example 5.4 Mechanical Engineering – Forces in a line
A force of 6 N acts in the positive x direction and a force of 2 N acts in the negative
x direction. Calculate the resultant.

Solution
The resultant force is N acting in the x direction. Figure 5.8 illustrates this.6 - 2 = 4

xO
2 N 6 N

xO
4 NFigure 5.8

The resultant is 
4 N acting in the
x direction.

Example 5.5 Mechanical Engineering – Forces in a plane
A force of 7 N acts in the x direction and a force of 10 N acts in the negative y direc-
tion. Find the resultant force.

Solution
The forces are illustrated in Figure 5.9. The 7 N force is represented by OA; the 10 N
force is represented by OC. Let the resultant force be R. The magnitude and direction
of R must be found. contains the relevant information. Note that .
Let . Using 

tan-1 110
7 2 = 55.0° a =

AB

OA
=

10

7
 tan a =

^OAB∠AOB = a

AB = 10^OAB

y

xO
7 N

10 N

C

α

B

A

R

Figure 5.9
R is the resultant
of the 10 N force
and the 7 N force.

Using Pythagoras’s theorem,

The resultant is 12.21 N acting at 55° below the x axis.

 = 12.21

  R = 2149

 = 149

  R2
= 72

+ 102

 OB2
= OA2

+ AB2
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442 Block 5 Resolution and resultant of forces10

Example 5.6 Mechanical Engineering – Several forces acting at a point
Figure 5.10 illustrates three forces acting at the origin O.

y

xO

9 N

12 N

15 N

60° 

40° 

10° 

Figure 5.10
Three forces acting
at the origin.

By resolving each force find the resultant.

Solution
Each force is resolved into forces in the x and y directions.

The 9 N force is resolved into N acting in the x direction 

and N acting in the y direction.

The 12 N force is resolved into N in the negative x

direction and N in the y direction.

The 15 N force is resolved into N in the x direction and

N in the negative y direction.

The net total force acting in the x direction is then

The net total force acting in the y direction is

The resultant, R, may now be found. Figure 5.11 illustrates the situation.
From Figure 5.11

The magnitude of the resultant is found using Pythagoras’s theorem.

(2.3241)2
+ (1.6127)2 R2

=

34.76° u =

1.6127

2.3241
 tan u =

9 sin 60° + 12 sin 10° - 15 cos 40° = -1.6127 N

9 cos 60° - 12 cos 10° + 15 sin 40° = 2.3241 N

15 sin 40°, 15 cos 40°

12 cos 10°, 12 sin 10°

9 cos 60°, 9 sin 60°

M10_CROF5939_04_SE_C10.QXD  9/21/18  12:31 PM  Page 442



5.4 Resultant of a set of forces 443 10

The resultant is 2.83 N acting at 34.76° below the x axis.

Example 5.7 Mechanical Engineering – Several forces acting at a point
Figure 5.12 shows three forces acting at the origin O. Calculate the resultant.

2.83R =

y

x
O 2.3241 N

1.6127 N

θ

R

Figure 5.11
The resultant, R, is
found using the net
forces in the x and
y directions.

y

x

12 N

11 N

O

15 N

608

408
508

Figure 5.12
The resultant of
several forces may
be found.

Solution
Each force is resolved into forces along the x and y axes.

The 12 N force is resolved into N in the x direction and

N in the negative y direction.

The 11 N force is resolved into N in the negative x direction

and N in the negative y direction.

The 15 N force is resolved into N in the negative x

direction and N in the y direction.

The net total force in the x direction is 

The net total force in the y direction is -4.7847

-8.1690

15 cos 40°, 15 sin 40°

11 cos 50°, 11 sin 50°

12 sin 60°, 12 cos 60°
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444 Block 5 Resolution and resultant of forces10

Figure 5.13 illustrates these forces.

Exercises

Find the resultant of the forces shown in
Figure 5.14.

1

y

x

R

8.1690 N

4.7847 N

θ

Figure 5.13
The resultant force
is R.

Using Pythagoras’s theorem

and

The resultant is a force of 9.47 N acting at 30.36° below the negative x axis.

30.36° u =

4.7847

8.1690
 tan u =

9.47R =

(8.1690)2
+ (4.7847)2  R2

=

y

x

12 N

14 N

43°

40°

38°

y

x

27 N25 N

30 N

25°50°

Figure 5.14

(a) (b)
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5.4 Resultant of a set of forces 445 10

Solutions to exercises

(a) 17.96 N acting at 8.13° below the positive
x axis.

1 (b) 19.45 N acting at 38.43° below the negative
x axis.

Resolve the forces shown in Figure 5.15 into
forces along the x and y axes.

1 Find the resultant of the forces shown in
Figure 5.16.

2

End of block exercises

y

x

12 N
35°

O

y

x

7 N 40°

O

y

x

11 N 37°

O

y

x

12 N
47 

O

Figure 5.15

(a)

(b)

(c)

(d)

y

x

17 N

15 N

40°

20°

O

Figure 5.16

Find the resultant of the forces shown in
Figure 5.17.

3

y

x

9 N 9 N

12 N

40°

50°

30°
O

Figure 5.17
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446 Block 5 Resolution and resultant of forces10

y

x

12 N

8 N

10 N
17 N

40°

30°

20°

25°

O

Figure 5.18

Find the resultant of the forces shown in
Figure 5.18.

4 The forces in Figure 5.20 are in equilibrium.
Find R and .u

6

Forces are said to be in equilibrium if their
resultant is zero. The forces in Figure 5.19 are
in equilibrium. Find R and .u

5

y

x

10 N 6 N30°

40°
O θ

R

Figure 5.19

y

x

10 N

9 N

40°
30°

O

θ

R

Figure 5.20

Solutions to exercises

(a) 6.88 N in the x direction; 9.83 N in the y
direction

(b) 4.50 N in the negative x direction; 5.36 N
in the y direction

(c) 6.62 N in the negative x direction; 8.78 in
the negative y direction

1 (d) 8.78 N in the x direction; 8.18 N in the
negative y direction

8.50 N, directed at 21.87° below the negative x
axis.

2
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End of chapter exercises 447 10

N, directed at 27.13° above the
negative x axis.

21.29 N, directed at 44.57° above the negative
x axis.

4

R = 8.073

R = 1.93 N, u = 3.97°6

R = 12.52 N, u = 88.15°5

In questions 1–11 has a right angle at C.

Calculate AB given cm and 
.

Calculate sin A given cm and
.

Calculate sin B given cm and 
.

Calculate A given cm and
.

Calculate AC given and
.

Calculate B given .

Calculate A given BC is three times AC.7

AB = 2(BC)6

BC = 12 cm
AB = 15 cm5

BC = 9 cm
AC = 144

BC = 9 cm
AC = 63

AB = 14 cm
AC = 102

BC = 15 cm
AC = 91

¢ABC

Calculate AC given and .

Calculate BC given and .

Calculate AB given and .

Calculate AC given and .

A 15 N force acts at 35° to the x axis. Resolve
the force into forces in the x and y directions.

A 12 N force acts at 40° to the negative y axis.
Resolve the force into forces in the x and y
directions.

Convert the following angles to decimal format:
(a) (b) (c)

Convert the following angles to degree/
minute/second format:
(a) 7.3614° (b) 10.0932° (c) 14.9610°

15

10°12¿21¿¿1°2¿41¿¿36°29¿42¿¿

14

13

12

B = 53°BC = 12 cm11

A = 57°AC = 12 cm10

B = 32°AB = 27 cm9

A = 40°BC = 10 cm8

End of chapter exercises

In questions 16–23 solve given

, and .

, and .

, and .

, and .

, and .

, and .

, and .

, and .

Calculate the resultant of the forces in 
Figure C10.1.

24

Y = 50°XZ = 73 cmXY = 100 cm23

XZ = 22.5 cmXY = 25 cmY = 51°22

XY = 52 cmYZ = 29 cmXZ = 41 cm21

Z = 21°Y = 110°XY = 71 cm20

XY = 25 mYZ = 30 mZ = 46°19

Z = 59°YZ = 70 cmXZ = 85 cm18

Y = 75°X = 39°YZ = 15 cm17

XZ = 31 cmYZ = 23 cmXY = 17 cm16

¢XYZ

16 N

15 N

17 N

40° 35°

30°

O

Figure C10.1
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10

37°

20°

20°
O

12 N 10 N
9 N

θ

R

Figure C10.3

Calculate the resultant of the forces shown in
Figure C10.2.

25

The angle of elevation to the top, B, of a
vertical tower AB is when measured
from a point, C, 27.3 m from the base of the
tower. Calculate
(a) the height of the tower
(b) the distance BC.

Two vertical towers have heights 9 m and
17.2 m and are 42 m apart.
(a) Calculate the angle of elevation from the

base of the shorter tower to the top of the
taller tower.

(b) Calculate the angle of depression from the
top of the taller tower to the top of the
shorter tower.

A ship travels on a bearing of for
12 km and then changes to a bearing of 270°
and travels for 30 km. Calculate

40°00¿28

27

19°3¿

26

(a) the distance of the ship from its starting
point

(b) the bearing the ship must take to return to
its starting position.

The forces in Figure C10.3 are in equilibrium.
Find R and .u

29

A tower has a bearing of when
measured from a point O, and is 973 m distant
from O. A chimney has a bearing of 
when measured from O and is 1042 m distant
from O. Calculate the distance from the tower
to the chimney.

A point A has a bearing of 45° and is 10 km
distant from O. A point B has a bearing of
160° and is 20 km distant from O. A point C is
mid-way between A and B. Calculate
(a) the bearing of C from O
(b) the distance of C from O.

31

100°30¿

37°00¿30

Solutions to exercises

17.49 cm

0.6999

0.55473

2

1 32.74°

9 cm

60°6

5

4

40°

20°

20° O

10 N

5 N
3 N

Figure C10.2

448 Block 5 Resolution and resultant of forces
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End of chapter exercises 449 10

71.57°

11.92 cm

22.90 cm

22.03 cm

15.92 cm

12.29 N horizontally, 8.60 N vertically

x component is 7.71 N; y component is 

(a) 36.495° (b) 1.0447° (c) 10.2058°

(a) (b) (c)

, , 

, , 

, , 

solution 1: , ,
solution 2: ,

, XZ = 8.22 mY = 13.6787°
X = 120.3213°XZ = 33.46 m;

Y = 74.3213°X = 59.6787°19

Y = 70.21°X = 50.79°XY = 77.43 cm18

XY = 21.77 cmXZ = 23.02 cmZ = 66°17

Z = 32.63°Y = 100.54°X = 46.84°16

14°57¿40¿¿10°5¿35¿¿7°21¿41¿¿15

14

-9.19 N13

12

11

10

9

8

7 , , 

, , 

solution 1: , ,
; solution 2: ,

, 

no triangle possible

11.56 N acting at 37.54° above positive x axis.

, acting at 47.59° to the positive 
x axis.

(a) 9.43 m (b) 28.88 m

(a) 22.27° (b) 11.05°

(a) 24.11 km (b) 112.41°

1062 m

(a) 130.1198° (b) 9.0961 km31

30

R = 19.64, u = 71.08°29

28

27

26

R = 2.87 N25

24

23

YZ = 4.38 cmZ = 120.29°
X = 8.71°YZ = 27.08 cm

Z = 59.71°X = 69.29°22

Z = 94.3894°Y = 51.8271°X = 33.7835°21

YZ = 149.52 cmXZ = 186.17 cmX = 49°20
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Chapter 11
Complex numbers

Complex numbers are a generalisation of the real number system
with which you have been working all your life. Whenever any real
non-zero number, whether positive or negative, is squared the result
is always positive. Relaxing this condition and allowing numbers that
when squared result in negative numbers is the driving force behind
the theory of complex numbers. These numbers seem strange when
first introduced because we deal with imaginary quantities. However,
by persevering a much wider variety of problems can be solved. For
example, equations that have no real solutions can have complex
solutions as we shall see in this chapter.

M11_CROF5939_04_SE_C11.QXD  11/28/18  8:45 PM  Page 450



Chapter 11 contents

Block 1 Arithmetic of complex numbers
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BLOCK 1
Arithmetic of complex numbers

1.1 Introduction

In this block we explain how the set of real numbers is extended to enable us to find
solutions of a greater range of equations. This leads to a study of complex numbers,
which are useful in a variety of applications, especially alternating current circuit
analysis. Complex numbers may seem rather strange at first because you will be
dealing with imaginary rather than real quantities. Nevertheless they are so useful in
applications that an understanding of them is essential.

1.2 Finding the square root of a negative number

If a real number is squared the answer cannot be negative. For example, squaring
both 7 and , the result is positive. That is,

It is impossible to obtain a negative result by squaring a real number.
Suppose we introduce a new sort of number, called j, with the property that

. The number j cannot be a real number because its square is negative. We
say it is imaginary. Having defined as it follows that and we can
use this to write down the square root of any negative number.

j = 2-1-1j2
j2 = -1

72
= 49 and (-7)2

= 49

-7

Key point

Example 1.1
Write down expressions for the square roots of (a) 9, (b) .

Solution
(a)
(b) Noting that we can write

Then using the fact that we have

2-9 = ;3j

2-1 = j

 = ;3 * 2-1

 = 29 * 2-1

 2-9 = 29 * -1

-9 = 9 * -1
29 = ;3

-9

j is an imaginary number such that j2 = -1
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1.2 Finding the square root of a negative number 453 11

Example 1.2

Write down (a) , (b) , (c) .

Solution

(a)

(b) Write so that

(c)

Example 1.3
Using the fact that simplify (a) , (b) .

Solution

(a) . But and so .

(b) .

Using the imaginary number j it is possible to solve all quadratic equations.

Example 1.4
Use the formula for solving a quadratic equation to solve .

Solution

We use the formula . With and we find

Example 1.5
Use the formula for solving a quadratic equation to solve .

Solution

Using the formula we findx =

-b ;  2b2
- 4ac

2a

x2
- 10x + 29 = 0

 = -

1

4
;

27

4
j

 =

-1 ;  27j

4

 =

-1 ;  2-7

4

  x =

-1 ;  212
- (4)(2)(1)

2(2)

c = 1a = 2, b = 1x =

-b ;  2b2
- 4ac

2a

2x2
+ x + 1 = 0

j4 = j2 * j2 = (-1) * (-1) = 1

j3 = -1 * j = - jj2 = -1j3 = j2 * j

j4j3j2 = -1

; jv    =

2-v2
= 2-1 * v2

;10j    =

2-100 = 2100 * (-1)

-100 = 100 * -1

;10    2100 =

2-v22-1002100

M11_CROF5939_04_SE_C11.QXD  9/25/18  12:26 PM  Page 453



454 Block 1 Arithmetic of complex numbers11

Now using j we can find the square root of and write down two solutions of the
equation. Finally, simplifying the answers gives

and and 5 - 2j5 + 2jx =

-16

10 ; 2-16

2
x =

Exercises

Write down an expression for

(a) , (b) , (c) , (d) .

With the help of a calculator find

(a) , (b) , (c) , (d) .

Simplify (a) , (b) , (c) , (d) .- j3(- j)3(- j)2
- j23

2-5.3225.322-727

2

2-812812-424

1 Solve the following quadratic equations:
(a) (b) 
(c) (d) 
(e) 

Solve the quadratic equation
5x2

- 11x + 13 = 0.
5

2x2
+ x + 3 = 0

2x2
+ 5x + 3 = 0x2

+ 5x + 3 = 0
x2

+ x + 2 = 0x2
+ 1 = 0

4

Solutions to exercises

(a) (b) (c) (d) 

(a) (b) (c) 
(d) 

(a) 1 (b) (c) j (d) j

(a) (b) (c) -

5

2
;

213

2
-

1

2
;

27

2
j; j4

-13

;2.307j
;2.307;2.646j;2.6462

;9j;9;2j;21 (d) , (e)

11

10
;

2139

10
j5

-

1

4
;

223

4
j-

3

2
-1

1.3 Complex numbers

Real and imaginary parts

In Example 1.5 we found that the solutions of the equation 
are . The solutions are known as complex numbers. A complex number
such as is made up of two parts, a real part 5 and an imaginary part 2. 
The imaginary part is the multiple of j.

It is common practice to use the letter z to stand for a complex number and write
where a is the real part and b is the imaginary part.z = a + bj

5 + 2j
5 ; 2j

x2
- 10x + 29 = 0
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Example 1.6
State the real and imaginary parts of .

Solution

The real part is 

The imaginary part is 

Equal complex numbers

Two complex numbers are equal only when their real parts are equal and their imag-
inary parts are equal. So if is equal to it follows that a must be 3 and
b must be .

Complex conjugate

In Example 1.5 we solved the quadratic equation and saw that
the second solution, , is almost the same as the first, ; only the sign of
the imaginary part has changed. The number is said to be the complex
conjugate of .

In general, to find the complex conjugate of a complex number the sign of the
imaginary part is changed from to , or vice versa. We denote the complex
conjugate of z by .z

-+

5 + 2j
5 - 2j

5 + 2j5 - 2j
x2

- 10x + 29 = 0

-2
3 - 2ja + bj

-19

-11

-11 - 19j

If z is a complex number then we write

where a is the real part and b is the imaginary part.

z = a + bj

Key point

If , its complex conjugate, denoted by , is

z = a - bj

zz = a + bjKey point

When solving quadratic equations with real coefficients any complex roots occur in
complex conjugate pairs just as we saw in Example 1.5.

Example 1.7
A complex number is given by .
(a) State the real and imaginary parts of .
(b) Write down the complex conjugate of .

Solution
(a) The real part of is . The imaginary part is .
(b) The complex conjugate of is found by changing the sign of the imaginary

part. Thus .z1 = a1 - b1j
z1

b1a1z1

z1

z1

z1 = a1 + b1jz1
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Example 1.8
Write down the complex conjugates of each of the following complex numbers:
(a) , (b) , (c) , (d) .

Solution
In each case the sign of the imaginary part is changed. In part (c) there is no imagin-
ary part to alter.

(a)

(b)

(c)

(d) 9jz4 =

8z3 =

7 + 3jz2 =

11 - 2jz1 =

z4 = -9jz3 = 8z2 = 7 - 3jz1 = 11 + 2j

Exercises

If explain what is meant by .

State the real and imaginary parts of
(a) (b) (c) 
(d) (e)  cos  vt + j sin  vt cos  u + j sin  u

-0.35ja1 + b1j3 + 7j
2

zz = a + bj1 Write down the complex conjugate of
(a) (b) (c) 17j (d) 18.5
(e) 

State the real and imaginary parts of
.jV  sin (vt + f)

4

3.36 + 2.24j
3 - 13j3 + 13j

3

Solutions to exercises

is the complex conjugate of z. That is,
.

(a) real part 3, imaginary part 7
(b) (c) (d) 
(e) cos  vt,  sin  vt

cos  u,  sin  u0, -0.35a1, b1

2

z = a - bj
z1 (a) (b) (c) 

(d) 18.5 (e) 

Real part 0, imaginary part .V  sin (vt + f)4

3.36 - 2.24j
-17j3 + 13j3 - 13j3

1.4 Addition and subtraction of complex numbers

Given two complex numbers we can find their sum and difference in an obvious way.

Key point Addition and subtraction of complex numbers

If and then

  z1 - z2 = (a1 - a2) + (b1 - b2)j

 z1 + z2 = (a1 + a2) + (b1 + b2)j

z2 = a2 + b2jz1 = a1 + b1j
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1.4 Addition and subtraction of complex numbers 457 11

Note that to add the complex numbers we simply add the real parts together and add
the imaginary parts together.

Example 1.9
If and find (a) , (b) .

Solution
(a)

(b)

Example 1.10
If and , find (a) , (b) .

Solution
(a) To add the complex numbers just add the real parts and then add the imaginary

parts:

(b) Subtract the real parts, and then subtract the imaginary parts:

-5 - 7j=

z1 - z2 = (3 + 4j) - (8 + 11j)

11 + 15jz1 + z2 =

z1 - z2z1 + z2z2 = 8 + 11jz1 = 3 + 4j

= 15 - 32j
z2 - z1 = (18 - 21j) - (3 + 11j)

= 21 - 10j
z1 + z2 = (3 + 11j) + (18 - 21j)

z2 - z1z1 + z2z2 = 18 - 21jz1 = 3 + 11j

Exercises

If and find
(a) , (b) , (c) .

If and find
(a) , (b) , (c) .w - zz - wz + w

w = -2 + 5jz = 13 - 11j2

z2 - z1z1 - z2z1 + z2

z2 = 3 + 2jz1 = 1 + j1 If and write down
.z + w

w = g + jdz = a + jb3

Solutions to exercises

(a) (b) (c) 

(a) (b) (c) -15 + 16j15 - 16j11 - 6j2

2 + j-2 - j4 + 3j1 a + g + j(b + d)3
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458 Block 1 Arithmetic of complex numbers11

1.5 Multiplication of complex numbers

To multiply two complex numbers we use the normal rules of algebra and also the fact
that . If and are the two complex numbers their product is written .

Example 1.11
If and find .

Solution

Replacing by we obtain

In general we have the following result:

 = 18 + 16j
 z1z2 = 10 + 16j - 8(-1)

-1j2
= 10 - 4j + 20j - 8j2

 z1z2 = (5 - 2j)(2 + 4j)

z1 z2z2 = 2 + 4jz1 = 5 - 2j

z1 z2z2z1j2 = -1

Key point Multiplication of two complex numbers

If and then

 = (a1a2 - b1b2) + j(a1b2 + a2b1)

= a1a2 + a1b2 j + b1a2 j + b1b2 j2

 z1z2 = (a1 + b1j) (a2 + b2 j)

z2 = a2 + b2 jz1 = a1 + b1j

Example 1.12
Find if and .

Solution

Simplify your result to obtain

Example 1.13
Find if .

Solution
Recall that is the complex conjugate of z.

 = a2
+ baj - abj - b2j2

 z z = (a + bj) (a - bj)

z

z = a + bjz z

21 - j(3 - 2j)(5 + 3j) =

15 + 9j - 10j - 6j2 =

z1z2 = (3 - 2j)(5 + 3j)

z2 = 5 + 3jz1 = 3 - 2jz1 z2
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1.6 Division of complex numbers 459 11

Note that the result is purely real: multiplying a complex number by its conjugate
results in a non-negative real answer. For example, taking and , we see
that .

The result of the previous example is particularly important.

(4 + 3j)(4 - 3j) = 42
+ 32

= 25
b = 3a = 4

 = a2
+ b2

 = a2
- b2(-1)

Key point If then

zz = a2
+ b2

z = a + bj

Exercises

If and find
(a) , (b) , (c) , (d) , (e) .

Express in the form 
(a) (b) (c) 
(d) 

Find a quadratic equation whose roots are
and .s = -7 - 0.5js = -7 + 0.5j

3

(1 + j)(9 + j)
5j(1 - j)(4 - 2j)jj(3 + 2j)

x + jy2

z2z2z1z1z2z1z1z2

z2 = 3 + 2jz1 = 1 + j1 Find a cubic equation with roots
and . (Note that

this cubic equation will have complex
coefficients.)

Find the real and imaginary parts of
(a) , (b) .

Find (a) ,
(b) .(5 - 2j)(5 + 2j)

(4 - 3j)(4 + 3j)6

-13(j - 1)7(2 + j)
5

z = 4 + 2jz = 2, z = 1 + j
4

Solutions to exercises

(a) (b) (c) (d) 2 (e) 13

(a) (b) (c) 
(d) 

For example, 4s2
+ 56s + 197 = 03

8 + 10j
5 + 5j2 + 4j-2 + 3j2

3 - 2j1 - j1 + 5j1 For example,

(a) real 14, imaginary 7 (b) 

(a) 25 (b) 296

13, -135

+ (12 + 12j) z - 4 - 12j = 0

z3
- (7 + 3j)z2

4

1.6 Division of complex numbers

Division of complex numbers requires a special technique that uses the complex
conjugate. Consider the following example.

Example 1.14

Find when and .z2 = 4 - 3jz1 = 3 + 2j
z1

z2
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460 Block 1 Arithmetic of complex numbers11

Solution
We require

The special technique is to multiply both numerator and denominator by the com-
plex conjugate of the denominator. Overall, this is equivalent to multiplying by 1 and
so the fraction remains unaltered. However, it has the effect of making the denomi-
nator purely real as we saw in Example 1.13.

In general we have the following result:

 =

6

25
+

17

25
j

 =

6 + 17j

25

 =

12 + 8j + 9j + 6j2

16 + 12j - 12j - 9j2

 =

(3 + 2j)(4 + 3j)

(4 - 3j)(4 + 3j)

 
3 + 2j

4 - 3j
=

3 + 2j

4 - 3j
*

4 + 3j

4 + 3j

z1

z2
=

3 + 2j

4 - 3j

Key point Division of two complex numbers

=

a1a2 + b1b2 + (a2b1 - a1b2)j

a2
2

+ b2
2

 =

a1 + b1j

a2 + b2 j
*

a2 - b2 j

a2 - b2 j

 
z1

z2
=

a1 + b1j

a2 + b2 j

Example 1.15

If and find .

Solution
Both numerator and denominator are multiplied by the complex conjugate of the
denominator.

So

10 + 45j + 4j + 18j2

25 + 4
=

2 + 9j

5 - 2j
=

2 + 9j

5 - 2j
*

5 + 2j

5 + 2j

z1

z2
z2 = 5 - 2jz1 = 2 + 9j
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Simplify the result to produce

-

8

29
+

49

29
j

2 + 9j

5 - 2j
=

The computing packages Maple and Matlab have the facility to perform calculations
with complex numbers. For full details you should refer to the on-line help.

Example 1.16
Use software to simplify the following complex number:  .

Solution

7

3 - 2j
+

4j

2 + 5j

Maple

In Maple the imaginary number j is entered as I. The expression is entered and Maple
will perform the calculation and simplify the result.

> 7/(3-2*I) + 4*I/(2+5*I);

resulting in

The evalf command presents the results in decimal form:

> evalf(7/(3-2*I) + 4*I/(2+5*I));

2.3050 + 1.3528I

869

377
+

510

377
 I

Matlab

When using Matlab the imaginary number j is entered as either i or j. As with Maple, the
expression is entered and the calculation and simplification will be performed automatically.

>> 7/(3-2*j) + 4*j/(2+5*j)
ans =

2.3050 + 1.3528i

Example 1.17

Use software to solve the polynomial equation and

hence deduce the poles of the rational function .G1s2 =

0.5

s3
+ 2s2

+ 0.2s + 0.0556

s3
+ 2s2

+ 0.2s + 0.0556 = 0
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Exercises

If and find

(a) (b) (c) (d) 

Find (a) , (b) .

Express the following in the form :

(a) (b) (c) (d) (e) 
2

1 - j

1

1 + j

3

- j

2

j

1

j

x + jy3

3 + 9j

1 - 2j

7 - 6j

2j
2

z2

z2

z1

z1

z2

z1

z1

z2

z2 = 3 + 2jz1 = 1 + j1 If express both (a) and

(b) in the form .

Express in the form .a + bj
1

cos u - j sin u
5

x + jyz +

1

z

1

z
z =

3 + 2j

2 - j
4

Maple

In Maple, the command solve will find the roots of a polynomial equation:

solve(s^3+2*s^2+0.2*s+0.0556=0);

producing

Observe that there is a single real root. The two complex roots appear as a complex
conjugate pair which is a consequence of the coefficients of the polynomial being real
numbers. The poles of a rational function are those values which make the denomina-
tor zero. We deduce that there are poles when and
-0.0447 - 0.1646I.

s = -0.0447 + 0.1646I, -1.9106

- 0.0447 + 0.1646I, -1.9106, -0.0447 - 0.1646I

Matlab

The Matlab function roots can be used to solve a polynomial equation. The coefficients
of the polynomial are entered as an array:

>> roots([1 2 0.2 0.0556])

ans =

-1.9106 + 0.0000i

-0.0447 + 0.1646i

-0.0447 - 0.1646i

Solution
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Solutions to exercises

(a) (b) (c) j (d) 

(a) (b) 

(a) (b) (c) 3j (d) (e) 1 + 1j
1

2
-

j

2
-2j- j3

-3 + 3j-3 -

7

2
j2

5

13
+

12

13
j

5

2
-

j

2

5

13
+

j

13
1 (a) (b) 

 cos  u + j sin  u5

72

65
+

56

65
j

4

13
-

7

13
j4

Computer and calculator exercises

Computer algebra packages allow the user to input
and manipulate complex numbers. Investigate how
the complex number is input to the package
to which you have access.

Use a package to express each of the following
numbers in the form :

(a) (b) 
5

(3 - 2j)4
(2 - j)6

a + bj
1

a + bj

Solve the equations
(a) 
(b) 

A common requirement in control theory is to
find the poles of a rational function, G(s). The
poles are the values of s that make the
denominator zero. Find the poles of

G(s) =

0.25

s3
- 2s2

+ 0.1s + 0.006

3

2x4
- 3x3

+ 11 = 0
x3

+ 7x2
+ 9x + 63 = 0

2

End of block exercises

Write down an expression for (a) ,

(b) , (c) , (d) .

Find .

Solve the equations

(a) , (b) .

Write down the complex conjugate of
(a) (b) 

(c) (d) 

Find

(a) , (b) .

Find
(a) , (b) , (c) , if 

and .z2 = 3 - 5j

z1 = 3 + 5j
z2

z1

z1

z2
z1 z2

6

5 + 4j

3 + 2j

3 + 2j

5 + 4j

5

1

2
+

23

2
 j

1

2
j + 3

-3j + 215 + 3j
4

7s2
+ s + 1 = 0x2

+ x + 1 = 0

3

2-9.242

2-492492-1

211 Express the following in the form :

(a) (b) (c) 

(d) (e) 

Write down the complex conjugate of
(a) (b) 
(c) (d)

Express in the form 
(a) 
(b) 

(c) 

Find a quadratic equation whose roots are
and .

Find a cubic equation with roots ,
and .x = 1 + jx = 1 - j

x = 111

x = -3 - jx = -3 + j
10

(2 - 3j)(6 + 7j)

j(1 - j)

(5 + 3j)(2 + j)(2 - j)
(3 + 2j)j(4 - 3j)

x + jy9

 cos  vt - j sin  vt cos  u - j sin  u
 cos  u + j sin  ua + jb

8

2j

1 - j

j

1 + j

3

4 - j

2 + j

j

5

- j

x + jy7
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Solutions to exercises

(a) (b) (c) (d) 

(a) (b) 

(a) (b) 

(c) (d) 

(a) (b) 

(a) 34 (b) (c) -
8

17
-

15

17
j-

8

17
+

15

17
j6

23

13
+

2

13
j

23

41
-

2

41
j5

1

2
-

23

2
j-

1

2
j + 3

3j + 215 - 3j4

-

1

14
;

323

14
j-

1

2
;

23j

2
3

;3.04j2

;7j;7; j;11 (a) 5j (b) (c) (d) 

(e)

(a) (b)
(c) (d) 

(a) (b) (c)

, for example

, for examplex3
- 3x2

+ 4x - 2 = 011

x2
+ 6x + 10 = 010

29

2
-

37

2
j25 + 15j1 + 18j9

cos  vt + j sin  vtcos  u + j sin  u
cos  u - j sin  ua - jb8

-1 + j

1

2
+

1

2
j

12

17
+

3

17
j1 - 2j7
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BLOCK 2
The Argand diagram and polar form 
of a complex number

2.1 Introduction

Engineers often find a graphical interpretation of complex numbers useful. This
graphical interpretation is known as an Argand diagram. From the Argand diagram
two other useful quantities, the modulus and the argument, can be defined. These
provide an alternative way of describing complex numbers, known as the polar form.

2.2 The Argand diagram

The complex number is plotted as a point with coordinates (a, b) as
shown in Figure 2.1. Because the real part of z is plotted on the horizontal axis we
often refer to this as the real axis. The imaginary part of z is plotted on the vertical
axis and so we refer to this as the imaginary axis. Such a diagram is called an
Argand diagram. Engineers often refer to this diagram as the complex plane.

z = a + bj

O a

b
z � a � bj

(a, b)

Imaginary
axis

Real axis

Figure 2.1
An Argand
diagram in which
the point with
coordinates (a, b)
represents the
complex number

.z = a + bj

Example 2.1
Plot the complex numbers 

on an Argand diagram.

Solution
Figure 2.2 shows the Argand diagram. Note that purely real numbers lie on the real
axis. Purely imaginary numbers lie on the imaginary axis. Note also that complex
conjugate pairs such as lie symmetrically on opposite sides of the real axis.-3 ; 2j

z5 = 6, z6 = j
z1 = 2 + 3j, z2 = -3 + 2j, z3 = -3 - 2j, z4 = 2 - 5j,
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O�1�2�3�4�5 1 2 3 4 5 6

�5

�4

�3

�2

�1

1

2

3

4

5

�3 �2j

2 �3j

j

�3 �2j

2 �5j

6

Figure 2.2
Argand diagram
for Example 2.1.

11

Exercises

Plot the following numbers on an Argand
diagram:
(a) (b) (c) (d) 6j
(e) (f) -5 - 11j- j

-0.52 - 4j3 + 3j

1 Simplify the following complex numbers and
show them on an Argand diagram:

(a) (b) (c) (d) (e) j4j3(- j)2
- j2j2

2

Solutions to exercises

See Figure 2.3.1 See Figure 2.4.2

Imaginary
axis

Real axis

2 �4j

3 �3j

6j

�j

�0.5

�5 �11j

Figure 2.3

Imaginary
axis

Real axis1�1

�j

j3 � �j

j2 � (�j)2 � �1 �j2 � j4 � 1

Figure 2.4
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2.3 The modulus and argument of a complex number 467 11

O a

b
z � a � bj

|z| � r

(a, b)

Imaginary
axis

Real axis

Figure 2.5
The modulus of

is the
distance of (a, b)
from the origin O.

a + bj

2.3 The modulus and argument of a complex number

Modulus

Consider the Argand diagram in Figure 2.5, which shows the complex number
. The distance of the point (a, b) from the origin is known as the

modulus, or magnitude, of the complex number and is given the symbol r. Alterna-
tively r is written as The plural of modulus is moduli. The modulus can be found
using Pythagoras’s theorem, that is . The modulus is never
negative.

ƒ z ƒ = r = 2a2
+ b2

|z|.

z = a + bj

Key point The modulus of the complex number is

Graphically, this is the distance of (a, b) from the origin.

r = ƒ z ƒ = 2a2
+ b2

z = a + bj

Example 2.2
Plot the following complex numbers on an Argand diagram and find their moduli:
(a) (b) (c) 

Solution
The complex numbers are shown in Figure 2.6.

In each case we can use Pythagoras’s theorem to find the modulus.

(a) .

(b) or 2.236. It is usually sufficient to leave your 

answer in the surd form as .

(c) .ƒz3 ƒ = 202
+ 32

= 3

25

ƒ z2 ƒ = 2(-2)2
+ 12

= 25

ƒ z1 ƒ = 232
+ 42

= 225 = 5

z3 = 3jz2 = -2 + jz1 = 3 + 4j
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468 Block 2 The Argand diagram and polar form of a complex number11

Example 2.3
Find the modulus of each of the following complex numbers:
(a) (b) 

Solution

(a) 

(b) 

Let and be two complex numbers with and . We
consider the expression . Now

and so

From Figure 2.7, using Pythagoras’s theorem, we see that this expression is the dis-
tance between and .z2z1

ƒ z1 - z2 ƒ = 21a1 - a222 + 1b1 - b222

z1 - z2 = a1 + b1j - 1a2 + b2j2 = 1a1 - a22 + 1b1 - b22j
ƒ z1 - z2 ƒ

z2 = a2 + b2jz1 = a1 + b1jz2z1

2(-6)2
+ (-8)2

= 10ƒz ƒ = ƒ -6 - 8j ƒ =

252
+ 122

= 13ƒz ƒ = ƒ5 + 12j ƒ =

z = -6 - 8jz = 5 + 12j

O�1�2 1 2 3

1

2

3

4

z2 � �2 � j

z1 � 3 � 4j

z3 � 3j

Figure 2.6

z1 5 a1 1 b1j

z2 5 a2 1 b2j

a2

b1

b2

a1

b1 2 b2

a1 2 a2

Figure 2.7
is the

distance between
and .z2z1

ƒ z1 - z2 ƒ

Key point Graphically, is the distance between and .z2z1ƒ z1 - z2 ƒ

M11_CROF5939_04_SE_C11.QXD  9/26/18  9:58 AM  Page 468



Argument

Consider Figure 2.8. Given a complex number we can calculate the
angle between the positive x axis and a line joining (a, b) to the origin. This angle is
called the argument of the complex number. It is abbreviated to arg(z) and often
given the symbol .u

z = a + bj

2.3 The modulus and argument of a complex number 469 11

O a

b
z � a � bj

θ

Figure 2.8
The argument of a
complex number.

We usually measure this angle so that , in which case is called
the principal value of the argument. Angles measured anticlockwise from the
positive x axis are conventionally positive whereas angles measured clockwise are
negative. Several complex numbers with positive and negative arguments are shown
in Figure 2.9.

u-p 6 u … p

Oz � �1 1

1

�2

�1

z � 1 � j

z � 1 �   3j

π π
4

π
3�

Figure 2.9
Some complex
numbers with
positive and
negative
arguments.
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470 Block 2 The Argand diagram and polar form of a complex number11

Key point The argument of the complex number is the angle between the positive
x axis and the line joining (a, b) to the origin.

z = a + bj

Because the angles in Figure 2.9 can be described in a variety of ways, the argu-
ment of a complex number is not unique. For example, the argument of 
has been labelled . This is the principal value of the argument. However, it is impor-p

4

z = 1 + j

Polar form

The position of a complex number is uniquely determined by giving its modulus and
argument. This description is known as the polar form. Engineers often write the
polar form of a complex number as .z = r∠u

Key point The polar form of a complex number can be written as

where r is the modulus and is the argument.u

z = r∠u

Example 2.4
Find the arguments of the complex numbers in Example 2.2 and pictured in
Figure 2.6.

Solution
(a) is in the first quadrant. Its argument is given by

Using a calculator we find radians.u = 0.927

u = tan-1
 
4

3

z1 = 3 + 4j

tant to note that we could have also stated the argument as . Repeatedly
adding on will produce other valid arguments. This will become important in
Block 5 when we use complex numbers to solve equations.

Given , then trigonometry can be used to determine . Specifically,
referring to Figure 2.8,

so that

but when using a calculator to find an inverse tangent care must be taken that the
solution obtained is in the correct quadrant. Drawing an Argand diagram will always
help to identify the correct quadrant. At this stage you may find it helpful to refer
back to Chapter 9 on trigonometry, and ensure that you are aware of the sign of the
trigonometrical ratios in the four quadrants.

u = tan-1ab

a
b

tan u =

b

a

uz = a + bj

2p

p

4 + 2p =
9p
4
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2.3 The modulus and argument of a complex number 471 11

(b) is in the second quadrant. To find its argument we seek an angle,

, in the second quadrant such that . To calculate this correctly it may 

help to refer to Figure 2.10 in which is an acute angle with . From a

calculator , and so radians.u = p - 0.464 = 2.678a = 0.464

tan a =
1
2a

tan u =
1

- 2u

z2 = -2 + j

(c) is purely imaginary. Its argument is radians.

Example 2.5
Sketch an Argand diagram showing the following complex numbers and in each case
calculate the argument.

p

2z3 = 3j

O�1�2 1

1
�2 � j

1 θ
α

tan α � 1
2

Figure 2.10
To calculate it is
simpler to
calculate first.a

u

O 5

12
z � 5 � 12 j

θ

O

1

θ
α

�  3

z � �  3 � j

(a) (b) (c) 

Solution
(a) Sketch and identify the quadrant in which it lies:z = 5 + 12j

z = 2 - 3jz = - 23 + jz = 5 + 12j

Then tan-1a12

5
b = 1.176 radiansarg z = u =

(b) Sketch and identify the quadrant in which it lies:z = - 23 + j

first

second
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472 Block 2 The Argand diagram and polar form of a complex number11

Then 

If you have difficulty calculating the correct angle it is often simpler to calculate

first the related acute angle. So, in the diagram above, is acute and tan 

from which radians. It follows that 
radians.

(c) Sketch and identify the quadrant in which it lies:z = 2 - 3j

u = p - a =
5p
6 = 2.618a =

p

6 = 0.524

a =

1

23
a

tan-1a -

1

23
b =

5p

6
= 2.618 radians

arg z = u =

O θ 2

z � 2 � 3 j�3

fourth

Then 

Ensure you have located the angle in the correct quadrant. If you have difficulty
calculating the correct angle use the method described in part (b).

Most scientific calculators are able to convert complex numbers given in cartesian
form into polar form and vice versa. You should check your calculator to see whether
you can carry out these conversions.

tan-1a- 3

2
b = -0.983 radians

arg(z) = u =
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2.3 The modulus and argument of a complex number 473 11

Exercises

The following complex numbers were plotted
on an Argand diagram in question 1 of the
previous exercises:
(a) (b) (c) (d) 6j (e) 
(f) 
Express each one in polar form.

Show the following complex numbers on an
Argand diagram:
(a) (b) (c) 
(d) (e) (f) 
(g) (h) 

(a) If , plot z and jz on an Argand
diagram. Deduce that multiplying z by j
causes an anticlockwise rotation through
90° about the origin.

z = 53

2∠-2.34∠1p42
1∠1p3217∠110°4∠270°

2∠-135°4∠45°5∠30°

2

-5 - 11j
- j-0.52 - 4j3 + 3j

1 (b) If , plot z and jz. Show that the
same behaviour as that in part (a) occurs.
Is it true in general that multiplying a
complex number by j will rotate it
anticlockwise through 90°?

(a) Solve the equation and
plot your solutions on an Argand diagram.

(b) Express the solutions in polar form.

If show that and that 

.ƒ z ƒ

2
= z z

ƒ z ƒ = ƒ z ƒz = a + bj5

z2
- 4z + 13 = 04

z = 2 + 3j

Solutions to exercises

(a) (b) 

(c) (d) (e) 

(f) 2146∠ -1.997

1∠1-p226∠1p220.5∠p
225∠-1.107218∠p4 = 322∠p41

5
30°

Figure 2.11

See Figure 2.11.2

4

45°

2 �135°

4

270°

17
110°

1
π
3

4
π
4

2
�2.3

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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474 Block 2 The Argand diagram and polar form of a complex number11

(b) Yes, multiplying a number by j has the effect of rotating it anticlockwise by 90°.

(a) (b) , 

2.4 The form r (cos � � j sin �)

Consider Figure 2.12, which shows the complex number .z = a + bj =  r∠u

213∠-0.98213∠0.982 ; 3j4

3

O a

a

b
(a, b)

θ

r
b

Figure 2.12

Using trigonometry we can write

so that, by rearrangement,

a = r cos u and b = r sin u

cos u =

a

r
 and sin u =

b

r

We can use these results to find the real and imaginary parts of a complex number
given in polar form:

If , the real and imaginary parts of z are, respectively,

a = r cos u and b = r sin u

z = r∠uKey point

Using these results we can then write as

This is an alternative way of expressing the complex number with modulus r and
argument .u

 = r (cos u + j sin u) 
  z = a + bj = r cos u + jr sin u

z = a + bj

 = r (cos u + j sin u) 
 = r∠u

  z = a + bjKey point

M11_CROF5939_04_SE_C11.QXD  9/25/18  12:27 PM  Page 474



2.4 The form r (cos � j sin ) 475uu 11

Recall that the complex conjugate of is the complex number ,
as shown in Figure 2.13.

z = a - bjz = a + bj

O

�b

�θ

r

a

z � a � bj

(a, �b)

Figure 2.13
The complex
conjugate of

.a + bj

Note that has the same real part as z but the sign of the imaginary part has
changed. It follows that we can write .z = a - bj = r (cos u - j sin u)

z

 = r (cos u - j sin u)
  z = a - bjKey point

Example 2.6
State the modulus and argument of .

Solution
Comparing the given complex number with the standard form we
see that and radians.u = 3.2r = 17

r(cos u + j sin u)

z = 17(cos 3.2 + j sin 3 .2)

Example 2.7
(a) Find the modulus and argument of the complex number .
(b) Express 5j in the form .

Solution
(a) On an Argand diagram the complex number 5j lies on the positive vertical axis

a distance 5 from the origin. Thus 5j is a complex number with modulus 5 and
argument .

(b)

Example 2.8
(a) Show the complex number on an Argand diagram.
(b) State its modulus and argument.
(c) Find the real and imaginary parts of the complex number and hence express it

in the form .a + bj

z = 4∠1p32

 = 5 acos 
p

2
+ j sin 

p

2
b

  z = 5j

p

2

r(cos u + j  sin   u)
z = 5j
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476 Block 2 The Argand diagram and polar form of a complex number11

O 1 2 3

1

2

3

4 b

a

π
3

Figure 2.14
The complex
number

.z = 4∠1p32

(b) Its modulus is 4 and its argument is .
(c) To find the real and imaginary parts we can use

so that

and

Hence the complex number can be written .2 + 3.464j

 = 3.464

  b = 4 sin 
p

3

 = 2

  a = 4 cos 
p

3

a = r cos u, b = r sin u

p

3

Example 2.9
Find the real and imaginary parts of .

Solution
Writing , the real part is found from and the imaginary part
from . Thus

3 sin a p
15
b = 0.624  b =

3 cos a p
15
b = 2.934  a =

b = r sin u
a = r cos uz = a + bj

z = 3∠(p15)

Solution
(a) The complex number is shown in Figure 2.14.z = 4∠1p32
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2.5 Multiplication and division of complex numbers in polar form 477 11

Exercises

State the modulus and argument of z when

(a) ,

(b) .

State the modulus and argument of
(a) , (b) , (c) ,
(d) .z = 3

z = -2jz = -4z = -13
2

z = 15 acos 
p

3
- j sin 

p

3
b

z = 13 acos 
p

3
+ j sin 

p

3
b

1 Express the following complex numbers in the
form a + bj:

(a) (b) (c)
(d) 3∠0.7513

4∠130°5∠1.93024∠40°

3

Solutions to exercises

(a) 13, (b) 15, 

(a) modulus 13, argument (b) 4, 

(c) 2, (d) 3, 0-

p

2

-p-p2

-

p

3

p

3
1 (a) 3.0642 + 2.5712j (b) -1.7586 + 4.6805j

(c) -2.5712 + 3.0642j (d) 2.1924 + 2.0478j
3

2.5 Multiplication and division of complex numbers in polar form

We can multiply and divide complex numbers in polar form. The following develop-
ment shows how two simple formulae are derived which make multiplication and
division particularly easy when numbers are in polar form. The development uses
some of the trigonometrical identities from Chapter 9, specifically the expansions of

and , together with .
Consider two complex numbers, and . Let

We now multiply these two numbers.

Using j2 = -1 we have

using the identities on page 372

So when multiplying complex numbers we multiply their moduli and add their
arguments.

= r1r2∠1u1 + u22
= r1r23cos1u1 + u22 + j sin1u1 + u224

z1z2 = r1r231cos u1 cos u2 -  sin u1 sin u22 + j1sin u1 cos u2 +  sin u2 cos u124

= r1r23cos u1 cos u2 + j sin u2 cosu1 + j sin u1 cosu2 + j2 sin u1 sin u24
= r11cos u1 + j sin u12r21cos u2 + j sin u22

z1z2 = r1∠u1r2∠u2

z2 = r2∠u2 = r21cos u2 + j sin u22
z1 = r1∠u1 = r11cos u1 + j sin u12

z2z1

sin2A + cos2A = 1cos1A ; B2sin1A ; B2
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478 Block 2 The Argand diagram and polar form of a complex number11

Key point If and then

z1z2 = r1r2∠(u1 + u2), 
z1

z2
=

r1

r2
∠(u1 - u2)

z2 = r2∠u2z1 = r1∠u1

We now turn our attention to division of complex numbers in polar form.

Multiplying the numerators together, then the denominators, and simplifying produces

So when dividing complex numbers in polar form we divide their moduli and sub-
tract their arguments.

=

r1

r2
∠1u1 -  u22

=

r1

r
2

*

cos1u1 -  u22 + j sin1u1

1

-  u2 2
 

z1

z2
=

r1

r
2

*

cos u1 cos u2 + sin u1 sin u2 + j1sin u1 cos u2

cos2 u2 + sin2 u2

-  sin u2 cos u12
 

=

r11cos u1 + j sin u12
r21cos u2 + j sin u22 *

cos u2 -  j sin u2

cos u2 -  j sin u2

=

r11cos u1 + j sin u12
r21cos u2 + j sin u22

z1

z2
=

r1∠u1

r2∠u2

Example 2.10
If and find (a) , (b) .

Solution
(a) To multiply the two complex numbers we multiply their moduli and add their

arguments. Therefore

(b) To divide the two complex numbers we divide their moduli and subtract their
arguments. Therefore

 =

5

4
∠

5p

12

 
z1

z2
=

5

4
∠ cp

6
- a -

p

4
b d

 = 20∠ a -

p

12
b

  z1z2 = 20∠ cp
6

+ a -

p

4
b d

z1

z2
z1z2z2 = 4∠1-p42z1 = 5∠1p62
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2.5 Multiplication and division of complex numbers in polar form 479 11

Example 2.11

For and in Example 2.10 find .

Solution

Let us consider the important and special case of multiplication and division by the
imaginary number j.

In polar form

If , then

Thus multiplying by j has left the modulus of z unchanged but increased the argu-
ment by . This represents an anticlockwise rotation by on the Argand diagram.

If , then

Thus dividing by j has left the modulus unchanged but reduced the argument by .
This represents a clockwise rotation by on the Argand diagram.p

2

p

2

 = r∠ au -

p

2
b

 
z

j
=

r∠u
1∠p2

z = r∠u

p

2
p

2

 = r∠ au +

p

2
b

 jz = a1∠
p

2
b  (r∠u)

z = r∠u

j = 1∠
p

2

4

5
∠ a-p

4
-

p

6
b =

4

5
∠ a -

5p

12
bz2

z1
=

z2

z1
z2z1

Multiplying a complex number by j causes an anticlockwise rotation by on the Argand
diagram.
Dividing a complex number by j causes a clockwise rotation by on the Argand
diagram.

p

2

p

2Key point

These results are very important in electrical engineering applications of complex
numbers, in particular phasors, which are described in Block 6.

As a further special case of the multiplication rule consider what happens when
both and are equal. Suppose . Then it follows that . For
example, if

z = 5∠
p

3
, then z2

= 25∠ a2p

3
b

z2
= r2∠2uz = r∠uz2z1
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480 Block 2 The Argand diagram and polar form of a complex number11

If z = r∠u  then  zn
= rn∠nu.Key point

This is a form of De Moivre’s theorem, which is studied in detail in Block 4.

Exercises

If find (a) ,

(b) , (c) .

If find expressing your answer in
polar form.

If find .

If find .z5z = -1 - j134

z10z = 1 + j3

z4z = 3 - j2

z2

z1

z1

z2

z1z2z1 = 5∠20°, z2 = 3∠35°1 Consider the complex number . By
multiplying this by show that the result is
a rotation of z through an angle about the
origin.

Simplify

a4∠ a2p

3
b b2a3∠ ap

6
b b2

5∠
p

4

6

a

1∠a
z = r∠u5

Solutions to exercises

(a) (b) (c)

25∠
5p

2
= 25∠

p

2
3

100∠ -73.72°2

3

5
∠15°5

3
∠ -15°15∠55°1

144

5
∠

17p

12
6

25∠
2p

3
= -16 + 1623j4

2.6 Locus of a point

A locus is the path traced out by a moving point. Consider the complex number
, where can vary. Note that the imaginary part of the complex number

is fixed with a value of 3. If we plot on an Argand diagram, for various values of
we see that the plotted points lie on a straight line parallel to the axis as shown

in Figure 2.15. As increases from to the point represented by 
traces out this line from left to right.

z = x + 3jq- qx
xx,

z
xz = x + 3j

Even more generally, we can state:
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2.6 Locus of a point 481 11

x

y

3

Figure 2.15
The locus of 

is a
horizontal line.
z = x + 3j

When is expressed in polar form, , we can trace out a
locus as either or  varies. Consider the following examples.

Example 2.12
Given draw the locus of as  varies from
(a) to 
(b) 0 to 

(c) 0 to /2.

Solution
Consider from which we see that the modulus of is fixed
at 3. Recall that the modulus is the distance of z from the origin. Therefore, as the
argument, , varies, an arc of a circle radius 3 is traced out. 
(a) As varies from to a circle, radius 3, is traced out as shown in Figure

2.16. Note that the circle is traversed in an anticlockwise direction as varies
from to .p-p

u

p-pu

u

zz = 3(cos u + j sin u)

-p

p

p-p

uzz = 3(cos u + j sin u)

ur
z = r(cos u + j sin u)z

x

y

3–3

Figure 2.16
Locus of

as varies from 
to .p

-pu

z = 3(cos u + j sin u)

(b) When = 0, then is at point A (see Figure 2.17). When then is at B.
A semicircle is traced out as varies from 0 to .pu

zu = pzu
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(c) See Figure 2.18. When = 0, is positioned at A; when = then is at C.
The arc in Figure 2.18 is traced out as varies from 0 to .-

p

2u

z-
p

2uzu

482 Block 2 The Argand diagram and polar form of a complex number11

x

y

3–3
AB

Figure 2.17
Locus of

as varies from 0 to . pu

z = 3(cos u + j sin u)

x

y

3

–3

A

C

Figure 2.18
Locus of

as varies from 0 to
. -
p

2

u

z = 3(cos u + j sin u)

Example 2.13
Draw the locus of for 

Solution
In this example the argument is fixed at 30º and the modulus varies from 0 to 2. The
locus is shown in Figure 2.19.

0 … r … 2.z = r1cos30° +  j sin30°2

x

y

D

30o
2

O

Figure 2.19
Locus of 

for 0 … r … 2.
z = r1cos30° +  j sin30°2

When then z is at the origin. When r = 2, z is positioned at D. The locus is
the straight line OD. The length of the line is 2. It is inclined at 30º to the positive
real axis.

r = 0
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Example 2.14
Find the locus of z where

Solution
Recall that if z1 and z2 are complex numbers with arguments 1 and 2 then

So, from we have

arg

and so the argument of is 0.

Let . Then,

Given that the argument of this number is 0, as shown above, then the number is real;
that is, the imaginary part is 0. So, from , we have

The locus is the straight line .y = x

y = x

y - x = 0

-1x - 12y + 1y - 12x = 0

-1x - 12y + 1y - 12x = 0

=

1x - 12x - (x - 1)yj + (y - 1)xj + (y - 1)y

x2
+ y2

1x - jy2
1x - jy2=

1x - 12 + (y - 1)j

x + jy

=

1x - 12 + (y - 1)j

x + jy

z - 11 +  j2
z

=

x + jy - 11 +  j2
x + jy

z = x +  jy

a z - 11 +  j2
z

b

a z - 11 +  j2
z

b = 0

 arg3z - 11 +  j24-  arg1z2 = 0

 arg3z - 11 +  j24 =  arg1z2
 arg1z12 -  arg1z22 = u1 - u2 =  arg¢ z1

z2
≤

uu

 arg3z - 11 +  j24 =  arg1z2

2.6 Locus of a point 483 11

Exercises

Sketch the locus of
(a)
(b)
(c)

(d) z = r1cos 70° +  j sin 70°2   1 … r … 3

z = 1/21cos u +  j sin u2   p/4 … u … p/2
z = a +  ja           0 … a … 1
z = 4 +  jy         - 2 … y … 3

1 We wish to find the locus of z where

(a) By writing show that

(b) Hence state the locus of z.
1x - 222 + 1y - 322 = 4

z = x +  jy
ƒ z - 12 + 3 j2 ƒ = 2

2
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Solutions

484 Block 2 The Argand diagram and polar form of a complex number11

(a) Straight line, parallel to y axis, passing
through . Line goes from to 

.
(b) Straight line through origin at 45º to real 

axis. Length of line is .

(c) Arc of circle, centre origin, radius 0.5. Arc 
begins when and ends when
u = p/2.

u = p/4

22

y = 3
y = -2x = 4

1 (d) Straight line inclined at 70º to real axis.
Line starts at distance 1 from origin and
ends at distance 3 from origin.

(b) Circle centre (2, 3), radius 2.

Locus is . Note that the locus is the
perpendicular bisector of the line joining (1, 0)
and .

.y = x - 14

10, -12
y = -x3

2

2.7 Aeronautical engineering – Joukowski transformation

When designing the wing of an aircraft, it is important to understand and be able to
model the air flow around it. The air flow around the wing is crucial in determining
the forces on the wing which lead to the aircraft becoming airborne. To carry out this
modelling the cross-sectional shape of the wing must be fully understood. A typical
cross-section, known as an aerofoil, is shown in Figure 2.20.

x

yFigure 2.20
Typical cross-
section of an
aerofoil.

Find the locus of z given
ƒ z - 1 ƒ = ƒ z +  j ƒ

3 Find the locus of z given
 arg1z - 12 =  arg1z +  j24
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2.7 Aeronautical engineering – Joukowski transformation 485 11

Mathematically the aerofoil shape is complicated, making accurate modelling
difficult. However, it is possible to begin with a circle. The equation of the circle is
then subject to a transformation, which results in the typical aerofoil shape as
shown in Figure 2.20. A circle is mathematically much easier to describe than a typ-
ical aerofoil shape. When modelling air flow around the aerofoil, engineers begin
by modelling air flow around a circle, and then apply a transformation to model air
flow around an aerofoil.

An important and well-studied transformation is the Joukowski transformation.
Consider Example 2.15.

Example 2.15 Aeronautical Engineering – Joukowski transformation
(1)
We begin with a typical complex number, , in the plane, that is

A transformation to the plane is given by

Note that is a complex number in the complex plane. This transformation is
known as the Joukowski transformation. Then

Equating real and imaginary parts we have

(1)

So for any values and  we can calculate the corresponding values of and . As
a special case, suppose the locus of is the circumference of a unit circle centre the
origin (see Figure 2.21). Then . Using polar coordinates we may write

As the value of varies from to then traces out the circumference of
the unit circle in the plane.x–h

j180°-180°u

x = cos u,  h = sin u  -180° … u 6 180°
x2

+ h2
= 1

j

yxhx

x = x +

x

x2
+ h2 ,   y = h -

h

x2
+ h2

= ax +

x

x2
+ h2 b + j ah -

h

x2
+ h2 b

= x +  jh +

x -  jh

x2
+ h2

= x +  jh +

x -  jh

1x + jh2 1x -  jh2

= x +  jh +

1

x + jh

z = x +  jy = j +

1

j

x–yz

z = x +  jy = j +

1

j

x–y

j = x +  jh

x–hj
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486 Block 2 The Argand diagram and polar form of a complex number11

x

y

2

1

O Oχ

η

1 –2
θ

Figure 2.21
The Joukowski
transformation of a
unit circle, centre
the origin, is a
straight line
segment on the
real axis.

Using we deduce, from equation (1), that

So varies from (when ) to 2 (when ) and back to (when
). The variable is identically zero. So, the result of applying the

Joukowski transform to the unit circle is a line on the real axis, from to
(see Figure 2.21). Clearly, this is not a realistic model for the cross-section of

an aircraft wing. The example serves to illustrate the transformation of a circle in the
complex plane to a straight line segment in the complex plane.

Example 2.16 Aeronautical Engineering – Joukowski transformation
(2)
Find the Joukowski transformation of a circle, centre the origin, radius 2.

Solution
Consider a circle, centre the origin, radius 2 in the complex  plane (see Figure
2.22). Then for any complex number on the circle we have

Using polar coordinates we have

Then using equation (1) from Example 2.15 we have

Rearranging we have

This is the equation of an ellipse and so the locus of z is an ellipse as shown in
Figure 2.22.

a x

2.5
b2

+ a y

1.5
b2

= cos2u + sin2u = 1

x = x +

x

4
=

5x

4
= 2.5 cos u,  y = h -

h

4
=

3h

4
= 1.5sin u

x = 2 cos u, h = 2 sinu  -180° … u 6 180°

x2
+ h2

= 4

x–h

x–yx–h

x = 2
x = -2

yu = 180°
-2u = 0°u = -180°-2x

x = 2x = 2 cos u, y = 0

x2
+ h2

= 1

M11_CROF5939_04_SE_C11.QXD  11/15/18  3:41 PM  Page 486



An ellipse is still not a realistic cross-section of an aircraft wing. So, consider
Example 2.17.

Example 2.17 Aeronautical Engineering – Joukowski transformation
(3)
Consider a circle with centre and radius in the complex  plane.

Then the equation of the circle is

This circle is transformed using the Joukowski transformation

From Example 2.15 we know that the shape in the plane is given by

For each point on the circle, values of and  can be determined, and the corre-
sponding values of and calculated. The points ( ) lie on the given circle and so
we can introduce polar coordinates:

where is the radius of the circle, given as , and varies from to .

Thus and can be expressed in terms of and their values calculated as varies. A

computer/spreadsheet calculation can be performed to do this. The result is shown in

Figure 2.23. It is known as a Joukowski aerofoil.

uuyx

180°-180°u
325

4
r

x = -

1

2
+ r cos u,     h =

3

4
+ r sin u

x, hyx
hx

x = x +

x

x2
+ h2 ,       y = h -

h

x2
+ h2

x–y

z = x +  jy = j +

1

j

ax +

1

2
b2

+ ah -

3

4
b2

=

45

16

x–h
325

4
-

1

2
+

3

4
 j

2.7 Aeronautical engineering – Joukowski transformation 487 11

x

y

1.5

2.5
2

2

O Oχ

η

θ

Figure 2.22
The Joukowski
transformation of a
circle radius 2,
centre the origin, is
an ellipse.
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488 Block 2 The Argand diagram and polar form of a complex number11

End of block exercises

Plot each of the following complex numbers
on an Argand diagram:
(a) (b) (c) (d) 4j

If find and arg(z).

If find and arg(z).

Suppose and .

(a) Find and Deduce that these
are equal.

(b) Find and . Deduce that these are

equal.

Find the modulus of the complex number
.cos u + j sin u

5

ƒz1 ƒ

ƒz2 ƒ

` z1

z2
`

|z1z2|.|z1||z2|
z2 = 4 + 5jz1 = 3 + 2j4

|z|z = -3 - 6j3

|z|z = 3 + 8j2

-5-4 - 7j3 - 3j

1 Find the real and imaginary parts of each of
the following complex numbers:

(a) (b) (c)

(d)

Simplify

Find (a) arg 5, (b) arg , (c) arg( ).1 + j- 58

a3∠ ap
2
b b4a5∠ ap

6
b b2

a2∠
p

4
b3

7

2∠2.306

8∠ a -

p

2
b4∠p2∠70°

6

So when trying to model the flow of air around a wing, whose cross-section is that
of a Joukowski aerofoil, it is easier to model the flow of air around a circle, and then
transform this from the  plane to the plane.x–yx–h

O χ

η

x

y

O1
2

3
4

2

Figure 2.23

Joukowski aerofoil 

formed by transforming 

a circle centre 

and radius .
325

4

-

1

2
+

3

4
 j

M11_CROF5939_04_SE_C11.QXD  11/15/18  3:41 PM  Page 488



2.7 Aeronautical engineering – Joukowski transformation 489 11

Solutions to exercises

, 69.4°

, 

(a) (b)

15

213

241
213241 = 25334

-116.6°2453

2732 (a) 0.684, 1.879 (b) , 0 (c) 0, 
(d) , 1.483

(a) 0 (b) (c)
p

4
p8

2025

8
∠ -

5p

12
7

-1.341
-8-46
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BLOCK 3
The exponential form of a complex number

3.1 Introduction

In addition to the cartesian and polar forms of a complex number there is a third form
in which a complex number may be written – the exponential form. In this block we
explain the exponential form.

3.2 Some useful power series expansions and Euler’s relations

To derive the exponential form we shall need to refer to the power series expansions
of cos x, sin x and . Provided x is measured in radians, the functions cos x and sin x
can be expressed in the following forms, known as power series:

Example 3.1
Write down the power series expansions for cos and sin .

Solution
Simply replace x with in the given expansions:

We shall also make use of the power series expansion for . The exponential func-
tion has a power series expansion given by

ex
= 1 + x +

x2

2! +

x3

3! +

x4

4! +

x5

5! +
Á

ex

u -

u3

3! +

u5

5! -
Á sin u =

1 -

u2

2! +

u4

4! -
Á cos u =

u

uu

sin x = x -

x3

3! +

x5

5! -
Á

cos x = 1 -

x2

2! +

x4

4! -
Á

ex
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3.2 Some useful power series expansions and Euler’s relations 491 11

Suppose we allow x to be an imaginary number in the expansion of and write
. We find

since , , etc. If we now rearrange this to separate the real and imagin-
ary parts we can write

The two power series on the right we recognise, from Example 3.1, as cos and
sin , so that we have the following important result, known as Euler’s relation:

It is straightforward, and left as an exercise, to show that

e-ju
= cos u - j sin u

eju
= cos u + j sin u

u

u

eju
= 1 -

u2

2! +

u4

4! -
Á

+ jau -

u3

3! +

u5

5! -
Áb

j3 = - jj2 = -1

 = 1 + ju -

u2

2! - j
u3

3! +

u4

4! + j
u5

5! -
Á

 eju
= 1 + ju +

j2u2

2! +

j3u3

3! +

j4u4

4! +

j5u5

5! +
Á

x = ju
ex

Euler’s relations

eju
= cos u + j sin u, e-ju

= cos u - j sin u

Key point

Example 3.2
Use Euler’s relations to express cos and sin in terms of and .

Solution
Writing down Euler’s relations we have

First adding, and then subtracting, these two identities gives

Rearrange your results to obtain

eju
- e-ju

2j
 sin u =

eju
+ e-ju

2
 cos u =

2j sin u eju
- e-ju

=

2 cos u eju
+ e-ju

=

 e-ju
= cos u - j sin u

 eju
= cos u + j sin u

e-juejuuu
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492 Block 3 The exponential form of a complex number11

The results obtained in Example 3.2 are important:

cos u =

eju
+ e-ju

2
, sin u =

eju
- e-ju

2j

Key point

Exercises

Express each of the following in terms of
trigonometrical functions:
(a) (b) (c) 
where , and t are real.

Express in terms of exponential functions.cos vt2

va

e-jvtejvteja

1 Express in terms of exponential
functions.

Show that .3 a ejv
- e-jv

jv
b =

6 sin v

v
4

sin vt3

Solutions to exercises

(a) (b) 
(c)

ejvt
+ e-jvt

2
2

cos vt - j sin vt
cos vt + j sin vtcos a + j sin a1 ejvt

- e-jvt

2j
3

3.3 The exponential form of a complex number

Using the polar form, recall that a complex number with modulus r and argument 
may be written as

It follows immediately from Euler’s relations that we can also write this complex
number in exponential form as . Further, since the complex conjugate of

is , the conjugate may be written .z = re-jucos u - j sin ucos u + j sin u
z = reju

z = r (cos u + j sin u)

u

Key point Exponential form of a complex number

 z = r (cos u - j sin u) = re-ju

  z = r (cos u + j sin u) = reju

When using this form you should ensure that all angles are measured in radians and
not degrees.
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3.3 The exponential form of a complex number 493 11

Example 3.3
State the modulus and argument of the following complex numbers: (a) ,
(b) , (c) .

Solution
(a) The modulus and argument of are 4 and respectively.

(b) The modulus and argument of are 0.01 and 0.02 respectively.

(c) The modulus and argument of are 3 and respectively.

Example 3.4
Express the number in exponential form.

Solution
To express a number in exponential form we must first find its modulus and argu-
ment. The modulus of is or . The complex number
lies in the first quadrant of the Argand diagram and so its argument is given by

. Thus

Example 3.5
Find the real and imaginary parts of where and t are real numbers.

Solution
Using the first of Euler’s relations we can write

Write down the real and imaginary parts:

Example 3.6 Control Engineering – Stability of a system
In control theory it is often useful to work with complex numbers in the form

where s is the complex number , and where t, and are real. The quantity
is a frequency.

(a) Find the real and imaginary parts of z.
(b) Find .

Solution
(a) Writing we have

Using the first law of indices we can write this as

 = est(cos vt + j sin vt)
 z = estejvt

 = est +  jvt
 = e(s + jv)t

 z = est

s = s + jv

|z|

v

svs + jv

z = est

cos vt, sin vt

cos vt + j sin vte jvt
=

vz = ejvt

 = 118 e jp>4
  z = 3 + 3j

u = tan-11332 =
p

4

u

312232
+ 32

= 1183 + 3j

z = 3 + 3j

-
p

23e-jp>2
0.01e0.02j

p

64ejp>6

3e-jp>2z = 0.01e0.02j
z = 4ejp>6
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494 Block 3 The exponential form of a complex number11

Now because and t are real, so too is . Thus the real part of z is 
and the imaginary part of z is .

(b) Recall that the modulus of is r. Hence the modulus of is , that is

If then increases as time, t, increases and the system is said to be
unstable. If , then decreases with t and the system is said to be stable.ests 6 0

ests 7 0

|z| = est

estz = estejvtreju
est sin vt

est cos vtests

Exercises

State the modulus and argument of each of the
following complex numbers:
(a) (b) (c) (d) 
(e)

Express each of the following in the form :

(a) (b) 

(c) (d) (e) 

Express each of the following in the form :
(a) (b) (c) 

Show that .ƒ eju
ƒ = 14

4e2pj13e-jp>313ejp>3 a + bj3

17∠ ap
2
b5∠03∠ a -p

4
b

12∠ ap
4
b3∠ ap

3
b

reju2

0.35e-0.2
0.35e-0.2je2pj3e2pj>34e0.2j

1 Show that .

Write down the complex conjugate of .

Express in the form .

Show that the real and imaginary parts of 
are respectively and .

Express each of the following in exponential
form:
(a) (b) (c) 

(d)
(1 + 2j)3

1 - j

(1 + 8j)11(1 + j) (1 - 2j)-5

9

eat sin bteat cos bt
e(a+bj)t8

rejuz = -1 + 2j7

eju6

ƒ e-ju
ƒ = 15

Solutions to exercises

(a) 4, 0.2 radians (b) 3, radians
(c) 1, 2 radians (d) 0.35, radians
(e) , 0 radians

(a) (b) (c) (d) 
(e)

(a) (b) (c) 46 .5 - 11 .3j6 .5 + 11 .3j3

17ejp>2
5e0

= 53e-jp>422ejp>43ejp>32

0 .35e-0.2
-0 .2p

2p
31

(a) (b) (c) 
(d) 7 .91e-2.18j

6511>2e-2.94j210e-0.32j5epj9

25e2.03j7

e-ju6

End of block exercises

Show the following complex numbers on an
Argand diagram:
(a) (b) (c) (d)

Find the real and imaginary parts of the
following:
(a) (b) (c) (d) e-jp>2ejp>25e-j2p>34ejp>3

2

ejp>44epj7e2pj5ejp>3
1 Find the real and imaginary parts of

(a) (b) (c) (d) (e) 

Show that .tan u = - ja eju
- e-ju

eju
+ e-ju

b4

je0.1e0.1e-jp>64ea+ jbej -1
3
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3.3 The exponential form of a complex number 495 11

If and find

(a) (b) (c) (d) 

Given express in exponential and
polar forms.

z3z = 6ej0.236

z1 + z2z1z1
z1

z2
z1z2

z2 = 5e-jp>6z1 = 4ejp>45 If a and b are real, and

find a and b.
(a + jb)ejp>3

+ 12e-jp>4
= 5 + j

7

Solutions to exercises

(a) 2, (b) 

(c) 0, 1 (d) 0, 

(a) , (b) , 

(c) (d) , 0, (e) 0, e0.1e0.113

2
, 

-1

2

4ea sin b4ea cos be-1 sin 1e-1 cos 13

-1

-

5

2
, -

513

2

413

2
= 3.4642 (a) (b) (c) 16

(d)

, 

a = 13 + 2, b = 1 - 2137

63(cos 0.69 + j sin 0.69)63e0.69j6

7.158 + 0.328j

4

5
e

j5p>12
20ejp>125
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BLOCK 4
De Moivre’s theorem

4.1 Introduction

De Moivre’s theorem is one of the most important results in the theory of complex
numbers. It can be used to find powers of complex numbers, and to prove trigono-
metrical identities. In this block we introduce and illustrate the use of the theorem. In
Block 5 we show how the theorem can be used to solve equations. To understand this
block it is essential that you are aware that a complex number can be written in polar
form as or more compactly as .

4.2 De Moivre’s theorem

We state and use the theorem here. The proof is left as an exercise (see question 4
in the exercises). The theorem involves raising the complex number 
to the power n.

cos u + j sin u

z = r∠uz = r (cos u + j sin u)

Key point De Moivre’s theorem

(cos u + j sin u)n
= cos nu + j sin nu

Note that by using the theorem an expression involving powers of trigonometrical
functions can be converted into one involving trigonometrical functions of multiple
angles. This is useful in proving trigonometrical identities, as we shall see.

The theorem is valid when n is an integer and enables us to write, for example,

It is also valid if n is a fraction and in such a case can be used to find roots of
complex numbers. Examples of this can be found in Block 5.

Example 4.1
Use De Moivre’s theorem to write in an alternative form.

Solution
Use the theorem with :

cos 3u + j sin 3u(cos u + j sin u)3
=

n = 3

(cos u + j sin u)3

(cos u + j sin u)2 as cos 2u + j sin 2u
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4.2 De Moivre’s theorem 497 11

Example 4.2
Use De Moivre’s theorem to write in an alternative form.

Solution
Use the theorem with :

We can use De Moivre’s theorem to obtain powers of a complex number very easily.
Consider the following example.

Example 4.3
If write down expressions for (a) and (b) , and use
De Moivre’s theorem to write your results in an alternative form.

Solution

(a)

which, using De Moivre’s theorem, can be written as

(b)

which, using De Moivre’s theorem, can be written as

If we use the abbreviated form the previous example can be written much more
concisely:

r∠u

r3(cos 3u + j sin 3u)

r3(cos u + j sin u)3z3
=

r2(cos 2u + j sin 2u)

r2(cos u + j sin u)2z2
=

z3z2z = r(cos u + j  sin u)

cos 5u + j sin 5u(cos u + j sin u)5
=

n = 5

(cos u + j  sin u)5

Key point If then

for example

z2
= r2∠2u, z3

= r3∠3u, and so on

zn
= rn∠nu

z = r∠u

Example 4.4

(a) If write down .

(b) Express your answer in the form and its cartesian form.r(cos u + j  sin u)

z5z = 3∠
p

4
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498 Block 4 De Moivre’s theorem11

Solution

(a) If then 

(b)

Example 4.5

If find .

Solution
Using De Moivre’s theorem with we can write

since and .

Example 4.6
(a) Express in polar form.
(b) Hence find , leaving your answer in polar form.

Solution
(a) The modulus of is . The number lies in the first quad-

rant of an Argand diagram and so its argument is given by . 

Thus .

(b) Using De Moivre’s theorem we have

 = 296∠14.283 

  1229∠1.190212
= 1229212∠12 * 1.190

z = 2 + 5j = 229∠1.190

u = tan-1  5
2 = 1.190u

222
+ 52

= 2292 + 5j

(2 + 5j)12
z = 2 + 5j

sin 
p

2
= 1cos 

p

2
= 0

 = 49j

 = 49acos 
p

2
+ j sin 

p

2
b

 = 49acos 
2p

4
+ j sin 

2p

4
b

  z2
= 72acos 

p

4
+ j sin 

p

4
b2

n = 2

z2z = 7acos 
p

4
+ j sin 

p

4
b  

243∠
5p

4
= 243acos 

5p

4
+ j sin 

5p

4
b = -171.8 - 171.8j

35∠ a5 *

p

4
b = 243∠

5p

4

z5
=z = 3∠

p

4
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Example 4.7
If use De Moivre’s theorem with to obtain an expression

for .

Solution
With we have

The last line follows since is an even function and is an odd function.

Thus .
1
z

= cos u - j sin u

sin ucos u

 = cos u - j sin u

 = cos(-u) + j sin(-u)

  z-1
= (cos u + j sin u)-1

n = -1

1
z

n = -1z =  cos u + j  sin u

Exercises

If find in polar form.

Express in polar form and hence
find , leaving your answer in polar form.
Deduce that .

Express in polar form and hence
find , converting your answer into cartesian
form.

Consider the complex number
.

(a) Write down the exponential form of this
number.

z =  cos u + j  sin u

4

z6
z = -3 + 2j3

(2 + 2j)8
= 4096

z8
z = 2 + 2j2

z6z = 4∠
p

6
1 (b) By raising the exponential form to the

power n, and using one of the laws of
indices, deduce De Moivre’s theorem.

Use De Moivre’s theorem to show that if
then

(a)
(b)
Deduce that

and

  zn
-

1

zn = 2j sin nu

  zn
+

1

zn = 2 cos nu

z-n
= cos  nu - j  sin nu

zn
= cos  nu + j  sin nu

z = cos u + j  sin u

5

Solutions to exercises

, 84∠2p18∠
p

4
2

46∠p1 , , 

(a) (b) zn
= (eju)n

= ejnuz = eju4

-2035 + 827j133∠15.322113∠2.5543
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4.3 Using De Moivre’s theorem to prove trigonometrical identities

One of the applications of the theorem is to prove various trigonometrical identities.
Consider the following example.

Example 4.8
Use De Moivre’s theorem to prove that
(a)
(b)

Solution
(a) Using De Moivre’s theorem with we obtain

Expanding the left-hand side we can write

Equating the imaginary parts on both sides gives the required expression for
:

(b) Equate the real parts in part (a) to obtain an identity for :

Example 4.9
Express as powers of .

Solution
Consider De Moivre’s theorem with :

Expand the expression on the left-hand side:

Compare this result with the right-hand side and equate the imaginary parts:

Finally, noting that , you should verify that

sin 3u = 3 sin u - 4 sin3 u

cos 2 u = 1 - sin2 u

sin 3u = 3 cos2 u sin u - sin3 u

cos3 u + 3j cos2 u sin u

- 3 cos u sin2 u - j sin3 u

(cos u + j sin u)3
= cos 3u + j sin 3u

n = 3

sin usin 3u

cos 2u = cos2 u - sin2 u

cos  2u

sin 2u = 2 sin u cos u

sin  2u

cos2 u + 2j sin u cos u - sin2 u = cos 2u + j sin 2u

(cos u + j sin u)2
= cos 2u + j sin 2u

n = 2

cos 2u = cos2 u - sin2 u

sin 2u = 2 sin u cos u
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In the two previous examples you saw how to convert trigonometrical functions
of multiple angles into powers of trigonometrical functions. In the previous set of
exercises it was shown (question 5) that if then

These results allow us to obtain a further range of trigonometrical identities. In par-
ticular they allow us to convert powers of trigonometrical functions into expressions
involving trigonometrical functions of multiple angles.

zn
+

1

zn = 2 cos nu and zn
-

1

zn = 2j sin nu

z = cos u + j  sin u

Key point If then

zn
+

1

zn = 2 cos nu and zn
-

1

zn = 2j sin nu

z =  cos u + j  sin u

Example 4.10
If use the previous Key point to write down expressions for

(a) (b) (c) (d)

Solution

(a)

(b)

(c)

(d)

Example 4.11

Show that .

Solution

Starting with and squaring both sides we obtain

 = a  z2
+

1

z2 b + 2     by rearranging

 = z2
+ 2 +

1

z2

4 cos2 u = a  z +

1
z
b2

2 cos u = z +

1
z

cos2 u =
1
2 cos 2u +

1
2

2j sin 2uz2
-

1

z2 =

2j sin uz -

1
z

=

2 cos 2uz2
+

1

z2 =

2 cos uz +

1
z

=

z2
-

1

z2
z -

1
z

z2
+

1

z2
z +

1
z

z = cos u + j  sin u
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But and so

from which

as required.

Example 4.12

By squaring the result prove the identity .

Solution

Consider .

Squaring the left-hand side gives . Now square the right-hand side.

Rearrange this and express it in terms of using the previous Key point.

Finally we have

from which as required.sin2 u =
1
2 -

1
2 cos 2u

-4 sin2 u = 2 cos 2u - 2

az2
+

1

z2 b - 2 = 2 cos 2u - 2z2
- 2 +

1

z2 =

cos  2u

z2
- 2 +

1

z2az -

1
z
b2

=

-4  sin2 u

2j sin u = z -

1
z

sin2 u =
1
2 -

1
2 cos 2u2j sin u = z -

1
z

cos2 u =
1
2 cos 2u +

1
2

4 cos2 u = 2 cos 2u + 2

z2
+

1

z2
= 2 cos 2u

Exercises

Show that .

Show that

sin 4u = 4 cos3 u sin u - 4 cos u sin3 u

2

cos 4u = 8 cos4 u - 8 cos2 u + 11 Use your answers from questions 1 and 2 to
deduce that

Show that .cos3 u =
1
4(cos 3u + 3 cos u)4

tan 4u =

4 tan u - 4 tan3 u

1 - 6 tan2 u + tan4 u

3
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End of block exercises

Use De Moivre’s theorem to show that

and obtain a similar expression for in
powers of .sin u

sin 5u
cos 5u = 16 cos5 u - 20 cos3 u + 5 cos u

1 Show that

sin4 u =
1
8(cos 4u - 4 cos 2u + 3)

2

Solutions to exercises

 sin 5u = 16 sin5 u - 20 sin3 u + 5 sin u1
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BLOCK 5
Solving equations and finding roots
of complex numbers

5.1 Introduction

By using complex numbers, solutions can be obtained to a wide range of equations.
There is no single appropriate method for tackling these and so experience and prac-
tice are essential. Sometimes it is convenient to work in cartesian form, but on other
occasions solutions are easier to obtain in polar form. You should be aware that a
polynomial equation of degree n possesses n roots, but some of these can be repeated,
or equal, roots. So, when solving a quadratic equation we shall be looking for two
roots, when solving a cubic equation we shall be looking for three roots, and so on.

5.2 Solving equations

Example 5.1
Solve the equation 

Solution
This is a polynomial equation of degree 3. We seek three solutions. The equation can
be factorised:

so that one solution is , and others can be obtained by solving 
From we have

Thus the solutions of the given equation are and .

Example 5.2
Solve the equation 

Solution
This is simply a quadratic equation. Apply the formula

z =

-b ; 2b2
- 4ac

2a

z2
+ 2z + 2 = 0.

z = ; 25jz = 0

 = ; 25j

  z = ; 2-5

 z2
= -5

z2
+ 5 = 0

z2
+ 5 = 0.z = 0

z3
+ 5z = z(z2

+ 5) = 0

z3
+ 5z = 0.

M11_CROF5939_04_SE_C11.QXD  9/25/18  12:28 PM  Page 504



5.2 Solving equations 505 11

4

Figure 5.1
The argument of a complex number takes many values.

Often it is more convenient to work in polar form, and so before attempting to
solve any more equations it will be useful to review how the polar form of a com-
plex number is obtained. Consider the number 4, illustrated in Figure 5.1(a). Its
modulus is 4 and its argument is 0. However, it is important to note that if we
increase the argument by 360°, or , we remain at the same location on the
Argand diagram as shown in Figure 5.1(b). Indeed we can increase the argument
by further multiples of 360° and still represent the same complex number, as
shown in Figure 5.1(c).

2p

z = -1 ; j=

-2 ; 2-4

2
=

-2 ; 24 - 4(1)(2)

2
=

4

360°, 2π

4

720°, 4π

Thus in polar form we can write 4 as , , , and so on. We can
generalise this as where . In the examples that follow you
should bear this in mind when converting complex numbers to polar form.

Example 5.3
Express the number in polar form, and include the general form for the
argument.

Solution
The complex number is shown in Figure 5.2. Its modulus is

. Its argument is . However, adding on

multiples of results in the same complex number, so we can write

arg Finally the polar form is .z = 25∠(0.464 + 2kp)(z) = 0.464 + 2kp.

2p

tan-1
 
1
2 = 0.464ƒ z ƒ = 222

+ 12
= 25

z = 2 + j

z = 2 + j

k = 0, 1, 2, Á4∠2kp
4∠4p4∠2p4∠0

(a) (b) (c)
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506 Block 5 Solving equations and finding roots of complex numbers11

Example 5.4
Solve the equation 

Solution
This is a polynomial equation of degree 3. We look for three solutions. Note that this
equation can be written as We shall show that by working in polar form it is
straightforward to obtain the solutions. You should also note that the equation is
equivalent to so we are finding the cube roots of 4.

As z is a complex number, we can write it in polar form as . When we
have succeeded in finding r and , we shall know z and will have solved the problem.

Consider, first, the left-hand side of

If then write down an expression for :

Now express the right-hand side in polar form including the general term for the
argument.

Therefore, working entirely in polar form, the equation becomes

Equating moduli on both sides gives so that , the real cube root of 4
since r is real.

Equating arguments,

Taking in turn gives the three solutions

z = 41>3∠0, z = 41>3∠
2p

3
, z = 41>3∠

4p

3

k = 0, 1, 2

3u = 2kp so that u =

2kp

3
, k = 0, 1, 2, Á

r = 41>3r3
= 4

r3∠3u = 4∠2kp

4∠2kp, k = 0, 1, 2, Á4 =

r3∠3uz3
=

z3z = r∠u

z3
= 4

u

z = r∠u
z = 41>3

z3
= 4.

z3
- 4 = 0.

1 2

1 z � 2 � j

5

θ

θ � tan�1 (  ) � 0.464
arg(z) � 0.464 � 2kπ

1
2

Figure 5.2
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41/3
�       2π/3

41/3
�       4π/3

41/3
�       0

Figure 5.3
The solutions of
z3

- 4 = 0.

These solutions are illustrated in Figure 5.3.
Note that if k is increased beyond 2, we find the solutions already obtained.
If necessary these solutions can be expressed in cartesian form. Do this for your-

self now:

Example 5.5
Solve the equation 

Solution
Note that this equation can be written Again we work in polar form.

Consider, first, the left-hand side of

If then .
Now express the right-hand side in polar form. The complex number is

shown in Figure 5.4 to help you do this.
z = -2

z3
= r3∠3uz = r∠u

z3
= -2

z3
= -2.

z3
+ 2 = 0.

41>3a- 1

2
-

23

2
jb41>3∠

4p

3
=

41>3a- 1

2
+

23

2
jb41>3∠

2p

3
=

41>3 or 24341>3∠0 =

z � �2

Figure 5.4
The complex
number z = -2.
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Therefore, working entirely in polar form the equation becomes

Equate moduli on both sides to find r.

Equate arguments, to find :

Taking in turn gives the three solutions

These solutions are illustrated in Figure 5.5.

z = 21>3∠
p

3
, 21>3∠p, 21>3∠

5p

3

k = 0, 1, 2 

p

3
+

2kp

3
, k = 0, 1, 2, Áu =

u

21>3, the real cube root of 2r =

r3∠3u = 2∠(p + 2kp)

-2 = 2∠(p + 2kp) where k = 0, 1, 2, Á

21/3
�5π/3

21/3
�π/3

21/3
�π

Figure 5.5

Note that if k is increased beyond 2, we find the solutions already obtained.
If necessary these solutions can be expressed in cartesian form. Do this for your-

self now:

21>3a1

2
+

23

2
jb21>3∠

p

3
=
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Example 5.6
Solve the equation 

Solution
By careful inspection note that this equation can be factorised as

(If you cannot spot this directly, try making a substitution, , and obtain a quad-
ratic equation in w.) Thus or We have already solved each
of these separately in Examples 5.4 and 5.5. Thus the six solutions are those
obtained in these examples.

Example 5.7
Solve the equation 

Solution
In general the unknown z will be a complex number and so . Then

. Now consider the right-hand side of the given equation, This
has been expressed in polar form in Example 5.3. Therefore

Comparing moduli on both sides we see that

Also, comparing arguments,

from which

The two solutions we seek are obtained by letting and then . Increasing
k further will reproduce solutions already found.

 When k = 1, u = 0.232 + p.
 When k = 0, u = 0.232.

k = 1k = 0

 = 0.232 + kp, k = 0, 1, 2, Á

 u =

0.464 + 2kp

2

2u = 0.464 + 2kp

r2
= 51>2 so that r = 51>4

r2∠2u = 51>2∠(0.464 + 2kp)

2 + j.z2
= r2∠2u

z = r∠u

z2
= 2 + j .

z3
+ 2 = 0.z3

- 4 = 0
w = z3

 = 0
  z6

- 2z3
- 8 = (z3

- 4)(z3
+ 2)

z6
- 2z3

- 8 = 0.

21>3a1

2
-

23

2
jb21>3∠

5p

3
=

-21>3 or - 23 221>3∠p =
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510 Block 5 Solving equations and finding roots of complex numbers11

Hence the two solutions are

These solutions are shown in the Argand diagram in Figure 5.6. If necessary they can
be converted to cartesian form as and .-1.46 - 0.34j1.46 + 0.34j

51>4(cos 0.232 + j sin 0.232) and 51>4[cos(0.232 + p) + j sin(0.232 + p)]

51/4

0.232
0.232 � π

Figure 5.6
The two solutions
of z2

= 2 + j.

The techniques used in the previous examples can be used to find roots of com-
plex numbers. Suppose we wanted to find the cube roots of j, that is . Writing

and cubing both sides we obtain

So finding the cube roots of j is equivalent to solving the equation . This can be
done using the technique of Examples 5.4, 5.5 or 5.7.

z3
= j

z3
= j

z = j1>3
j1>3

Exercises

Solve the equation 

Solve each of the following equations leaving
your answers in polar form:

(a) (b)

(c) z3
= -2 + 3j

z2
= 1 - jz2

= 1 + j

2

-z2
+ 3z - 4 = 0.1 Solve the following equations converting your

solutions to cartesian form:

(a) (b) (c) z3
- 6j = 0z3

= 1z3
= -1

3

Solutions to exercises

(a)

(b)

(c) 131>6∠0.720, 131>6∠2.814, 131>6∠4.908

21>4∠ -

p

8
, 21>4∠

7p

8

21>4∠
p

8
, 21>4∠

9p

8
2

z =

3

2
;

27

2
j1 (a)

(b)

(c)

61>3a -

23

2
+ j

1

2
b

-61>3j, 61>3a23

2
+ j 

1

2
b ,

z = 1, z = -

1

2
; j

23

2

z =

1

2
-

23

2
 jz = -1, z =

1

2
+

23

2
 j,3
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End of block exercises

Find the three cube roots of .

Find the three cube roots of 8.

Find the cube roots of .

Find all complex numbers which satisfy
and express your answers in

cartesian form.
z5

+ 4z = 0
4

z =

(-3 + j)4

(2 - j)2
3

2

-81 Solve the equation showing each
solution on an Argand diagram.

Find the cube roots of .

Find the cube roots of .13 - j7

13 + j6

z4
+ 25 = 05

Solutions to exercises

z = 0, 1 ; j, -1 ; j4

z = -1.629 - 2.172j
z = 2.695 - 0.325j, z = -1.066 + 2.496j,3

2, -1 ;  13j2

-2, 1 ;  13j1

z = -0.810 - 0.965j
z = 1.241 - 0.219j, z = -0.431 + 1.184j,7

z = -0.810 + 0.965j
z = 1.241 + 0.219j, z = -0.431 - 1.184j,6

z =

110

2
;

110

2
j, z = -

110

2
;

110

2
j5
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BLOCK 6
Phasors

6.1 Introduction

One of the most important applications of complex numbers in engineering is in
the study of alternating current (a.c.) circuits. The phase relationships between dif-
ferent components in a circuit can be expressed using complex numbers. A phasor is
a quantity that contains information about the peak voltage or peak current in a
component together with its phase.

6.2 Phase relationships in LCR circuits

The voltage in an a.c. circuit can be expressed in the form

where V is the peak voltage, is the angular frequency, is the phase relative to
some reference voltage and t is time. Recall that where f is the frequency.
Similarly a current can be expressed as where I is the peak
current.

Resistor

Consider a circuit containing a resistor of resistance R. Let be the voltage across
the resistor. The current, , through the resistor is in phase with this voltage. This
means that both the voltage and current are zero at the same time and peak at the
same time. This fact is illustrated in the graphs of and in Figure 6.1.vR(t)i(t)

i(t)
vR(t)

i(t) = I sin(vt + f)
v = 2pf

fv

v(t) = V sin(vt + f)

vR(t)

i(t)

T � 

t

2π
ω

Figure 6.1
In a circuit
containing a
resistor, R, the
current and voltage
are in phase.
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The current is related to the voltage by Ohm’s law, which states that . For
example, if , then .

Inductor

Consider a circuit containing an inductor having inductance L. Experiment shows
that the voltage across the inductor, , leads the current by a phase of . If

, then it can be shown that

This means that the voltage peaks earlier than the current, as illustrated in Figure 6.2.

vL = vLI sinavt +

p

2
b

i(t) = I sin vt

p

2vL

vR = IR sin vti(t) = I sin vt
vR = Ri

vL(t), i(t)

vL(t)

2 π
ω i(t)

t

Figure 6.2
In a circuit
containing an
inductor, the
voltage leads the
current by a phase
of .p2

Capacitor

In a circuit containing a capacitor having capacitance C, experiment shows that the
voltage across the capacitor, , lags behind the current by a phase of . It can be
shown that if , then

This means that the voltage peaks after the current, as illustrated in Figure 6.3.

vC =

I

vC
 sinavt -

p

2
b

i(t) = I sin vt

p

2vC

vC(t), i(t)

vC 
(t)

2
 
π

ω i(t)
t

Figure 6.3
In a circuit
containing a
capacitor, the
voltage lags behind
the current by a
phase of .p2
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6.3 Phasors

Consider the waveform in Figure 6.4(a), which might represent a voltage, , in an 

a.c. circuit. The time it takes to complete one cycle, that is the period, is .
2p
v

V1 sin vt

514 Block 6 Phasors11

V1

V1

T � 

t
A E C A, E

D

B

C

D

B

2 π
ω

θ � ωt

Figure 6.4
Points on a
waveform and
equivalent points
on a rotating arm.

An alternative representation of the same physical situation is shown in Figure 6.4(b).
It shows an arm rotating anticlockwise. The length of the arm is and it rotates at 
radians per second.

Moving at an angular velocity of radians per second means that it completes

So it completes a full revolution in seconds. The time it takes to complete a 

revolution is the same as the time it takes for one cycle of the waveform to be com-
pleted in Figure 6.4(a). There is an obvious correspondence between points on the
sine wave and positions of the arm. Points A, B, C, D and E illustrate this. For any
value of t on the waveform, the angle of the arm is . Such a rotating arm is called a
phasor.

If we have a second waveform, such as , which leads the first by 
a phase of , then its rotating arm will lead that of by , as shown in
Figure 6.5.

p

2V1 sin vtp

2

V2 sin(vt +
p

2)

vt

T =

2p
v

 2p radians in 
2p
v

 seconds

 1 radian in 
1
v

 seconds

v

vV1

V1
V1

V2

V2, V1

V2

t2 π
ω

Figure 6.5
Phasor 2 leads
phasor 1 by .p2

(a) (b)
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V1V1

V3

V1, V3

V3

t2 π
ω

Figure 6.6
Phasor 3 lags
phasor 1 by .p2

Similarly, if we have a third waveform, such as , which lags behind
the first by a phase of , then its rotating arm will lag that of by as shown
in Figure 6.6.

p

2V1 sin vtp

2

V3 sin(vt -
p

2  )

Because these phasors have a length and an angle measured from the positive
direction of the x axis they can be represented by complex numbers. We think of the
phasor diagram as an Argand diagram. We write a typical phasor in polar form as

, where the is used to distinguish the complex quantity, with magnitude
V and phase , from the peak value V. Alternatively we can write in cartesian form
by stating its real and imaginary parts.

In Block 2 we showed that when a complex number is multiplied by j this has the
effect of rotating that number anticlockwise by on an Argand diagram.

So, if we want to represent a phase lead of we multiply the corresponding
phasor by j.

Similarly, dividing a complex number by j has the effect of rotating that number
clockwise by on an Argand diagram. So, if we want to represent a phase lag of 
we divide the corresponding phasor by j.

Note that

So dividing by j is equivalent to multiplying by .
If the current through a circuit is represented by the voltage across a resistor will

be given, from Ohm’s law, by The voltage across an inductor will be 

and that across a capacitor will be Notice the way that 

multiplication by j achieves the required phase differences for the inductor and
capacitor.

In general we write

The quantity Z is called the complex impedance.

V
'

= I
'

Z where Z =

R for a resistor

μ jvL for an inductor

-

j

vC
for a capacitor

V
'

C = -

j

vC
I
'

.V
'

L = jvLI
'

V
'

R = RI
'

.
I
'

- j

 = - j

 =

- j

1

 
1

j
= a1

j
b # a - j

- j
b

p

2
p

2

p

2

p

2

V
'

f

'V
'

= V∠f
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516 Block 6 Phasors11

More generally, the complex impedance is written in cartesian form as 
where R is the resistance and X is called the reactance. The argument of Z gives the
phase of the voltage relative to the current. The complex impedance is very impor-
tant because it can be used in the same way that resistance, R, is used in Ohm’s law,
which is clear from inspecting the two forms (Ohm’s law) and .

When k circuit elements are placed in series their total impedance, Z, is found by
adding the individual impedances, , that is

When the elements are in parallel

Example 6.1 Electrical Engineering – A series LCR circuit
For the series LCR circuit shown in Figure 6.7 the total impedance is the sum of the
individual impedances.

The voltage phasor is

 = I
'

R + jvL I
'

-

j

vC
I
'

 V
'

= I
'

Z

Z = R + jvL -

j

vC

1

Z
= a

1

Zk

Z = aZk

Zk

V
'

= I
'

ZV = IR

Z = R + jX

Key point Complex impedances

V
'

= I
'

Z where Z =

R for a resistor

μ jvL for an inductor

-

j

vC
for a capacitor

L C

V

R
i

~

Figure 6.7
A series LCR
circuit.

Example 6.2 Electrical Engineering – A series RC circuit
The circuit shown in Figure 6.8 consists of an alternating voltage source, a resistor R
and a capacitor C in series. Suppose a voltage of 8 mV is applied with a frequency of

Hz to the circuit in which R is and 
(a) Find the angular frequency .
(b) State the supply voltage in phasor form, taking its phase to be zero. This will be

the reference phasor.

v

C = 100  pF. 12 Æ106
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6.3 Phasors 517 11

(c) Find the complex impedance for this circuit.
(d) Find the current phasor for the circuit.
(e) Find the voltage across each component.

Solution
(a) The angular frequency .
(b) The voltage phasor is .
(c) The complex impedance is the sum of the individual impedances:

(d) Since it follows that .

Simplify this:

(e) Since the current is the same through each component, we have

and

In polar form and .V
'

C = 0.008∠(-0.0075)V
'

R = 6.0317 * 10-5∠(1.5633)

 = 8.000 * 10-3
- 6.0316 * 10-5j

 VC
'

= -

j

vC
I
'

 = 4.5477 * 10-7
+ 6.0316 * 10-5j

 = 12 I
'

 V
'

R = I
'

R

I
'

= 3.7897 * 10-8
+ 5.0263 * 10-6j

I
'

=

V
'

Z
=

8 * 10-3

12 - 1591.55j
V
'

= I
'

Z

12 - 1591.55j=

 = 12 -

j

6.2832 * 106
* 10-10

 Z = R -

j

vC

V
'

= 8 * 10-3∠0
v = 2pf = 2p * 106

= 6.2832 * 106

I
'

C

V

R

~

Figure 6.8
A series RC
circuit.

We see from the polar form that the voltage across the resistor leads the voltage
across the capacitor by radians, as expected. It is easy to
check from the cartesian forms that .VR

'

+ VC
'

= V
'

1.5633 + 0.0075 L
p

2

M11_CROF5939_04_SE_C11.QXD  9/25/18  12:28 PM  Page 517



11

End of block exercises

The impedance of a component is
. State (a) the resistance, (b) the

reactance, (c) the phase of the voltage relative
to the current.

The admittance is the reciprocal of the
impedance. Find the admittance of the
component in question 1.

The impedance of an LCR circuit is

(a) Find .ƒ Z ƒ

Z = R + javL -

1

vC
b

3

2

Z = 12 - 12j
1 (b) From the result of part (a) deduce that the

impedance has minimum magnitude when

(c) Deduce that this minimum value is R.

A capacitor and resistor are placed in parallel.
Show that the complex impedance of this
combination is given by

Find an expression for Z.

1

Z
=

1

R
+ jvC

4

v = A
1

(LC)

Solutions to exercises

(a) 12 (b) (c)

(a) AR2
+ avL -

1

vC
b2

3

0.0417 + 0.0417j2

-

p

4
-121 Z =

R

1 + jvCR
4

End of chapter exercises

Find the modulus and argument of (a) ,
(b) , (c) , (d) 

Represent the following numbers on an Argand
diagram:
(a) 13 (b) (c) (d) 

If and find 

and .

Find the modulus and argument of .

Express in exponential form. Write
down its complex conjugate.

2 + 3j5

-1 + j4

z1

z2

z1z2z2 = 3 + 2jz1 = 5 + 3j3

p + pj-4 + 2jj2

2

 cos u + j sin u.1 + j-3
- j1 Sketch an Argand diagram and upon it mark

the poles of the rational function

Use De Moivre’s theorem to simplify
(a)

(b)

Express in the form
.

Use De Moivre’s theorem to show that
.cos 3u = 4 cos3 u - 3 cos u

9

cos nu + j sin nu
(cos u + j sin u)98

cos 8u + j sin 8u

cos 2u - j sin 2u

(cos 3u + j sin 3u)(cos 4u + j sin 4u)
7

G(s) =

3(s - 3)

(s + 1)(s + 1 + 3j)(s + 1 - 3j)

6

518 Block 6 Phasors
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End of chapter exercises 519 11

Solve the equation expressing your
solutions in cartesian form and using surds.

Find .

Find the fifth roots of j.

Solve the equation .

Show that

Let and let
.

Use trigonometrical identities to prove that

and

The hyperbolic functions cosh x and sinh x are
defined as

Use these definitions and Euler’s relations to
prove (a) , (b) ,
(c) , (d) .

Writing and using the laws of
logarithms show that ln . Hence
interpret ln .

In each case, draw an Argand diagram and
shade the region that satisfies
(a) (b)
(c) (d)

where Re(z) stands for the real part of z, and
Im(z) stands for imaginary part of z.

Im(z) Ú -3Im(z) 6 3
Re(z) … -2Re(z) 7 0

18

(2 + 2j)
z = ln r + ju

z = reju17

sin jx = j sinh xcos jx = cosh x
sinh jx = j sin xcosh jx = cos x

cosh x =

ex
+ e-x

2
, sinh x =

ex
- e-x

2

16

z1

z2
=

r1

r2
 [cos(u1 - u2) + j sin(u1 - u2)]

z1z2 = r1r2[cos(u1 + u2) + j sin(u1 + u2)]

z2 = r2(cos u2 + j sin u2)
z1 = r1(cos u1 + j sin u1)15

 + 6 cos 4u - cos 6u
 32 sin6u = 10 - 15 cos 2u

14

z4
+ 1 = j2313

12

23 2 + 2j11

z2
= 4j10 Find the real and imaginary parts of

Find the modulus and argument of .

Find .

Electrical Engineering. The impedance, Z, of
a component is given by . The
admittance, Y, is given by

Find Y in cartesian form.

Electrical Engineering. A resistor of
resistance, R, and an inductor of inductance,
L, are connected in series. If and

find
(a) the total impedance, Z
(b) the admittance.

Electrical Engineering. A resistor of
resistance, R, and an inductor of inductance,
L, are connected in parallel. If and

find
(a) the total impedance, Z
(b) the admittance.

L = 2j
R = 9

24

L = 2j
R = 9

23

Y =

1

Z

Z = 7 + 5j
22

1

1 + jv
+

1

2 + jv
21

1

1 + jv
20

1

1 + jv

19
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Solutions to exercises

(a) 1, (b) 3, (c) (d) 1, 

. The conjugate is .

(a) (b)

21>4∠ ap
6

+

kp

2
b , k = 0, 1, 2, 313

1∠ a p
10

+

2 kp

5
b , k = 0, 1, 2, 3, 412

81>6∠ a p
12

+

2 kp

3
b , k = 0, 1, 211

z = ; 22(1 + j)10

 cos 9u + j sin 9u8

cos 10u + j sin 10ucos 7u + j sin 7u7

213e-0.983j213e0.983j5

12, 
3p

4
4

9 + 19j, 
21

13
-

1

13
j3

u12, 
p

4
p-

p

2
1

real part

imaginary part 

modulus , argument 

(a) (b)

(a) (b)
1

9
-

j

2

36 + 162j

85
24

9 - 2j

85
9 + 2j23

7 - 5j

74
22

3 + 2jv

2 + 3jv - v2
21

tan-1(-v)
1

11 + v2
21

-

v

1 + v2

=

1

1 + v2
19

ln(28) + j
p

4
17

520 Block 6 Phasors
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Chapter 12
Matrices and determinants

A matrix is a rectangular array of numbers or expressions. The plural
of matrix is matrices. This chapter deals with the addition, subtraction
and multiplication of matrices. Unlike numbers, the processes of
addition, subtraction and multiplication can be applied to matrices
only under specific conditions. Division of matrices is not defined.
However, the inverse of a matrix may be found under certain
conditions. The inverse matrix and its calculation are explained in
Block 4.

Determinants are introduced in Block 3. A determinant is a number
that is calculated from the elements of a matrix and is used in finding
the inverse matrix.

The chapter closes with the application of matrices to computer
graphics. Multiplication by a matrix can be interpreted as a
transformation of a figure.
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Chapter 12 contents

Block 1 Introduction to matrices

Block 2 Multiplication of matrices

Block 3 Determinants

Block 4 The inverse of a matrix

Block 5 Computer graphics

End of chapter exercises
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BLOCK 1
Introduction to matrices

1.1 Introduction

A matrix is a rectangular array of numbers or expressions usually enclosed in brack-
ets. For example,

are all matrices. Note that the plural of matrix is matrices.
We often denote a matrix by a capital letter, for example

The size of a matrix is given by the number of rows and the number of columns. The
matrix A has three rows and two columns and so is described as a matrix. We
say that A is a ‘three by two matrix’. Matrix B has two rows and four columns and so
is a matrix. Notice that the number of rows is always stated first. An 
matrix has n rows and m columns.

The individual numbers or expressions in a matrix are called the elements and are
usually denoted by a small letter. For example, for A, the element in row 1, column 2
is denoted by , the element in row 3, column 1 is denoted by , and so on. So

Example 1.1
Given

state (a) , (b) , (c) .

Solution
(a) is the element in row 1, column 3, and so .
(b) is the element in row 2, column 1, and so .
(c) is the element in row 2, column 2, and so .c22 = 1c22

c21 = lc21

c13 = 4c13

c22c21c13

C = a3 0 4 x

l  1 z -1
b

a11 = 4, a12 = 1, a21 = 3, a22 = 6, a31 = -1, a32 = 0

a31a12

n * m2 * 4

3 * 2

A = £ 4 1

3 6

-1 0

≥ , B = a1 0 -1 3

6 1 4 2
b

a3 1 9

0 -6 2
b ,  aa b

g d
b ,  a3 - l 4

7 6 - l
b
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524 Block 1 Introduction to matrices12

Example 1.2 Matrices and digital image processing
A digital image is an image that is represented by an array of numbers. Consider, as
a very simple example, the mathematical representation of the symbol . Very
crudely we can picture the symbol as in Figure 1.1.

p

Figure 1.1
A simple digital
representation 
of .p

We could represent this image of by a matrix such as

Note that we have divided the image into a number of areas, or fields, in this case 15
of them. We have then assigned a number to each field: 1 if the field is to be shaded,
and 0 otherwise.

Images such as black and white photographs can be ‘digitised’ in the same way.
The image is divided into fields, where in practice m and n are large integers.
Each field is assigned a number that represents the intensity of the image in that area.
Often a 64-point grey scale is used so that a range of grey levels can be represented
ranging from white at one extreme to black at the other. A digital image is then rep-
resented by an matrix, B say, whose elements are numbers in the range 1–64.
In image processing the matrix B is often referred to as .b[m, n]

m * n

m * n

B = £1 1 1 1 1

0 1 0 1 0

0 1 0 1 0

≥
3 * 5p

Exercises

The matrix, H, is defined by

H = £ 2 1

a 0

-3 b

≥
1 (a) State the size of H.

(b) State , , .

State the number of elements in an 
matrix.

n * m2

h32h21h11

Solution to exercises

(a) (b) 2, , ba3 * 21 nm2
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1.2 Some special matrices 525 12

1.2 Some special matrices

There are a number of matrices that you will use frequently and which have special
names. These are now described.

A square matrix has the same number of columns as rows. Both D and E are
square matrices where

The main diagonal of a square matrix is the diagonal running from ‘top left’ to ‘bot-
tom right’. The main diagonal of D contains the elements 3 and 2. In general, if A is
an matrix, the main diagonal contains the elements , , , . . . , .

An identity matrix is a square matrix with ones on the main diagonal and zeros
everywhere else. Identity matrices are usually denoted by I, with a subscript to
denote its size. The identity matrix is where

the identity matrix is where

and so on.
The transpose of a matrix is obtained by writing rows as columns. The transpose

of A is denoted . For example, if

then the transpose of A, , is given by

Example 1.3
Given

state the transpose of B.

B = £1 -2 4

3 1 0

7 5 9

≥

AT = §
6 9

1 2

-3 3

0 7

¥
AT

A = a6 1 -3 0

9 2 3 7
b

AT

I3 = £1 0 0

0 1 0

0 0 1

≥
I33 * 3

I2 = a1 0

0 1
b

I22 * 2

anna33a22a11n * n

D = a3 1

4 2
b , E = £ 1 -1 3

0 l  3

-1 y 7

≥
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526 Block 1 Introduction to matrices12

Solution
The transpose is

£ 1 3 7

-2 1 5

4 0 9

≥
 

Exercises

State the transpose of C where

C = £9 3

1 -2

a  4

≥
1 State the transpose of .I32

Solutions to exercises

CT
= a9 1 a

3 -2 4
b1 I32

1.3 Addition and subtraction of matrices

Matrices of the same size may be added to and subtracted from one another. To do
this, the corresponding elements are added or subtracted.

Example 1.4
Given

find, if possible,
(a) (b) (c) (d)

Solution

(a)

 = a 5 7 0

10 -5 10
b

 = a 3 + 2 1 + 6 -1 + 1

0 + 10 -2 - 3 4 + 6
b

 A + B = a3

0

1

-2

-1

4
 b + a 2

10

6

-3

1

6
 b

A + CB - AB - CA + B

A = a3 1 -1

0 -2 4
b , B = a 2 6 1

10 -3 6
b , C = a -1 0

3 2
b
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1.3 Addition and subtraction of matrices 527 12

(b) B is a matrix; C is a matrix. Since B and C have different sizes
then cannot be calculated.

(c)

(d) A and C have different sizes and so is not defined.

Example 1.5

If and 

calculate
(a) (b) (c)

Solution

(a)

(b)

(c) has been found in (a).

Note that .

Example 1.5 illustrates a general rule for matrices.

(C + D)T
= CT

+ DT

a6 1 13

2 5 4
b

 
(C +  D)T =

C + D

 a6 1 13

2 5 4
b

 
=

a -1 3 9

0 4 1
b

 
CT + DT = a7 -2 4

2 1 3
b +

£ 6 2

1 5

13 4

≥
 

=

C + D = £ 7 2

-2 1

4 3

≥ + £ -1 0

3 4

9 1

≥
(C + D)TCT

+ DTC + D

D = £ -1

3

9

0

4

1

 ≥C = £ 7

-2

4

2

1

3

≥  

A + C

 = a -1 5 2

10 -1 2
b

 = a 2 - 3 6 - 1 1 - (-1)

10 - 0 -3 - (-2) 6 -  4
b

  B - A = a 2 6 1

10 -3 6
b - a3 1 -1

0 -2 4
b

B - C
2 * 22 * 3

Key point The transpose of the sum of two matrices is the same as the sum of the individual
matrices transposed:

(A + B)T
= AT

+ BT
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Exercises

Given

R = a4 1

6 2
b , S = a -3 2

7 -4
b

1 find
(a) (b) (c)
(d) (e) (ST)T(R - S)T

R + RTS - RR + S

Solutions to exercises

(a) (b)

(c) (d) a 7 -1

-1 6
ba8 7

7 4
b

a -7 1

1 -6
ba 1 3

13 -2
b1 (e) a -3 2

7 -4
b

1.4 Multiplication of a matrix by a number

Any matrix can be multiplied by a number. To do this, each element of the matrix is
multiplied by the number.

Example 1.6
If

find
(a) 2A (b) (c)

Solution

(a)

(b)

 = a1.5 0.5 -0.5

0 -1 2
b

 
1

2
 A =

1

2
 a3 1 -1

0 -2 4
b

 = a6 2 -2

0 -4 8
b

 = a2 * 3 2 * 1 2 * (-1)

2 * 0 2 * (-2) 2 * 4
b

  2A = 2 a3 1 -1

0 -2 4
b

-A
1

2
 A

A = a3 1 -1

0 -2 4
b
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1.4 Multiplication of a matrix by a number 529 12

(c)

Example 1.7
If

find

(a) (b) (c)

Solution

(a)

(b)

(c)

Example 1.8
Given

and k is a constant find
(a) (b) (c) (kA)TkATAT

A = a3 1 4

2 9 6
b

a2.5 3.5 0

5 -2.5 5
b

 

1

2
 A +

1

2
 B =

1

2
 (A + B) =

a -1 -11 -3

-20 4 -8
b

 
=

a 4 12 2

20 -6 12
b

 
  A - 2B = a3 1 -1

0 -2 4
b -

a12 20 1

30 -13 26
b

 
=

  2A + 3B = a6 2 -2

0 -4 8
b + a 6 18 3

30 -9 18
b

1

2
 A +

1

2
 BA - 2B2A + 3B

A = a3 1 -1

0 -2 4
b   and  B = a 2 6 1

10 -3 6
b

 = a -3 -1 1

0 2 -4
b

 = (-1) a3 1 -1

0 -2 4
b

-A = (-1) A
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Solution

(a)

(b)

(c)

Hence

(kA)T = £3k 2k

k 9k

4k 6k

≥

¢3k k 4k

2k 9k 6k
 ≤

 
kA =

£3k 2k

k 9k

4k 6k

≥
 

=

  kAT = k £3 2

1 9

4 6

≥

£3 2

1 9

4 6

≥
 

AT =

Example 1.8 illustrates a general rule:

Key point (k A)T
= k AT 

1.5 Using software for matrix calculations

The software packages Maple and Matlab, in common with many similar packages,
are designed to compute not just with single numbers but with entire sequences of
numbers at the same time. Data can be entered in the form of multi-dimensional
objects called arrays. Matrices are a particular form of array and so Maple and Mat-
lab are well suited to performing matrix calculations.

In Maple a matrix can be entered in a variety of ways and you should consult the
on-line help for full details. For example, the matrices C and D from Example 1.5
can be entered, row by row, as

> C:= Matrix([[7,2], [-2,1], [4,3]]);

C: = C 7 2

-2 1

4 3

S
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> local D:
> D:= Matrix([[-1,0], [3,4], [9,1]]);

Thereafter the operations of addition, subtraction and scalar multiplication can be
performed in an intuitive way: C + D, C - D, k * C (note the * needed for scalar mul-
tiplication). The multiplication of matrices will be considered in the next block.
Numerous additional operations are available by loading further packages. For
example, the package LinearAlgebra is loaded using the command 

with(LinearAlgebra);

and contains the function Transpose() for finding the transpose of a matrix. You
should experiment with the package to which you have access. The creation of
matrix D serves to illustrate a further point: in computer software some symbols are
‘reserved’ so that they can be used by the software itself. This is the case with the
symbol ‘D’ which is reserved for a differentiation command (see Chapter 20). To
overcome this limitation and still use the symbol ‘D’ it is here declared as a ‘local’
variable.

In Matlab the matrices C and D can be created as follows:

>> C = [7 2; -2 1; 4 3]
>> D = [-1 0; 3 4; 9 1]

Then, as with Maple, addition, subtraction and scalar multiplication can be per-
formed. The multiplication of matrices will be considered in the next block. Note the
different ways in which matrices are created in Maple and Matlab. This serves to
illustrate that reference to the on-line help regarding specific syntax is essential.

D: = C -1 0

3 4

9 1

S

1.5 Using software for matrix calculations 531 12

Exercises

Given

find
(a) 3A (b) 2B (c) (d)
(e) (f)

Given

state
(a) (b) where is a constant.lA - lI2A - 2I2

A = a6 1

3 7
b

2

(2A)T2AT
B - 2A4A + 3B

A = a2 1

3 -2
b , B = a 4 -1

-2 6
b

1 Given

calculate
(a) (b) B - 2ATA + BT

A = a1 2 3

4 5 -1
b , B = £ -2 3

0 4

7 -1

≥
3
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Solutions to exercises

(a) (b)

(c) (d)

(e) (f) a4 6

2 -4
ba4 6

2 -4
b

a 0 -3

-8 10
ba20 1

6 10
b

a 8 -2

-4 12
ba6 3

9 -6
b1 (a) (b)

(a) (b)

End

£ -4 -5

-4 -6

1 1

≥a -1 2 10

7 9 -2
b3

a6 - l 1

3 7 - l
ba4 1

3 5
b2

End of block exercises

Questions 1–13 refer to matrices A, B and C where

A = £4 1

9 -1

2 0

≥ , B = a1 2 3

4 5 -1
b , C = £ -1 3

0 4

1 6

≥
Calculate .

Calculate .

Calculate .

If D is an matrix, state the size of
(a) , (b) .

If

state
(a)
(b) where is a constant.lT - lI

T - 2I

T = £ 3 1 4

-1 2 6

7 3 0

≥
15

(DT)TDT
n * m14

2C + 5BT 

3
13

B - 3CT12

A + 2BT11State the size of A.

State the size of B.

State , , .

Calculate 5A.

Calculate .

Calculate .

State .

State .

Calculate .

Calculate .3C - 4A10

A + 2C9

CT8

AT7

1

2
 C6

-2C5

4

c22b13a323

2

1

Solutions to exercises

0, 3, 43

2 * 32

3 * 21 £20 5

45 -5

10 0

≥4
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£ -19 5

-36 16

-5 18

≥10

£2 7

9 7

4 12

≥9

a -1 0 1

3 4 6
b8

a4 9 2

1 -1 0
b7

±
-

1
2

3
2

0 2
1
2 3

 ≤6

£ 2 -6

0 -8

-2 -12

≥5

(a) (b)

(a)

(b) £3 - l 1 4

-1 2 - l 6

7 3 -l

≥

£ 1 1 4

-1 0 6

7 3 -2

≥15

n * mm * n14

£ 1 26
3

10
3 11
17
3

7
3

≥13

a 4 2 0

-5 -7 -19
b12

£ 6 9

13 9

8 -2

≥11
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BLOCK 2
Multiplication of matrices

2.1 Introduction

In Block 1 we saw how a matrix can be multiplied by a number. In this section we
look at how one matrix can be multiplied by another matrix. We also specify the
conditions under which such a multiplication can take place.

2.2 Conditions needed for two matrices to be multiplied together

Let A and B be two matrices. Then under certain conditions the product AB can be
found. The way in which such a product is calculated is explained in the next
section; for this section we focus on the conditions needed for the product to exist.

To decide whether the product AB exists we look at the size of each matrix.
Suppose A is an matrix and B is a matrix. For the product AB to exist
it must be that : that is, the number of columns in A must be the same as the
number of rows in B.

m = p
p * qn * m

Key point For the product AB to exist, the number of columns of A must equal the number of rows
of B.

When the product AB can be calculated. The result is another matrix whose
size is .n * q

m = p

Key point

m = p

()*

n * qp * qn * m
()*()*()*

C=BA

If the number of columns in A differs from the number of rows in B then the product
AB cannot be found. We say AB does not exist.
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2.2 Conditions needed for two matrices to be multiplied together 535 12

The product AB is distinct from the product BA. For example, if A is a 
matrix and B is a matrix then the number of columns in A equals the number
of rows in B, that is 2, and so AB can be found. It is a matrix:

However, let us now consider BA. The number of columns in B is four; the number
of rows of A is three and so the product BA cannot be found. Hence the order of the
product is crucial, and we say that matrix multiplication is, in general, not commu-
tative. In the product AB we say A premultiplies B. Alternatively we can say that B
postmultiplies A.

Products involving three or more matrices are possible. If P, Q and R are three
matrices then to calculate PQR we first calculate PQ, and then postmultiply the
result by R, that is PQR is treated as (PQ)R. Alternatively we can calculate QR and
premultiply the result by P, that is we may treat PQR as P(QR). The final result in
both cases is the same. This means that matrix multiplication is associative.

Finally we note that the product AA is written as , AAA is written as , and
so on.

A3A2

3 * 42 * 43 * 2

()*()*()*

C=BA

3 * 4
2 * 4

3 * 2

Exercises

Questions 1–3 refer to matrices P, Q and R where
P is a matrix, Q is a matrix and R is
a matrix.

State the size of the following products if they
can be found. If they cannot be found then
state this.
(a) PQ (b) PR (c) QR (d) RQ (e)
(f) (g) RPQ2

P2

1

2 * 3
3 * 33 * 2

State the size of each of the following:
(a) (b) (c) (d) (e)

State the size of the following products. If a
product cannot be found then state this.
(a) PQR (b) PRQ (c) QPR (d) RQP

If A is a matrix, state conditions on A for 
to exist.

A24

3

PT
 QTRT

 PTRTQTPT
2

Solutions to exercises

(a) cannot be found (b) (c) cannot be
found (d) (e) cannot be found
(f) (g)

(a) (b) (c) (d)
(e) 2 * 3

3 * 33 * 23 * 32 * 32

2 * 23 * 3
2 * 3

3 * 31 (a) cannot be found (b) (c)
(d)

A must be a square matrix for to existA24

2 * 2
3 * 33 * 33
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536 Block 2 Multiplication of matrices12

2.3 How to multiply two matrices

Section 2.2 stated the conditions needed for a product of matrices to exist. In this
section we look at how the product is actually calculated. The method is illustrated in
Example 2.1.

Example 2.1
Given

calculate the product AB.

Solution
We note that A is a matrix, B is a matrix and so the product AB exists.
The result is a matrix, say C.

To find , that is the element in row 1, column 1, we use row 1 from A and column
1 from B. The elements in this row and column are multiplied and added thus:

The element is in row 1, column 2 of C. It is calculated from row 1 of A and
column 2 of B.

The element is in row 2, column 1 of C. It is calculated from row 2 of A and
column 1 of B.

The element is in row 2, column 2 of C. It is calculated from row 2 of A and
column 2 of B.

 = -13
  c22 = 5(-1) + 2(0) - 2(4)

c22

 = 21
  c21 = 5(1) + 2(2) - 2(-6)

c21

 = 13
  c12 = 3(-1) + 1(0) + 4(4)

c12

 = -19
 = 3 + 2 - 24

  c11 = 3(1) + 1(2) + 4(-6)

c11

AB = C = ac11  c12

c21  c22
b

2 * 2
3 * 22 * 3

A = a3  1  4

5  2 -2
b  and B = £ 1 -1

2  0

-6  4

≥
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2.3 How to multiply two matrices 537 12

Hence

Example 2.1 illustrates the following important point regarding matrix multiplication.

 = a -19  13

21 -13
b

  AB = a3  1  4

5  2 -2
b  £ 1 -1

2  0

-6  4

≥

Key point If then the element is found from row i of A and column j of B.cijAB = C

Check the working to the following example.

Example 2.2
Given

calculate AB.

Solution
Note that A has two columns, B has two rows and so the product AB can be found.
The result is a matrix, C.

Now

Hence

a9 -1

2  3
b  a4  3  2

1  2 -1
b = a35  25  19

11  12  1
b

2(2) + 3(-1) = 1 c23 =

 = 12
c22 = 2(3) + 3(2)

2(4) + 3(1) = 11 c21 =

 = 19
c13 = 9(2) - 1(-1)

9(3) - 1(2) = 25 c12 =

 = 35
c11 = 9(4) - 1(1)

 = C = ac11  c12  c13

c21  c22  c23
b

  AB = a9 -1

2  3
b  a4  3  2

1  2 -1
b

2 * 3

A = a9 -1

2  3
b   and  B = a4  3  2

1  2 -1
b
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538 Block 2 Multiplication of matrices12

Recall the identity matrix, I, given by

and so on. If no subscript is given then the size of the identity matrix is taken as that
for which any stated product exists.

Example 2.3
Given

calculate
(a) AI (b) IA

Solution
Since A has two columns the required identity matrix is :

(a)

(b)

Example 2.3 illustrates a general point. For any square matrix A:

a 3 -2

10 7
b

 
=

IA = a1 0

0 1
b a 3 -2

10 7
b

a 3 -2

10 7
b

 
=

AI = a 3 -2

10  7
b  a1  0

0  1
b

I2

A = a 3 -2

10  7
b

I2 = a1  0

0  1
b , I3 = P1  0  0

0  1  0

0  0  1
Q

Key point When a square matrix is post- or premultiplied by an identity matrix of the appropriate
size the matrix is unchanged.

AI = IA = A

Example 2.4
Given

find x and y.

a4 -1

6 5
b  ax

y
b = a -13

13
b
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2.3 How to multiply two matrices 539 12

Solution
Multiplying out the matrices on the left-hand side of the equation yields

Hence

Solving these equations simultaneously for x and y yields , .

Example 2.5
Given

find
(a)
(b)
(c)

Solution
(a) Recall that denotes the transpose of A.

(b)

(c)

a6  1

1  14
b

 
=

ATA = a1 -1 2

2 3 1
b  P

1 2

-1 3

2 1
Q

P
5  5  4

5  10  1

4  1  5
Q

 

=

AAT = P
1 2

-1 3

2 1
Q  a1 -1 2

2 3 1
b

a1 -1  2

2  3  1
b

 
AT

=

AT

ATA
AAT
AT

A = P 1  2

-1  3

2  1
Q

y = 5x = -2

  6x + 5y = 13
 4x -  y = -13

a 4x - y

6x +  5y
b

 
a4 -1

6  5
b  ax

y
b =
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The computing packages Maple and Matlab have built-in commands for matrix mul-
tiplication. For full details you should refer to the on-line help.

Example 2.6
Using software, repeat the calculations in Example 2.2.

Solution

540 Block 2 Multiplication of matrices12

Maple
The matrices A and B are loaded as follows:

> A:=Matrix ([[9,-1], [2,3]]);
> B:=Matrix ([[4,3,2], [1,2,-1]]);

In Maple, the command for the ‘usual’ matrix multiplication is a dot .. Thus

> A.B;

yields

Note, however, that other types of multiplication are possible. ‘Element-by-element’
multiplication is performed on matrices of the same size using the command * ~ as in

> E:=Matrix([[2, 4], [-1, 9]]);

> F:=Matrix([[4,3], [2, -1]]);

> E*~F;

yielding 

c 8 12

-2 -9
d

c4 3

2 -1
d

c 2 4

-1 9
d

c35 25 19

11 12 1
d

Matlab
This example further highlights the differences between packages and the care that must
be taken regarding correct syntax. In Matlab the command for matrix multiplication is *.

>> A=[9 -1; 2 3]

A =

>> B = [4 3 2; 1 2 -1]

B =

>> A*B

ans =

35 25 19

11 12 1

4 3 2

1 2 -1

9 -1

2 3
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Exercises

Questions 1–8 refer to matrices A, B and C where

A = a 3  1

-1  2
b , B = a1  4  0

2  7 -1
b , C = P

-2  1

4 -1

0  3
Q

Calculate the following products.

AB

BC

CA4

3

A22

1

BCA

ABC

BT
 ACT8

7

6

AAT5

Solutions to exercises

P
-7  0

13  2

-3  6
Q4

a14 -3

24 -8
b3

a 8  5

-5  3
b2

a5  19 -1

3  10 -2
b1

P
3 -1  15

8  2  54

-4  6 -6
Q8

a66 -17

34 -13
b7

a45  8

80  8
b6

a 10 -1

-1  5
b5

End of block exercises

Questions 1–6 refer to matrices A, B, C and D where

A = (2 -1 7), B = P
9

2

0
Q , C = a 3 6

-3 1
b , D = a1 2 3

4 5 6
b
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542 Block 2 Multiplication of matrices12

State the size of each of the following products.
If a product does not exist then state this.
(a) AB (b) BA (c) CD (d) DC (e) DB
(f) BD (g) (h)

State the size of each of the following products.
If a product does not exist then state this.
(a) (b) (c) (d) 
(e)

State the size of each of the following products.
If a product does not exist then state this.
(a) CDB (b) (c) DBA (d)
(e) ADT

 C
DT

 CDC2
 D

3

(ADT)T
ADTDT

 CDT
 BAAT

2

C2A2

1 Calculate all the products in question 1 that
exist.

Calculate all the products in question 2 that
exist.

Calculate all the products in question 3 that
exist.

6

5

4

Questions 7–9 refer to matrices A, B, C, D and E. These are given by

A = P
4 -1

1 0

-2 2
Q , B = (2 1), C = (3 1 -1), D = a5 -2

1  0
b , E = a 3

-1
b

State the size of each of the following products
if they exist. If a product does not exist then
state this.
(a) DE (b) CA (c) DB (d) CA (e) AE

State the size of each of the following products
if they exist. If a product does not exist then
state this.
(a) (b) (c) CAD (d) BDE (e) CAB

Calculate
(a) AD (b) (c) CAE

If

calculate x and y.

Given

find x and y.

P is an matrix. Show that the products
and can always be found. State the

size of each product.
PTPPPT

n * m12

a 5 2

-3 4
b  ax

y
b = a 19

-27
b

11

a3 1

4 2
b  ax

y
b = a 9

14
b

10

ET
 D

9

AATAT
 A

8

7 Given

calculate (a) AB (b) (c) . What do
you observe from (b) and (c)?

This question asks you to show that
. A is an matrix and B is

an matrix given by

(a) State an expression for the (i, j)th element
of AB, that is the element in the ith row
and jth column.

B = ±
b11  b12 Á  b1p

b21  b22 Á  b2p

o o ∞ o

bm1  bm2 Á  bmp

≤

A = ±
a11  a12 Á  a1m

a21  a22 Á  a2m

o o ∞ o

an1  an2 Á  anm

≤

m * p
n * m(AB)T

= BTAT
14

BTAT(AB)T

A = a4 -2

1  3
b , B = a 1  3  4

-1  2  0
b

13
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(b) State an expression for the (i, j)th element
of .

(c) State the ith row of .
(d) State the jth column of .AT

BT
(AB)T

(e) State an expression for the (i, j)th element
of .

(f) Hence show that .(AB)T
= BTAT

BTAT

Solutions to exercises

(a) (b) (c) (d) does not
exist (e) (f) does not exist (g) does not
exist (h)

(a) (b) does not exist (c)
(d) (e)

(a) (b) (c) (d)
(e)

(a) (16) (b) 

(c) (e) 

(h) 

(a) (54) (c) (d) (21 45)

(e) 

(a) (b)

(c)

(d) (e) (-72 171)P
31  32  33

59  67  75

87  102  117
Q

a26 -13  91

92 -46  322
b

a 87  102  117

-80 -109 -138
ba315

7
b6

a21

45
b

P
-9  10

-9  17

-9  24
Q5

a -9  24

-12 -17
b

a13

46
ba27  36  45

1 -1 -3
b

P
18 -9  63

4 -2  14

0  0  0
Q4

1 * 2
3 * 32 * 32 * 32 * 13

2 * 11 * 2
3 * 21 * 12

2 * 2
2 * 1

2 * 33 * 31 * 11 (a) (b) (c) does not exist
(d) (e)

(a) (b) (c) (d)
(e) does not exist

(a) (b) (c) (50)

is an matrix; is an 
matrix.

(a) (b)

(c)

Conclude that .

(a) (b)

(c) (d)

(e)

(f) From (b) and (e), the (i, j)th elements of
and are identical. Since this is

true for all values of i and j then the two
matrices are equal.

BTAT(AB)T

a
m

k = 1
ajkbki

(aj1 aj2 Á  ajm)(b1i b2i Á  bmi)

a
m

k = 1
ajkbki a

m

k = 1
aikbkj14

(AB)T
= BTAT

P
6 -2

8  9

16  4
Q

P
6 -2

8  9

16  4
Qa 6  8  16

-2  9  4
b13

m * mPTPn * nPPT12

x = 5, y = -311

x = 2, y = 310

(14 - 6)P
19 -8

5 -2

-8  4
Q9

1 * 11 * 23 * 32 * 28

3 * 11 * 2
1 * 22 * 17
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BLOCK 3
Determinants

3.1 Introduction

We have seen how to add and subtract matrices in Block 1. Block 2 dealt with the
multiplication of one matrix by another. Division of one matrix by another is not
defined. However, for some matrices it is possible to calculate an inverse matrix. In
some ways, use of the inverse matrix takes the place of division. To calculate an
inverse matrix requires knowledge of determinants, and it is this topic that is
addressed first. All square matrices possess a determinant. We begin with the sim-
plest square matrices: matrices.

3.2 Determinant of a 2 � 2 matrix

Consider the matrix A where

Then the determinant of A is . The determinant of A is denoted by

When you have evaluated the determinant of a matrix you will see that the result is
no longer a matrix, but a single number or expression.

det(A),  ƒA ƒ or ` a  b

c  d
 `

ad - bc

A = aa  b

c  d
b

2 * 2

2 * 2

If

then . Det(A) may also be written as

ƒA ƒ or ` a  b

c  d
 `

det (A) = ad - bc

A = aa b

c d
b

Key point

M12_CROF5939_04_SE_C12.QXD  9/22/18  8:11 AM  Page 544



3.2 Determinant of a 2 � 2 matrix 545 12

Example 3.1
Given

calculate the determinant of (a) A, (b) .

Solution

(a)

Note that the value of the determinant is the single number, 9.

(b)

Hence

3(1) - (-1) 6 = 9ƒAT
ƒ =

AT
= a3 -1

6  1
b

 = 9
ƒA ƒ = 3(1) - 6(-1)

AT

A = a 3 6

-1 1
b

Example 3.2
If A is a matrix show that .

Solution
Let

Then .
Now

and so

Hence : that is, the determinant of a matrix and the determinant of its
transpose are the same.

ƒA ƒ = ƒAT
ƒ

ad - bcƒAT
ƒ =

aa c

b d
bAT

=

ƒA ƒ = ad - bc

A = aa b

c d
b

det(A) = det(AT)2 * 2

Example 3.3
Calculate the determinant of

a4 2

6 3
b
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Solution

A matrix that has a zero determinant is called singular.

4(3) - 2(6) = 0` 4 2

6 3
` =

Example 3.4 Control Engineering – Stability of a system
Many engineering systems can be modelled by a set of simultaneous equations.
From these equations, a state matrix, A, can be formed which encapsulates crucial
information about the system.

The stability of a system is determined by the poles of the system. The system
poles, s, are determined from the equation

where I is the identity matrix.
Given the state matrix is

determine the system poles.

Solution
The system poles are found from

Given

then we have

So

The system poles are solutions of . Using the quadratic formula,
values of s are obtained:

s = 2.268, 5.732

s2
- 8s + 13 = 0

 = s2
- 8s + 13

 = (3 - s)(5 - s) - 2

ƒA - sI ƒ = ` 3 - s -2

-1 5 - s
`

A - sI = a 3 -2

-1 5
b - s a1 0

0 1
b = a3 - s -2

-1 5 - s
b

A = a 3 -2

-1 5
b and I = a1 0

0 1
b

ƒA - sI ƒ = 0

A = a 3 -2

-1 5
b

ƒA - sI ƒ = 0
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A system where , or the in the case of complex poles, is said to be
stable. If , or , then the system is unstable. Hence the system in
Example 3.4 is unstable.

Re (s) 7 0s 7 0
Re (s) 6 0s 6 0

Exercises

Calculate the determinant of each of the
following matrices.

(a) (b)

(c) (d)

(e)

Calculate the determinant of each of the
following matrices.

(a) (b)

(c) (d)

(e) (f)

Find conditions on a, b and c for

to be singular.

aa b

0 c
b

3

a3 - l 4

6 2 - l
ba1 0

3 l
b

a12 20

6 10
ba -1 -1

4 -3
b

a -2 1

1 4
ba3 6

2 9
b

2

a -l 2

1 1 - l
b

a3 - l 2

8 1 - l
bax 3

y 4
b

a 6 10

-3 -5
ba 8 3

-3 5
b

1 Under what conditions is the matrix

singular?

Find values of for

to be singular.

Find

Find where I is a identity matrix.

Control Engineering. Determine the system
poles of the following state matrices. In each
case state whether the system is stable or
unstable.

(a) (b) a -1 -2

5 4
ba -4 5

-5 3
b

8

2 * 2ƒI ƒ7

` cos u sin u

-sin u cos u
`

6

a7 - l  2

12 5 - l
b

l5

F = a x 3

2x y
b

4

Solutions to exercises

(a) 49 (b) 0 (c) (d)

(e)

(a) 15 (b) (c) 7 (d) 0 (e)

(f)

Either a or c is 0.

F is singular if or .y = 6x = 04

3

l2
- 5l - 18

l-92

l2
- l - 2

l2
- 4l - 134x - 3y1 1, 11

, using a trigonometrical
identity to simplify.

1

(a) . System is stable.

(b) . System is unstable.s =

3; 2-15

2

s =

-1; 2-51

2
8

7

cos2 u + sin2 u = 16

5

3.2 Determinant of a 2 � 2 matrix 547
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3.3 Minors and cofactors of a 3 � 3 matrix

Before we can calculate the determinant of a matrix it is necessary to intro-
duce the minor of an element and the cofactor of an element. Consider a 
matrix A where

If we choose an element of A, say , and cross out its row and column, that is the
ith row and the jth column, we are left with a matrix. The determinant of this

matrix is called the minor of .aij2 * 2
2 * 2

aij

A = £a11 a12 a13

a21 a22 a23

a31 a32 a33

≥
3 * 3

3 * 3

Example 3.5
Given

calculate the minor of (a) 3, (b) 9, (c) 2.

Solution
(a) The element 3 occurs in row 1, column 1, that is . Deleting row 1 and

column 1 leaves

The determinant of this matrix is . The minor of
3 is .

(b) The element 9 occurs in row 2, column 1. Deleting these leaves

The determinant of this matrix is

The minor of 9 is .
(c) The element 2 occurs in row 2, column 3. Deleting these leaves

whose determinant is 12. The minor of 2 is 12.

a3 -1

0 4
b

-31

(-1)7 - 6(4) = -31

2 * 2

a -1 6

4 7
b

-43
(-5)7 - 2(4) = -432 * 2

a -5 2

4 7
b

a11 = 3

A = £3 -1 6

9 -5 2

0 4 7

≥
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Closely related to the minor of an element is the cofactor of an element. The cofac-
tor of is given as

The term is either 1 or depending upon the position of the element. The
following grid of and is an easy way to visualise this. The and signs
are known as the place signs of the elements. If the place sign is then the cofactor
and minor are identical; if the place sign is then the cofactor is (minor).

£ + - +

- + -

+ - +

≥
--

+

-+-+

-1(-1)i + j

cofactor  of aij = (-1)i + j
* minor of aij

aij

Example 3.6
The matrix A is given as

Calculate the cofactor of (a) 3, (b) 9, (c) 2.

Solution
(a) The minor of 3 is . Since the place sign is then the cofactor of 3 is also

.
(b) The minor of 9 is . The place sign is and so the cofactor is 31.
(c) The minor of 2 is 12. The place sign is and so the cofactor is .-12-

--31
-43

+-43

A = P
3 -1 6

9 -5 2

0 4 7
Q

Exercises

The matrix D is given by

(a) Calculate the minor of (i) 7, (ii) , (iii) 3,
(iv) 9.

(b) Calculate the cofactor of (i) 2, (ii) ,
(iii) 1, (iv) , (v) 0.-3

-2

-8

D = £7 -8 3

9 2 -2

1 -3 0

≥
1 The matrix G is defined by

(a) Calculate the minor of (i) , (ii) 3,
(iii) 6.

(b) Calculate the cofactor of (i) 9, (ii) 
(iii) 4.

-l

2 - l

G = £2 - l  3 6

9 -l  4

-1 0 1 - l

≥
2

Solutions to exercises

(a) (i) (ii) 2 (iii) (iv) 9
(b) (i) (ii) 13 (iii) 10 (iv) 41 (v) 86-3

-29-61 (a) (i) (ii) (iii) 
(b) (i) (ii) (iii) -3l2

- 3l + 83l - 3
-l13 - 9ll2

- l2
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12 550 Block 3 Determinants

3.4 Determinant of a 3 � 3 matrix

Consider a general matrix, A.

The determinant of A is found using

Calculation of the determinant using this expression is known as expanding along
the first row.

ƒA ƒ = a11 * (its cofactor) + a12 * (its cofactor) + a13 * (its cofactor)

A = £a11 a12 a13

a21 a22 a23

a31 a32 a33

≥
3 * 3

ƒA ƒ = a11 * (its cofactor) + a12 * (its cofactor) + a13 * (its cofactor)Key point

Example 3.7
Calculate where

Solution
We have , and . The cofactors of these elements are
required. The cofactor of 3 is as found in Example 3.6.

The minor of is

The place sign of is

and so the cofactor is

The minor of 6 is

The place sign is and so the cofactor is 36. Hence

 = 150

ƒA ƒ = 3(-43) + (-1)(-63) + 6(36)

+

` 9 -5

0 4
` = 36

-63

--1

` 9 2

0 7
 ` = 63-1

-43
a13 = 6a12 = -1a11 = 3

A = £3 -1 6

9 -5 2

0 4 7

≥
ƒA ƒ
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The determinant of a matrix can also be found by expanding along any row or col-
umn. For example, we could calculate by expanding along the second row thus:

or expanding along the third column thus:

ƒA ƒ = a13 * (its cofactor) + a23 * (its cofactor) + a33 * (its cofactor)

ƒA ƒ = a21 * (its cofactor) + a22 * (its cofactor) + a23 * (its cofactor)

ƒA ƒ

Example 3.8
The matrix A is defined in Example 3.5 as

Evaluate by
(a) expanding along the third row
(b) expanding along the second column.

Solution
(a) By expanding along the third row we have

Now , , .
The minor of is

The cofactor is also 28.

The minor of is 

The cofactor is 
The minor of is

The cofactor is . Hence

(b) We now expand along the second column.
The elements are

a12 = -1, a22 = -5, a32 = 4

 = 150

 ƒA ƒ = 0(28) + 4(48) + 7(-6)

-6

` 3 -1

9 -5
 ` = -6

a33

48

` 3 6

9 2
 ` = -48a32

` -1 6

-5 2
 ` = 28

a31

a33 = 7a32 = 4a31 = 0

ƒA ƒ = a31 * (its cofactor) + a32 * (its cofactor) + a33 * (its cofactor)

det (A)

A = £3 -1 6

9 -5 2

0 4 7

≥
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12 552 Block 3 Determinants

The minor of is 

The cofactor is .
The minor of is

The cofactor is 21.

The minor of is 

The cofactor is 
Hence

 = 150

 ƒA ƒ = (-1)(-63) + (-5)(21) + 4(48)

48

` 3 6

9 2
 ` = -48a32

` 3 6

0 7
 ` = 21

a22

-63

` 9 2

0 7
 ` = 63a12

Exercises

The matrix H is defined by

Evaluate by expanding
(a) along the first row
(b) along the third row
(c) along the second column.

The matrix K is defined by

Calculate .

Calculate the determinant of each of the
following matrices:

(a) £ -1 6 1

-3 9 2

6 3 0

≥
3

ƒK ƒ

K = £17 9 -4

0 11 3

0 0 -6

≥
2

ƒH ƒ

H = £6 -2 4

3 -1 7

9 8 -3

≥
1

(b)

(c)

(d)

(e)

Find by expanding along the second
column, where

B = £ 1 0 3

22 -1 17

-3 0 19

≥
det(B)4

£1 3 6

6 3 1

3 1 6

≥

£3 -6 9

4 6 -6

5 18 -21

≥

£ 6 6 3

-1 9 7

11 21 13

≥

£ 5 3 6

10 11 1

-6 8 -7

≥
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3.5 Determinant of a 4 � 4 matrix

The determinant of a matrix is found in a similar way to that for a 
matrix. We can expand along any row or column. The minor of an element is the
determinant of the matrix left after deleting the row and column containing
the element. The cofactor is then found by multiplying by either 1 or depending
upon the place sign.

The place signs for a matrix are as follows:

Expanding along the first row of a matrix, A, for example, would give

 + a13 * (its cofactor) + a14 * (its cofactor)

 ƒA ƒ = a11 * (its cofactor) + a12 * (its cofactor)

4 * 4

±
+ - + -

- + - +

+ - + -

- + - +

≤

4 * 4

-1
3 * 3

3 * 34 * 4

Solutions to exercises

in each case

-11222

-3301 (a) 15 (b) 643 (c) 0 (d) 0 (e)

-284

-1003

Example 3.9
Find by expanding along the first row where

Solution
We have , , , . The cofactors of these elements are
found by deleting the appropriate rows and columns.

The minor of is

The cofactor is .-6

†
2 0 3

1 1 -1

2 -2 5
† = -6

a11

a14 = 1a13 = 4a12 = -2a11 = 3

A = ±
3 -2 4 1

6 2 0 3

9 1 1 -1

4 2 -2 5

≤

ƒA ƒ

3.5 Determinant of a 4 � 4 matrix 553
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12 554 Block 3 Determinants

The minor of is

The cofactor is 48.
The minor of is

The cofactor is .
The minor of is

The cofactor is .
Hence

The sensible choice of row or column can save work.

 = -190
 ƒA ƒ = 3(-6) + (-2)48 + 4(-14) + 1(-20)

-20

†
6 2 0

9 1 1

4 2 -2
† = 20

a14

-14

†
6 2 3

9 1 -1

4 2 5
† = -14

a13

†
6 0 3

9 1 -1

4 -2 5
† = -48

a12

Example 3.10
Calculate where

Solution
Expansion along the third column is efficient as it contains two zeros. The cofactors
of these zero elements need not be calculated. We have and .

162 - 2 (1026) = -1890=

 = †
4 7 6

-1 11 3

4 -2 6
† +  (-2) †

13 2 -9

4 7 6

4 -2 6
†

 T = t13 * (its cofactor) + t33 * (its cofactor)

t33 = -2t13 = 1

T = ±
13 2 1 -9

4 7 0 6

-1 11 -2 3

4 -2 0 6

≤

ƒT ƒ
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Exercises

Calculate the determinant of each of the
following matrices by expanding along an
appropriate row or column.

(a)

(b)

(c) ±
2 -1 0 6

6 -5 2 1

0 3 2 0

1 2 4 5

≤

±
3 17 7 2

-1 6 0 -3

9 6 0 5

5 -3 0 4

≤

±
6 3 -2 1

4 0 -2 0

1 1 7 4

6 3 0 2

≤

1

(d)

Calculate where

A = ±
a  17 6 3

0 b  14 7

0 0 g  13

0 0 0 d

≤

ƒA ƒ2

±
9 3 5 -2

0 -1 6 7

0 4 9 11

-2 -6 3 5

≤

Solutions to exercises

(a) 2 (b) 462 (c) (d) -54-2781 abgd2

3.6 Properties of determinants

There are a number of properties of determinants that can be used to simplify their
evaluation. Some of these properties are given now.

Property 1

Suppose A is an matrix and k a scalar. Suppose the matrix B is obtained by
multiplying a single row or column of A by k. Then

If the matrix A is multiplied by k, that is every element in the matrix is multiplied by k,
then we obtain

det(kA) = kn det(A)

det(B) = k det(A)

n * nKey point

3.6 Properties of determinants 555
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12 556 Block 3 Determinants

Example 3.11
Suppose

Obtain B from A by multiplying the second column of A by 4.
(a) Write down B.
(b) Find det(B).
(c) Find det(A).
(d) Verify that det(A) as in Property 1.

Solution

(a)

(b)

(c)

(d) It follows that det(A).det(B) = 4

29ƒA ƒ =

116ƒB ƒ =

a 5 28

-2 12
bB =

det(B) = 4

A = a 5 7

-2 3
b

Example 3.12
Suppose

(a) Write down 5A.
(b) Find det(A).
(c) Find det(5A).
(d) Verify Property 1, that is .

Solution

(a)

(b)

(c)

(d) Then, since , it follows that .det(5A) = 52
* det(A)-325 = 25 * -13

(5)(-35) - (15)(10) = -325det(5A) =

-13det(A) =

a 5 15

10 -35
b5A =

det(5A) = 52 det(A)

A = a1 3

2 -7
b

Example 3.13
Find det(B) given

B = £ 6 -2 12

27 -15 6

0 4 7

≥
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and given that the determinant of

is 150.

Solution
By careful inspection of B note that it is obtained from A by multiplying the first row
by 2 and the second row by 3. Hence

Property 2

det(B) = 2 * 3 * det(A) = 6 * 150 = 900

A = £ 3 -1 6

9 -5 2

0 4 7

≥

If B is obtained from A by interchanging two rows or two columns then

det(B) = -det(A)

Key point

In other words, interchanging two rows or two columns changes the sign of the
determinant. Carrying out two interchanges introduces two sign changes and hence
leaves the determinant unchanged.

Example 3.14
Given

and , find the determinant of each of the following matrices.

(a) (b) (c)

Solution
(a) By interchanging the first row and second row of we obtain

(b) Interchanging the first row and second row of the determinant in (a) we obtain

†
9 -5 2

0 4 7

3 -1 6

 † = 150

†
0 4 7

9 -5 2

3 -1 6

 † = -150

ƒ A ƒ

£ -5 9 2

-1 3 6

4 0 7

≥£9 -5 2

0 4 7

3 -1 6

≥£0 4 7

9 -5 2

3 -1 6

≥
ƒA ƒ = 150

A = £3 -1 6

9 -5 2

0 4 7

≥

3.6 Properties of determinants 557
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12 558 Block 3 Determinants

(c) We begin with . Interchanging the first column and second column we obtain

We now interchange the first row and second row to produce

Property 3

†
-5 9 2

-1 3 6

4 0 7
† = 150

†
-1 3 6

-5 9 2

4 0 7
† = -150

ƒA ƒ

Adding or subtracting a multiple of one row (or column) to another row (or column)
leaves the determinant unchanged.

Key point

Example 3.15
Evaluate

Solution
We use Property 3 repeatedly to simplify the determinant.

 = 150 (by expanding along first row)

 = †
3 0 0

0 -2 -16

0 0 -25
† (adding 2 * second row to third row)

 = †
3 0 0

0 -2 -16

0  4 7
† (subtracting 2 * first column from third column)

 = †
3 0 6

0 -2 -16

0 4 7
† aadding 

1

3
  of first column to second columnb

 †
3 -1 6

9 -5 2

0 4 7
† = †

3 -1 6

0 -2 -16

0 4 7
† (subtracting 3 * first row from second row)

†
3 -1 6

9 -5 2

0 4 7
†
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Property 4

If A and B are two square matrices such that AB exists then

det(AB) = det(A) det(B)

Key point

Example 3.16
Given

verify .

Solution

Now

Hence .

Property 5

det(AB) = det(A) det(B)

AB = a -3 13

-1 11
b , ƒAB ƒ = -33 + 13 = -20

ƒA ƒ = 12 - 2 = 10, ƒB ƒ = -2, ƒA ƒ ƒB ƒ = -20

det(AB) = det(A) det(B)

A = a3 2

1 4
b , B = a -1 3

0 2
b

If two rows or two columns of a matrix are equal, the determinant of the matrix is zero.Key point

Example 3.17
Find the determinant of the matrix

Solution
Note that the first two rows are the same. It is easy to check that .ƒA ƒ = 0

A = £4 -5 2

4 -5 2

1 2 1

≥

Exercises

Use the properties of determinants to simplify
the following determinants and then evaluate
them.

(a) (b) †
28 12 35

24 10 31

15 6 20

 ††
5 20 9

3 31 15

1 24 12

 †

1

(c)

(d) †
176 152 101

229 195 133

109 95 62

 †

†
113 92 58

175 144 90

64 53 33

 †

3.6 Properties of determinants 559
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12 560 Block 3 Determinants

(e)

Determine the value of:

(a) ∞
29 39 -3 11

5 3 3 4

24 36 -6 7

30 59 -2 1

∞

2

†
-19 -15 -12

-21 -17 -14

-23 -19 -15

 † (b)

Verify where

G = a -3 1

2 5
b  and H = a 2 4

-1 3
b

det(GH) = det(G) det(H)3

∞
19 25 16 -30

7 9 6 -8

-11 -15 -10 22

21 25 12 -15

∞

Solutions to exercises

(a) 9 (b) 2 (c) 8 (d) 28 (e) 81 (a) 0 (b) 42

Computer and calculator exercises

Many computer algebra packages will calculate the determinant of a matrix. For example, in Maple, with the
LinearAlgebra package loaded, with(LinearAlgebra), the command Determinant(A)
will find |A|. The Matlab function det() does likewise. Use the software to which you have access to do the
following exercises.

Calculate the determinant of

(a) §
7 4 11 6

3 1 7 -2

4 4 5 9

3 2 1 8

¥
1

(b) •
1 2 5 8 3

3 8 1 -2 6

4 7 5 -1 0

-11 11 3 6 7

-1 6 9 4 3

μ

Solutions to exercises

(a) 0 (b) 281181

End of block exercises

Find the determinant of each of the following
matrices:

(a) (b) a -1 6

3 9
ba6 11

2 4
b

1
(c) (d)

(e) a -7 -1

-2 -3
b

a 3 4

-1 -2
ba -1 0

2 3
b
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Find the determinant of each of the following
matrices:

(a) (b)

(c)

(d)

(e)

Calculate the values of for which each
matrix in question 2 is singular.

Given

calculate (a) the minor of 9, (b) the cofactor of 6,
(c) the minor of 3, (d) the cofactor of ,
(e) det(A).

Calculate the determinant of each of the
following matrices:

(a) (b)

(c) (d)

(e)

Calculate the determinant of

(a) §
5 2 6 3

3 9 12 1

-3 1 4 1

4 1 5 3

¥
6

£17 -19 31

18 21 30

14 20 32

≥

£1 1 1

2 2 3

5 6 8

≥£5 1 6

9 3 2

1 -1 10

≥

£9 1 1

4 2 3

1 6 9

≥£3 1 -6

4 2 0

5 6 -1

≥
5

-5

A = £ 9 6 -1

3 5 7

-3 2 -5

≥
4

l3

a4 - l  2

-1 7 - l
b

a -1 - l 1

6 4 - l
b

a7 - l 2

3 2 - l
b

a -l  3

1 2 - l
ba3 - l 4

2 1 - l
b

2

(b)

If

(a) find , (b) find ,

(c) verify .

Given

verify (a)
(b) .

Calculate the determinant of each of the
following matrices:

(a) (b)

(c)

Calculate the following determinants:

(a) (b)

Given

calculate (a) the minor of ,
(b) the cofactor of 0.

Calculate the values of for which the matrix
A is singular given

A = a5 - l -1

6 -2 - l
b

l12

-2

H = £ 3 -2 1

6 -1 5

-3 0 9

≥
11

†
17 1 -23

l 0 6

0 0 l - 1

 ††
1 2 3

1 3 2

-2 3 1

 †

10

a 2x 2y

-x y
b

a300 170

150 85
ba 11 6

-3 -1
b

9

det(AB) = det(A) det(B)
det(A2) = [det(A)]2,

A = a -4 2

1 3
b , B = a6 -1

5 3
b

8

det(B) = 32 det(A)

ƒB ƒƒA ƒ

A = a3 8

2 6
b  and B = 3A

7

§
6 7 10 1

11 5 14 2

12 9 21 3

7 2 11 2

¥

3.6 Properties of determinants 561
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12 562 Block 3 Determinants

Calculate where

Without explicitly evaluating the determinant
find if

A = £ -1 3 -1

7 8 7

-15 1 -15

≥
ƒA ƒ

14

A = §
6 19 -36 0

0 4 1 0

0 2 1 0

17 -21 32 2

¥
ƒA ƒ13 Control Engineering. A system has a state

matrix, A, given by

Find the system poles and hence determine
whether the system is stable or unstable.

A = a -5 2

-11 -2
b

15

Solutions to exercises

(a) 2 (b) (c) (d) (e) 19

(a) (b)
(c) (d)
(e)

(a) , 5 (b) , 3 (c) 1, 8 (d) , 5
(e) 5, 6

(a) (b) (c) (d) 27 (e)

(a) (b) (c) 0 (d) (e) 6234

(a) 10 (b) -96

-1-11-865

-408-28-6-394

-2-1-13

l2
- 11l + 30

l2
- 3l - 10l2

- 9l + 8
l2

- 2l - 3l2
- 4l - 52

-2-3-271 (a) 2 (b) 18

(a) 7 (b) 0 (c)

(a) 14 (b)

(a) 69 (b)

, 4

24

0 since two columns are identical.

Poles are . System is 

stable.

s =

-7 ; 2-79

2
15

14

13

-112

-911

l(1 - l)10

2xy + 2xy = 4xy9

7
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BLOCK 4
The inverse of a matrix

4.1 Introduction

This block examines the idea of an inverse matrix. Division of one matrix by another
is not defined: use of an inverse matrix is the nearest equivalent of ‘matrix division’.

4.2 Definition

Let A be an matrix. Recall that is the identity matrix. Suppose that B
is an matrix such that

We say that B is the inverse of A. We often write to denote the inverse of A. It is

important to realise that in this context does not mean . Division by a matrix is

not defined. In what follows we shall write the identity matrix as I, rather than . Its
size should be obvious from the context.

In

1

A
A- 1

A- 1

AB = BA = In

n * n
n * nInn * n

Multiplying a square matrix A by its inverse , if this exists, yields the identity
matrix I.

A A- 1
= A- 1 A = I

A- 1Key point

Example 4.1

Given 

show that

is the inverse of A.

Solution
We calculate AB and BA.

 AB = a3 4

2 3
b  a 3 -4

-2 3
b

B = a 3 -4

-2 3
b

A = a3 4

2 3
b
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12 564 Block 4 The inverse of a matrix

Hence and so B is the inverse of A. Note also that A is the inverse of B.

The term ‘inverse’ can only be applied to square matrices. It is meaningless to talk
about the inverse of a or matrix, for example. However, even though a
matrix is square this is no guarantee that its inverse matrix exists. If the determinant
of A is 0, that is A is singular, then A does not have an inverse. If the determinant is
non-zero, then the inverse can be found.

3 * 72 * 3

AB = BA = I

 = I

 = a1 0

0 1
b

  BA = a 3 -4

-2 3
b  a3 4

2 3
b

 = I

 = a1 0

0 1
b

If , A does not have an inverse.

If , A does have an inverse.ƒ A ƒ Z 0

ƒ A ƒ = 0Key point

4.3 Finding the inverse of a 2 � 2 matrix

Suppose A is a matrix and . Then the inverse of A can be found. If

then recall . Now is given by

A-1
=

1

ƒA ƒ

 a d -b

-c a
b

A-1
ƒA ƒ = ad - bc

A = aa b

c d
b

ƒA ƒ Z  02 * 2

If

then

A-1
=

1

ƒA ƒ

 a d -b

-c a
b

A = aa b

c d
b

Key point
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124.3 Finding the inverse of a 2 � 2 matrix 565

Example 4.2
Find , if it exists, when A is given by

(a) (b) (c) (d)

Solution
(a) Here , , , and . Then

It is useful to check that .

(b) Here , , , 

and

Hence we have

(c) Here , , , and 

Hence the identity matrix is its own inverse.

(d) Here . Hence the matrix is singular and does not have an inverse.ƒA ƒ = 0

 A-1
= a1 0

0 1
b

ƒA ƒ = 1. We haved = 1c = 0b = 0a = 1

a 0 1

0.25 0.25
b=

1

-4
 a 0 -4

-1 -1
b  A-1 =

-4ƒA ƒ =

-1, 4, 1, 0d =c =b =a =

AA-1
= A-1A = I

 = a 0.6 -0.4

-0.2 0.3
b

  A-1 =

1

10
  a 6 -4

-2 3
b

ƒA ƒ = 10d = 6c = 2b = 4a = 3

a 3 -6

-6 12
ba1 0

0 1
ba -1 4

1 0
ba3 4

2 6
b

A-1

Example 4.3
Find the inverse of

Solution
Here the values of a, b, c and d are given by  
The determinant of B is found.

2ƒB ƒ =

3, -2, 4, -2

B = a3 -2

4 -2
b
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12 566 Block 4 The inverse of a matrix

The inverse, , may now be stated.

a -1 1

-2 1.5
bB-1

=

B-1

Exercises

State the condition under which a square
matrix does not have an inverse.

1 Find the inverse of the following matrices. If
an inverse does not exist, state this.

(a) (b)

(c) (d) a4 8

5 10
bax -y

y x
b

a -4 -1

3 5
ba6 1

4 3
b

2

Solutions to exercises

If the determinant is zero, then the inverse
does not exist.

1
(a) (b)

(c) (d) no inverse
1

x2 +  y2
  a x y

-y x
b

1

17
  a -5 -1

3 4
b1

14
  a 3 -1

-4 6
b2

4.4 Finding the inverse of a matrix – the general case

We wish to find the inverse of A, an matrix. We have already noted that, if
, then the inverse of A does not exist. Suppose . To find we

proceed thus:

1 Find the transpose of A, by interchanging the rows and columns of A.
2 Replace each element of by its cofactor. The resulting matrix is known as the

adjoint of A, written adj(A).
3 The inverse of A is given by

AT

A-1
ƒA ƒ Z 0ƒA ƒ = 0

n * n

A-1
=

adj(A)

ƒA ƒ

Key point
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124.4 Finding the inverse of a matrix – the general case 567

Example 4.4
Find the inverse of

Solution
We find the transpose, , by interchanging rows and columns.

Each element of is replaced by its cofactor to yield the adjoint of A.

Calculating the determinant of A gives and so

 =

1

9
 £ 0 2 -1

9 -6 3

18 -11 1

≥
  A-1 =

adj(A)

ƒA ƒ

ƒA ƒ = 9

adj(A) = £ 0 2 -1

9 -6 3

18 -11 1

≥
AT

AT = £3 5 1

1 2 4

0 -1 -2

≥
AT

A = £3 1 0

5 2 -1

1 4 -2

≥

Example 4.5
Find the inverse of

Solution
The transpose, , is found.

The adjoint of H is obtained by replacing each element of by its cofactor.

 £ 30 6 -6

-45 17 9

-54 10 42

≥adj(H) =

HT

£ 4 9 3

-2 6 -4

1 0 5

≥HT
=

HT

H = £4 -2 1

9 6 0

3 -4 5

≥
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12 568 Block 4 The inverse of a matrix

The determinant of H is found.

Finally

 =

1

156
 £ 30 6 -6

-45 17 9

-54 10 42

≥
 H-1

=

adj (H)

ƒH ƒ

156ƒH ƒ =

Exercises

Calculate, where possible, the inverse of

(a) (b) (c) £ -2 0 3

4 4 -1

3 1 6

≥£ 1 2 -4

-1 3 6

1 12 0

≥£3 -1 7

2 0 1

5 -2 6

≥
1

Solutions to exercises

(a) (b) no inverse (c) 
1

74
 £ -25 -3 12

27 21 -10

8 -2 8

≥1

15
 £ -2 8 1

7 17 -11

4 -1 -2

≥1

Many computer algebra packages will calculate the inverse of a square matrix. For example, in 
Maple, with the LinearAlgebra package loaded, with(LinearAlgebra), the command
MatrixInverse(A) will find A-1 when this exists. If the matrix A is singular, so no inverse exists,
this will be indicated. The Matlab function inv(A) does likewise. Use a package to which you have
access to find the inverse of each of the following matrices.

(a)

(b)

(c) §
1 2 4 6

-1 -1 5 0

9 7 2 3

14 8 6 1

¥

§
-3 10 9 4

6 0 1 0

3 2 -1 1

5 2 3 1

¥

§
4 3 -2 2

3 -1 0 4

6 5 -3 0

1 1 2 1

¥

1

(d)

(e) •
-6 2 0 3 9

5 1 6 -1 4

7 3 4 -2 3

6 5 5 5 1

3 -2 -1 3 4

μ

•
6 1 0 3 2

1 4 -1 2 -3

0 1 -6 6 5

0 3 2 1 -1

5 1 -5 3 4

μ

Computer and calculator exercises
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124.4 Finding the inverse of a matrix – the general case 569

Solutions to exercises

(a)

(b)

(c)

(d)

(e)
1

13400
 •

-640 -760 1348 68 1172

850 -2550 2460 810 -1410

-210 3310 -2468 462 -1102

-50 150 -1800 1450 950

890 10 952 -618 778

μ

1

1722
 •

188 69 -146 -141 105

-370 -90 -134 708 462

226 -201 26 261 -231

456 204 342 -342 -588

-202 -468 -8 582 336

μ

1

455
 §

101 -192 -262 180

-181 272 447 -255

-16 107 37 -15

130 -130 -130 65

¥

1

44
 §

0 8 2 -2

22 86 5 -93

0 -4 -12 12

-44 -200 16 204

¥

1

91
 §

-55 27 38 2

51 -30 -22 18

-25 4 9 34

54 -5 -34 3

¥1

End of block exercises

Check that

is the inverse of

§
2

7
-

3

7

1

14
 

1

7

¥

a 2 6

-1 4
b

1 Explain why the matrix

has no inverse.

Calculate, if possible, the inverse of each of
the following matrices:

(a) (b) a6 10

1 -2
ba4 2

8 5
b

3

a x2 x

xy y
b

2
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12 570 Block 4 The inverse of a matrix

(c) (d)

(e) (f)

(g)

Find the inverse of

given .

A is a square matrix. State a condition that
ensures A does not have an inverse.

Find, if possible, the inverse of each of the
following matrices:

(a) (b)

(c) (d)

(e)

Calculate the inverse of each of the following
matrices. If it is not possible to calculate the
inverse then state this clearly.

(a) (b)

(c)

Calculate the values of for which

has no inverse.

If

a3 x

5 y
b

9

a2 - l 4

1.5 1 - l
b

l8

a 4 -2

-3 1.5
b

a -6 0

3 -1
ba5 6

2 3
b

7

a -3 1

2 -4
b

a 9 3

-2 1
ba 1 1

-2 -2
b

a5 2

6 10
ba3 -6

5  0
b

2 * 2
6

5

x Z 0

ax x

x 2x
b

4

a -0.5 -1.5

-2 -1
b

a0.4 2

0.9 3
ba 10 -20

-2 4
b

a5 -5

3 -6
ba1 2

2 1
b is the inverse of

state the values of x and y.

Calculate the inverse of each of the following
matrices:

(a) (b)

(c)

(d)

(e)

Find, if possible, the inverse of each of the
following matrices:

(a) (b)

(c) (d)

(e)

Find, if possible, the inverse of each of the
following matrices:

(a) (b)

(c) (d) P
2

l
-2

4 l
Qa a bc

ab b2c
b

a3 x

x x2bal  3

l  5
b

12

£ 4 -3 6

10 9 14

3 -6 0

≥
£4 2 -3

6 0 5

2 4 -11

≥£ 9 6 -9

7 3 1

-6 4 8

≥
£ -4 3 0

-1 1 2

4 0 1

≥£5 2 -1

6 3 1

5 9 6

 ≥
11

§
0 1 4 -1

2 7 3 5

6 3 -1 0

1 2 4 7

¥

§
1 1 -3 0

4 6 1 3

9 -2 0 4

5 6 3 1

¥

£ -3 -1 2

4  7 1

5  0 3

≥
£ 1 2 3

-4 6 1

0 0 3

≥£1 4 3

5 6 -4

2 0 1

≥
10

a 2 -1

-5 3
b

M12_CROF5939_04_SE_C12.QXD  9/22/18  8:11 AM  Page 570



124.4 Finding the inverse of a matrix – the general case 571

Solutions to exercises

The determinant of the matrix is zero: hence
no inverse exists.

(a) (b)

(c) (d)

(e) no inverse (f)

(g)

(a) (b)

(c) no inverse (d)

(e)

(a) (b)

(c) no inverse

, 4

, 

(a)

(b)
1

42
 £18 -6 -16

12 3 -13

0 0 14

≥

1

82
 £ -6 4 34

13 5 -19

12 -8 14

≥10

y = 2x = 19

-18

1

6
 a -1 0

-3 -6
b1

3
 a 3 -6

-2 5
b7

-

1

10
 a4 1

2 3
b

1

15
 a1 -3

2 9
b

1

38
 a 10 -2

-6 5
b1

30
 a 0 6

-5 3
b6

ƒA ƒ = 05

1

x
 a 2 -1

-1 1
b4

1

5
 a 2 -3

-4 1
b

1

6
 a -30 20

9 -4
b

1

15
 a6 -5

3 -5
b1

3
 a -1 2

2 -1
b

1

22
 a2 10

1 -6
ba1.25 -0.5

-2 1
b3

2

(c)

(d)

(e)

(a)

(b)

(c)

(d) no inverse

(e)

(a) (b)

(c) no inverse (d)
1

10
 £ l 2

-4
2

l

≥

1

2x2
 a x2

-x

-x 3
b1

2l
 a 5 -3

-l l
b12

1

312
 £ -84 36 96

-42 18 -4

87 -15 -66

≥

1

606
 £ -20 84 -33

62 -18 72

-46 72 15

 ≥

1

23
 £ 1 -3 6

9 -4 8

-4 12 -1

≥

1

56
 £ -9 21 -5

31 -35 11

-39 35 -3

 ≥11

1

933
 §

42 -105 177 81

-15 193 -41 -140

207 -51 6 66

-120 -11 -17 124

¥

1

570
 §

64 -90 44 94

44 45 -41 29

-154 -15 1 41

-122 225 23 -197

¥

1

126
 £ -21 -3 15

7 19 -11

35 5 17

≥
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BLOCK 5
Computer graphics

5.1 Introduction

Many engineering components can now be represented on a computer screen.
Modelling components in this way allows calculations of stresses, bending
moments, pressure and so forth to be performed before the component is actually
manufactured. Hence potential weaknesses and problem areas can be identified at
the design stage. Fundamental to representing components is the ability to define
points, lines and shapes, for example triangles and rectangles. Points, lines and
shapes can be represented by matrices.

Once a component has been drawn it may be necessary to transform it. Transfor-
mation includes scaling, translation, shearing, rotation and reflection. Transforma-
tions are brought about by the use of matrices.

5.2 Representation of points using matrices

A point in two dimensions is represented by its coordinates, x and y. These values
may be written as a matrix, for example , or as a matrix, for

example . Such matrices are sometimes referred to as position matrices or

position vectors. In this block we use matrices to represent points.
A line can be determined by its two end-points. Hence the matrix

represents the line joining the points and . Similarly a triangle is defined

by three points. Figure 5.1 illustrates a triangle.
The triangle can be ‘stored’ as a matrix, T, where

T = a2  5  3

3  6 -1
b

2 * 3

a3

7
ba1

2
b

a1  3

2  7
b

2 * 1

a 3

-2
b

2 * 1(3 -2)1 * 2
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125.2 Representation of points using matrices 573

Example 5.1
Write matrices that represent the quadrilaterals shown in Figure 5.2(a), (b).

yyy

xxOO 11 22 3333 44 55 66
1�1

2�2

11

22

33

44

55

66

(2, 3)(2, 3)

(5, 6)(5, 6)

(3, 1)(3, �1)

Figure 5.1
A triangle is
defined by three
points.

y

xO 1 2 3�3 �2 �1 4 5 6 7
�1

�2

�3

1

2

3

4

5

(�1, 3)

(�2, �2) (6, �2)

(3, 4)

y

xO 1 2 3�3 �2 �1 4 5 6
�1

�2

�3

�4

�5(�3, �5)

(0, 0) (3, 0)

(5, �3)

Figure 5.2

(a) (b)

Solution
Each quadrilateral is defined by four points.
(a) The quadrilateral can be stored as

Note that other matrices would also be suitable, for example

also describe the quadrilateral.

(b) A possible matrix is a0  3  5 -3

0  0 -3 -5
b

a3  6 -1 -2

4 -2  3 -2
b and a -2  3 -1  6

-2  4  3 -2
b

Q = a -1  3  6 -2

3  4 -2 -2
b
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12 574 Block 5 Computer graphics

5.3 Matrices as transformations

Figures on a computer screen need to be transformed. Transformation includes scaling,
translation, rotation, reflection and shearing. Mathematically, each transformation
can be represented by a matrix, called a transformation matrix. Since every figure
is made up of points we first examine the effect of a transformation matrix on a single
point.

Consider the point and a transformation matrix, T, given by

The matrix T premultiplies the point X. Let the result of this calculation be .

We can think of the point as having been transformed into the point

by the matrix T.

Example 5.2

The point is transformed by the matrix .

Determine the position of the transformed point.

Solution
We calculate

The point is transformed to .a 5

13
ba -1

3
b

a 5

13
ba 1  2

-1  4
b  a -1

3
b =

a 1 2

-1 4
ba -1

3
b

aax + by

cx + dy
b

ax

y
b

 = X*

 = aax +  by

cx +  dy
b

  TX = aa b

c d
b  ax

y
b

X*

T = aa b

c d
b

X = ax

y
b
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125.4 Transformation of lines 575

y

xO

Straight
line

y

xO

Straight
line

Transformation
matrix

Figure 5.3
The transformation
of a straight line is
another straight
line.

Exercises

The point is transformed by the matrix

Find the position of the transformed point.

a2 0

3 1
b

a 3

-4
b1 The point is transformed by the matrix

Find the position of the transformed point.

a -1 3

4 2
b

a 5

-1
b2

Solutions to exercises

a6

5
b1 a -8

18
b2

5.4 Transformation of lines

Consider a straight line and a transformation matrix, T, whose elements are constants.
If T is applied to every point on the straight line the transformed points form a new
straight line; in other words, the transformation of a straight line is another straight
line provided the elements of T are constant. Thus to find the transformation of a
straight line we need only find the transformation of the end-points of the line and
then join these. This is illustrated in Figure 5.3.

Example 5.3

A straight line joins the points and . It is transformed by the matrix

Describe the transformed line.

T = a 1 2

-1 3
b

a4

2
ba 2

-3
b

M12_CROF5939_04_SE_C12.QXD  9/22/18  8:11 AM  Page 575



12 576 Block 5 Computer graphics

Solution

The end-points and are transformed.

The transformed line joins and .

5.5 Scaling

Consider a rectangle with vertices at and and a transformation
matrix

The points and are transformed by T to 

and respectively. This is illustrated in Figure 5.4.a4

0
b

a0

0
b , a0

1
b , a4

1
ba1

0
ba0

0
b , a0

1
b , a1

1
b

T = a4  0

0  1
b

a1

0
ba0

0
b , a0

1
b , a1

1
b

a8

2
ba -4

-11
b

a8

2
ba 1  2

-1  3
b  a4

2
b =

a -4

-11
ba 1  2

-1  3
b  a 2

-3
b =

a4

2
ba 2

-3
b

y

xO

y

xO

(0, 1) (1, 1)

(1, 0)

(0, 1) (4, 1)

(4, 0)

Figure 5.4
An example of
horizontal scaling.

Clearly T has the effect of increasing the horizontal lengths by a factor of 4; the
vertical lengths remain unchanged.
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Exercises

125.5 Scaling 577

In general, scaling is brought about by a diagonal matrix. The first row determines
the horizontal scaling; the second row determines the vertical scaling. The matrix

scales the horizontal lengths by a factor of and the vertical lengths by a factor of .
For horizontal expansion must be greater than 1; for horizontal compression
we require to be less than 1. Similar comments apply to vertical expansion and
compression.

Example 5.4
The zoom facilities of a graphing package expand both horizontal and vertical
lengths by a factor of 2.5. Determine the transformation matrix to do this.

Solution
A diagonal matrix is needed for scaling. Since both horizontal and vertical lengths
are scaled by a factor of 2.5 the required matrix is

a2.5 0

0 2.5
b

a

a

ba

aa  0

0 b
b

Write down the transformation matrix that
(a) scales horizontal distances by a factor of 4

and leaves vertical distances unchanged
(b) scales horizontal distances by a factor of 3

and vertical distances by a factor of 7

1 (c) scales horizontal distances by a factor of
0.7 and vertical distances by a factor of 1.2

(d) leaves horizontal distances unchanged and
trebles vertical distances.

Solutions to exercises

(a) (b)

(c) (d) a1 0

0 3
ba0.7 0

0 1.2
b

a3 0

0 7
ba4 0

0 1
b1
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12 578 Block 5 Computer graphics

5.6 Rotation

Rotation is an important and commonly used transformation. Components can be
‘viewed’ from different angles using packages with a rotation facility. By conven-
tion, anticlockwise movement is considered to be positive. Figure 5.5 illustrates the

line from the origin to the point being rotated through an angle . We say the

point has been rotated about the origin to the new position ax*

y*
b .ax

y
b

uax

y
b

y

xO

θ

(x*, y*)

(x, y)

Figure 5.5

The point is

rotated anticlock-
wise through an 

angle to .ax*

y*
bu

ax

y
b

Key point The transformation matrix, T, that rotates a point anticlockwise about the origin by an
angle is given by

T = acos u -sin u

sin u cos u
b

u

Example 5.5

The point is rotated anticlockwise about the origin through 40°. Calculate the

position of the new point.

Solution
The transformation matrix is

and hence the new point is given by

 = a -2.3246

5.8818
b

  acos 40°

sin 40°

-sin 40°

cos 40°
b a2

6
b = a2 cos 40° - 6 sin 40°

2 sin 40° + 6 cos 40°
b

T = acos 40° -sin 40° 

sin 40° cos 40°
b

a2

6
b
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125.6 Rotation 579

Example 5.6
A triangle is defined by the matrix

It is rotated clockwise about the origin through 120°. Determine the resulting triangle.

Solution
Clockwise angles are considered to be negative and so the transformation matrix, T, is

The transformed triangle is then given by

The transformed triangle is defined by the points and

.

Example 5.7

The line joining and is rotated through 90° anticlockwise about the

origin. Determine the new line.

Solution
The transformation matrix, T, is

The original end-points of the line are and .

Thus the line is defined by the matrix

a -1  3

4  1
b

a3

1
ba -1

4
b

acos 90° -sin 90°

sin 90° cos 90°
b = a0 -1

1 0
bT =

a3

1
ba -1

4
b

a -0.634

-3.098
b

a 0.366

-1.366
b , a 3.330

-4.232
b

a -0.5  0.866

-0.866 -0.5
b  a1  2  3

1  5  1
b = a 0.366  3.330 -0.634

-1.366 -4.232 -3.098
b

 = a -0.5  0.866

-0.866 -0.5
b

T = acos(-120°)

sin(-120°)

-sin(-120°)

cos(-120°)
b

a1  2  3

1  5  1
b
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12 580 Block 5 Computer graphics

The transformed end-points are thus

The transformed line joins the points and .a -1

3
ba -4

-1
b

a 0 -1

1 0
b  a -1 3

4 1
b = a -4 -1

-1 3
b

Exercises

State a matrix that rotates points anticlockwise
about the origin by 45°.

State a matrix that rotates points clockwise
about the origin by 200°.

2

1 The point is rotated 30° anticlockwise

about the origin. State the coordinates of the
new point.

The point is rotated 75° clockwise about

the origin. State the coordinates of the new point.

a -1

2
b4

a 4

-3
b3

Solutions to exercises

a -0.9397  -0.3420

0.3420 -0.9397
b2

a0.7071 -0.7071

0.7071  0.7071
b1

a1.6730

1.4836
b4

a 4.9641

-0.5981
b3

5.7 Reflection

We now consider transformation matrices that effect reflection in the x axis, y axis,
the line and the line .

Reflection in the x axis

Figure 5.6 illustrates the line AB reflected in the x axis to produce the line .

Consider the coordinates of A and . If the coordinates of A are, say, , then the

coordinates of will be (3, ). Clearly, on reflection the x coordinate remains-2A*

a3

2
bA*

A*�*

y = -xy = x
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unchanged and the y coordinate changes sign. The transformation matrix to effect
this is

T = a1  0

0 -1
b

y

xO

A

B

A*

B*

Figure 5.6
The line AB is
reflected in the x
axis to produce

.A*�*

Key point Reflection in the x axis is brought about by

T = a1  0

0 -1
b

Reflection in the y axis

Figure 5.7 illustrates reflection of the line AB in the y axis. Again, considering the
coordinates of A and , we see that on reflection the x coordinate changes sign andA¿

y

xO

A

BB'

A'

Figure 5.7
The line AB is
reflected in the 
y axis to produce
A�B�.

the y coordinate remains unchanged. The transformation matrix is

T = a -1  0

0  1
b
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12 582 Block 5 Computer graphics

Reflection in the line y = x

Key point Reflection in the y axis is brought about by

T = a -1  0

0  1
b

y

x
O

A

B

y � xB

A

Figure 5.8
AB is reflected in
the line to
produce A B .

y = x

Figure 5.8 illustrates reflection about the line . In effect, the x and y coordinates
are interchanged. The required transformation matrix is

T = a0  1

1  0
b

y = x

Key point Reflection in is brought about by

T = a0  1

1  0
b

y = x

Reflection in the line y = -x

Figure 5.9 illustrates reflection in . Here the x and y coordinates are inter-
changed and also changed in sign. The transformation matrix is

T = a 0 -1

-1  0
b

y = -x

Key point Reflection in is brought about by

T = a 0 -1

-1  0
b

y = -x

M12_CROF5939_04_SE_C12.QXD  9/22/18  8:11 AM  Page 582



125.7 Reflection 583

Example 5.8

The point is reflected in the y axis and then the resulting point is reflected in

the line . Calculate the coordinates of the final point.

Solution
Reflection in the y axis is effected by the matrix

Hence when is reflected in the y axis the resulting point is given by

Reflection in is effected by

and so the final point is given by

The final point is .a -2

3
b

a 0 -1

-1  0
b  a -3

2
b = a -2

3
b

a 0 -1

-1  0
b

y = -x

a -1  0

0  1
b  a3

2
b = a -3

2
b

Aa3

2
b

a -1  0

0  1
b

y = -x

Aa3

2
b

y

xO

A

B

y � �x

Â

B̂

Figure 5.9
AB is reflected in

to produce
AN BN .
y = -x
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5.8 Shearing

A shear is a distortion. Figure 5.10 illustrates an x direction shear of a square, and
Figure 5.11 illustrates a y direction shear.

Exercises

The point is reflected in the line .

State the coordinates of the resulting point.

The point is reflected in the y axis and

the resulting point is then reflected in the line
. State the coordinates of the final point.y = x

a -1

4
b2

y = -xa3

5
b1 The point is reflected in the x axis. The

resulting point is then reflected in the line 
. State the coordinates of the final

point.
y = -x

aa

b
b3

Solutions to exercises

a4

1
b2

a -5

-3
b1 a b

-a
b3

y

xO

y

xO

Figure 5.10
An x direction
shear.

y

xO

y

xO

Figure 5.11
A y direction
shear.

A shear can be represented by a transformation matrix,

aa  b

c  d
b
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125.8 Shearing 585

The off-diagonal terms, b and c, determine the kind of shear produced. The element
b produces a shear in the x direction whereas c produces a shear in the y direction.
As mentioned in Section 5.5, the elements a and b are scale factors for the x and 
y directions.

Example 5.9

A unit square with vertices at , , and is sheared by

(a) Determine the coordinates of the vertices of the figure after shearing.
(b) Sketch both figures.

Solution
(a) The unit square can be represented by

Shearing produces

The resulting figure has vertices at , , and .

(b) See Figure 5.12(a), (b).

a1

4
ba1

3
ba0

1
ba0

0
b

a1  0

3  1
b  a0  0  1  1

0  1  0  1
b = a0  0  1  1

0  1  3  4
b

a0  0  1  1

0  1  0  1
b

T = a1  0

3  1
b

a1

1
ba1

0
ba0

1
ba0

0
b

y

xO

y

xO1

1

1

1

2

3

4

Figure 5.12
(a) The original
unit square;
(b) the figure after
shearing.

Exercises

State the effect of the transformation matrix

The line joining and is transformed

by the shearing matrix

a3

7
ba1

2
b2

a1  2

0  1
b

1

Describe the transformed figure.

a1  0

4  1
b

(a) (b)
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5.9 Translation

A translation is a movement in a specific direction by a specific amount. Figure 5.13
illustrates a translation of the line AB to .A*�*

Solutions to exercises

A shear by a factor of 2 in the x direction.1 Line joins and .a 3

19
ba1

6
b2

y

xO

B (2, 1)

A

B* (5, 5)

A* (4, 7)

(1, 3)

Figure 5.13
AB is translated to

.A*�*

In computer graphics many figures need to be translated, for example a piston
moving within a cylinder.

Consider the coordinates of A and B in Figure 5.13. The point is translated

to the point . The translation has the effect of adding 3 to the x coordinate 

and adding 4 to the y coordinate. Note that the same change is encountered when B
is translated to .

Denoting the x translation by tx and the y translation by ty we see that if a point

is translated to then

(1)

Note that tx and/or ty may be negative.
Mathematically, translations are different from the other transformations. The previ-

ous transformations could all be represented by matrix multiplication. Equations (1)
suggest that translations are represented by matrix addition.

To enable translation to be represented by matrix multiplication we introduce

homogeneous coordinates. If the coordinates of a point are then the homo-
geneous coordinates of that point are

P
x

y

1
Q

ax

y
b

  y* = y +  ty

  x* = x +  tx

ax*

y*
bax

y
b

�*

a4

7
b�*

a1

3
b�
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The purpose of the extra ‘1’ is to increase the order of the transformation matrix
from to . We now introduce a translation matrix, T, where

Applying T to

we have

The homogeneous coordinates

represent the point

Thus by introducing homogeneous coordinates translation can be represented by
matrix multiplication.

Example 5.10
Determine the translation matrix for the translation depicted in Figure 5.13 above.

Solution
Here and and so

P
1  0  3

0  1  4

0  0  1
QT =

ty = 4tx = 3

ax +  tx
y +  ty

b

P
x +  tx
y +  ty

1
Q

 = P
x +  tx
y +  ty

1
Q

  TX = P
1  0  tx
0  1  ty
0  0  1

Q  P
x

y

1
Q

X = P
x

y

1
Q

T = P
1  0  tx
0  1  ty
0  0  1

Q
3 * 32 * 2
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Example 5.11
The translation matrix

is applied to . Calculate the position of the translated point.

Solution
We can proceed in one of two ways. By examining T we see that and .
Hence

The translated point is .

Alternatively we can introduce homogeneous coordinates

Then

Hence the translated point is .a 3

-4
b

P
3

-4

1
QP

1  0 -1

0  1  2

0  0  1
Q  P

4

-6

1
Q =

P
4

-6

1
Q

a 3

-4
b

 = -4
 = -6 +  2

  y* = y +  ty

 = 3
 = 4 - 1

  x* = x +  tx

ty = 2tx = -1

a 4

-6
b

T = P
1  0 -1

0  1  2

0  0  1
Q

Exercises

A point is translated from to . State

the corresponding translation matrix.

A point is translated from to .

State the corresponding translation matrix.

a -6

0
ba -3

-1
b2

a4

8
ba1

6
b1 State the effect of the translation matrix

The line AB is translated 3 units in the x
direction with no movement in the y direction.
State the corresponding translation matrix.

4

P
1  0  4

0  1 -3

0  0  1
Q

3
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5.10 Composite transformations

We have represented each transformation by a matrix multiplication. Often not one
but several transformations are required, and this leads to a product of matrices. Care
must be taken in ensuring that the correct order of multiplication is carried out.
Recall that if A and B are two matrices then AB and BA are usually not equal.

A sequence of transformations is called a composite transformation. Before we
can proceed and examine composite transformations we must examine the transfor-
mation matrices. The translation matrix is ; all other transformation matrices
are . Multiplication of a matrix with a matrix is not defined. To
overcome this, all the matrices are extended so as to become matrices
and homogeneous coordinates are employed.

Consider any transformation matrix

and coordinates . The matrix is extended to become

and homogeneous coordinates

are used. Note that

aa  b

c  d
b ax

y
b = aax +  by

cx +  dy
b

P
x

y

1
Q

T = P
a  b  0

c  d  0

0  0  1
Q

ax

y
b

aa  b

c  d
b

2 * 2

3 * 32 * 2
2 * 23 * 32 * 2

3 * 3

Solutions to exercises

P
1  0 -3

0  1  1

0  0  1
Q2

P
1  0  3

0  1  2

0  0  1
Q1

Translation of 4 units in the x direction and
3 units in the negative y direction.

P
1  0  3

0  1  0

0  0  1
Q4

3
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and

Transforming a point using the extended matrix and homogeneous coordinates has

exactly the same effect as using the matrix on the coordinates . However,

all transformation matrices are now and so composite transformations, in the
form of matrix products, can be calculated.

Example 5.12

The point is reflected in the line y � x and then rotated anticlockwise about the

origin by 70°.

(a) Calculate the composite transformation matrix.
(b) Calculate the final position of the point.

Solution
(a) Reflection about the line is represented by where

Rotation about the origin by 70° is represented by where

Hence the composite transformation is given by

(b) The homogeneous coordinates of the point are

P
4

1

1

 Q

 = P
-sin 70° cos 70°   0

cos 70°  sin 70°   0

0  0  1
Q

  Trot Tref =  P
cos 70°

sin 70°

0

-sin 70°

cos 70°

0

0

0

1
Q P

0  1  0

1  0  0

0  0  1
Q

Trot = P
cos 70° -sin 70°   0

sin 70°  cos 70°   0

0  0  1
Q

Trot

Tref = P
0  1  0

1  0  0

0  0  1
Q

Trefy = x

a4

1
b

3 * 3

ax

y
b2 * 2

P
a  b  0

c  d  0

0  0  1
Q  P

x

y

1
Q = P

ax + by

cx + dy

1
Q
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The transformed point is then

The transformed point is .

Example 5.13
Determine a transformation matrix that rotates a point 30° anticlockwise about the

point .

Solution
The rotation matrices so far encountered have all represented rotation about the

origin. Hence to represent rotation about we require three transformations

(Figure 5.14):

1 translation of to the origin, 

2 rotation of 30° anticlockwise, 

3 translation from the origin back to , .Treta1

2
b

Trot

Ttransa1

2
b

a1

2
b

a1

2
b

a -3.417

2.308
b

 = P
-3.417

2.308

1
Q

  P
-sin 70° cos 70°   0

cos 70°  sin 70°   0

0  0  1
Q P

4

1

1
Q = P

-4 sin 70° + cos 70°

4 cos 70° + sin 70°

1
Q

y

xO

30°

1

1

2
(x*, y*)

30°

(x, y)

(1, 2)

Figure 5.14
Rotation about

requires

three basic
transformations.

a1

2
b
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The required transformation matrices are

The composite transformation is then

 = P
0.8660

0.5

0

-0.5

0.8660

0

1.1340

-0.232

1
Q

 Tret Trot Ttrans = P
1  0  1

0  1  2

0  0  1
Q  P

0.8660 -0.5  0

0.5  0.8660  0

0  0  1
Q  P

1  0 -1

0  1 -2

0  0  1
Q

P
1  0  1

0  1  2

0  0  1
QTret =

P
0.8660 -0.5  0

0.5  0.8660  0

0  0  1
QTrot =

P
1  0 -1

0  1 -2

0  0  1
QTtrans =

Exercises

Determine a matrix that shears vertically by
a factor of 2 and then rotates anticlockwise
about the origin by 30°.

1 Determine a matrix that rotates a figure anti-

clockwise through 40° about the point .a1

0
b

2

Solutions to exercises

P
-0.1340 -0.5  0

2.2321  0.8660  0

0  0  1
Q1 P

0.7660 -0.6428  0.2340

0.6428  0.7660 -0.6428

0  0  1
Q2
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End of block exercises

Write matrices that represent the figures shown
in Figure 5.15(a), (b), (c).

1

y

x

(�1, 1)

(1, �2)

(3, 2)

y

x

(1, 2) (3, 2)

(3, 1)
(1, 1)

(2, 0)

y

x

(4, �1)(�3, �0.75)

(�2, 4)

(2, 2)

Figure 5.15

(a) (b)

(c)

Draw the figures represented by each of the
following matrices:

(a) (b)

(c)

The line joining and is

transformed by the matrix

Describe the transformed line.

The triangle with vertices at , and

is transformed by the matrix

Describe the transformed triangle.

a2  1

1 -2
b

a3

4
b

a2

1
ba -1

1
b4

a 3  2

-1  1
b

a -2

1
ba1

7
b3

a -1  2 -4  3

3  4  1  0
b

a1  3  5

2  4  6
ba2 -1

0  1
b

2 The zoom facility of a computer graphics
package has the following options:
(a) double horizontal lengths only
(b) double vertical lengths only
(c) double both horizontal and vertical lengths
(d) halve both horizontal and vertical lengths.
Write down the transformation matrix for each
option.

The point is rotated anticlockwise 

about the origin through 70°. Calculate the
coordinates of the resulting point.

The point is rotated clockwise about

the origin through 40°. By applying a suitable
rotation matrix, determine the coordinates of
the resulting point.

A triangle defined by8

a 3

-2
b7

a -1

6
b6

5
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is rotated clockwise about the origin through
90°. Calculate the matrix that defines the
transformed triangle.

Show that for any transformation matrix, R,
that represents a rotation

That is, the transpose of a rotation matrix is
equal to its inverse.

A rotation matrix, R, represents an
anticlockwise rotation about the origin through
an angle .
(a) State the rotation matrix, S, that represents

a clockwise rotation through an angle .
(b) Calculate . (Hint: see question 9.)
(c) What do you conclude from (a) and (b)?

A line joins and .

(a) The line is reflected about . Describe
the resulting line.

(b) The line found in (a) is then reflected in
the x axis. Describe the resulting line.

Determine a matrix that increases horizontal
lengths by a factor of 5, leaving vertical
lengths unchanged.

The line joining and is reflected in

the line y � �x. Determine the new line.

a4

2
ba -1

1
b13

12

y = x

a -2

3
ba1

4
b11

R-1
u

u

10

RT = R-1

9

a3  2 -1

1  7  6
b The triangle with vertices at , and

is sheared by

Sketch the resulting triangle.

State a matrix that will translate a figure 4
units in the x direction and 5 units in the y
direction.

A line joins and . It is translated

using the translation matrix

Describe the translated line.

Determine a single transformation matrix that
will first reflect a figure in the y axis and then
translate it 2 units in the x direction and 
units in the y direction.

Determine a single transformation matrix that
will first scale a figure by a factor of 2 in the
horizontal and 0.5 in the vertical, and then
rotate it clockwise about the origin through 90°.

Find a matrix that will rotate a figure anti-

clockwise through 45° about the point .a -2

1
b

19

18

-3

17

P
1  0  3

0  1 -1

0  0  1
Q

a5

9
ba 4

-2
b16

15

a1  2

0  1
b

a1

0
b

a0

1
ba0

0
b14

Solutions to exercises

(a)

(b)

(c) a1  3  3  2  1

2  2  1  0  1
b

a -3 -2  2  4

-0.75  4  2 -1
b

a -1  3  1

1  2 -2
b1 See Figure 5.16.2

y

x

(�1, 1)

(2, 0)

(a)
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The transformed line joins and .

The transformed triangle has vertices at 

and .

(a) (b)

(c) (d)

a 1  7  6

-3 -2  1
b8

a 1.0126

-3.4605
b7

a -5.9802

1.1124
b6

a0.5 0

0 0.5
ba2 0

0 2
b

a1 0

0 2
ba2 0

0 1
b5

a 10

-5
ba -1

-3
b , a5

0
b

4

a -4

3
ba17

6
b3

(a)

(b)

(c) The inverse of R represents a clockwise
rotation through .

(a) The line joins and .

(b) The line joins and .

The new line joins and .

The line joins and .

P
0.7071 -0.7071  0.1213

0.7071  0.7071  1.7071

0  0  1
Q19

P
0  0.5  0

-2  0  0

0  0  1
Q18

P
-1  0  2

0  1 -3

0  0  1
Q17

a8

8
ba 7

-3
b16

P
1  0  4

0  1  5

0  0  1
Q15

a -2

-4
ba -1

1
b13

a5  0

0  1
b12

a3

2
ba 4

-1
b

a 3

-2
ba4

1
b11

u

a cos u sin u

-sin u cos u
b

a cos u sin u

-sin u cos u
b10

y

x

(1, 2)

(3, 4)

(5, 6)

1 2 3 4 5 6

2

4

6

(b)

y

x

(�1, 3)

(�4, 1)

(2, 4)

(3, 0)

(c)

If

A = a4 -2

1 -3
b and B = a 9  3

-2  1
b

1 find (a) , (b) , (c) , (d) 3A, 

(e) , (f) 2A - 4B.
1

2
 B

B - AA - BA + B

End of chapter exercises

Figure 5.16
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12

Given

calculate (a) 4A, (b) , (c) , (d) , 

(e) , (f) where and are 
constants.

Give an example of (a) a , (b) a 
matrix.

Calculate the number of elements in (a) a ,
(b) a , (c) a , (d) an matrix.

Calculate the determinant of each of the
following matrices:

(a) (b)

(c) (d)

(e) (f)

Find the inverse of each of the following
matrices:

(a) (b)

(c) (d)

Calculate the determinant of each of the
following matrices:

(a) (b)

(c) (d) 

Calculate the inverse of each of the matrices in
question 5.

Calculate the inverse of each of the matrices in
question 7.

9

8

P
2  2  1

1  2  2

2  1  2
QP

3 -2 -1

4  1  0

3  2 -1
Q

P
-1  3  2

2  1  0

1  3  0
QP

1  2  1

0  1  1

1 -1  0
Q

7

1

2
 a -7 -2

4  3
ba -3  5

0  1
b

a6 -4

2  3
ba -1  4

5  6
b

6

aa b

b a
ba3  2

x  x
b

a1  0

0  1
ba0  1

1  0
b

a -1  3

2  1
ba3  1

4  2
b

5

m * n3 * n7 * 2
3 * 44

4 * 22 * 43

baaA + bBA + 3B

B

4
B - 2A-B

  B = a -1  2  4

-4  1  3
b

  A = a 2  1  3

-1  4  0
b and

2 State conditions under which a square matrix
does not possess an inverse.

Given

calculate (a) , (b) , (c) , 
(d) , (e) 2A, (f) , (g) .

Given

calculate, if possible, (a) AB, (b) BA, (c) AC,
(d) CA, (e) BC, (f) CB.

Given

calculate, if possible, (a) , (b) ,
(c) AB, (d) BA, (e) , (f) , (g) BC, 
(h) CB.

The straight line joining and is 

rotated 50° anticlockwise about the origin.
Determine the transformed line.

The point is reflected in the line 

and then the resulting point is rotated 30°
anticlockwise about the origin. Determine the
coordinates of the final point.

A unit square has vertices at 

and . It is subject to a shear, and this resultsa1

1
b

a1

0
ba0

0
b , a0

1
b ,16

y = xa 2

-3
b15

a 1

-4
ba -6

2
b14

(AC)TACT
B + CTB + C

C = a1 -1  0

4  1  2
b

A = (1 3 -2), B = P
4 2

1 3

-1 0
Q 

13

C = (-2 3)

A = a3

1
b , B = a1 -3

2  1
b and 

12

2(AT)(2A)TAT
+ B

A + BTBTAT

  B = P
9 -6

3  1

2  0
Q

  A = a3  1  4

0  2 -1
b and

11

10

596 Block 5 Computer graphics
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in a figure with vertices at 

and . Determine a transformation that

effects this shear.

The transformation matrix

is applied to the line joining and .

Determine the transformed line.

The point is rotated 90° anticlockwise

about the origin and then translated 2 units in
the x direction and 3 units in the y direction.
Calculate
(a) the composite transformation matrix
(b) the coordinates of the transformed point.

The leading diagonal of a square matrix, A, is
the diagonal running from the top left to the
bottom right. The sum of the elements on the
leading diagonal is called the trace of A.
(a) Find the trace of

(b) Find the trace of

(c) For an arbitrary and matrix
A, show that trace .

Evaluate

(a) A square matrix A is said to be symmetric
if , and skew symmetric if

. State which, if any, of the
following matrices are symmetric and
which are skew symmetric.

A =  -AT
A = AT

21

∞
1  4  2  1

3  0  1  9

0 -1  1  1

2  1  0  1

 ∞

20

(A) = trace(AT)
3 * 32 * 2

A = P
4  1  3

2  7  1

0  0  12
Q

A = a1  2

5 -3
b

19

a -1

2
b18

a 3

-1
ba0

1
b

T = P
1  0  4

0  1  0.5

0  0  1
Q

17

a3

4
b

a0

0
b , a2

1
b , a1

3
b

(b) Show that if A is a or 
skew-symmetric matrix then its diagonal
elements must all be zero.

(a) A non-singular matrix A is said to be
orthogonal if its transpose is equal to its
inverse: that is, . Given that

is an orthogonal matrix, write down its
inverse, and check your answer by
evaluating .

(b) Show that

is an orthogonal matrix.

If

(a) write down the matrix , where s is a
constant and I is the identity matrix

(b) find .

Control Engineering. The state matrix of an
engineering system is given by

Calculate the values of the system poles.
Determine whether the system is stable or
unstable.

A = a -2 -1

16 5
b

24

(sI - A)-1
2 * 2

sI - A

A = a 0  1

-3 -2
b

23

§
3

5
 -

4

5

4

5
 

3

5

¥

AA-1

A = a cos u sin u

-sin u cos u
b

AT
= A-1

22

3 * 32 * 2

  E = P
3  4  1

4  1  0

1  0  7
Q

  D = P
0 -7 -9

7  0  8

9 -8  0
Q

  C = a4  7

0 -2
b
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12

Solutions to exercises

(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c)

(d)

(e)

(f)

(a) (b)

(a) 12 (b) 14 (c) 3n (d) mn

(a) 2 (b) (c) (d) 1 (e) x (f)

(a) (b)

(c) (d)

(a) 2 (b) 10 (c) (d) 5

(a) (b)
1

7
 a -1  3

2  1
ba 1 -0.5

-2  1.5
b8

-167

2

13
a -3 -2

4  7
b1

3
a -1  5

0  3
b

1

26
a 3  4

-2  6
b1

26
a -6  4

5  1
b6

a2
- b2

-1-75

4

§
1  1

2  2

3 -1

4  3

¥a1  2  3  4

1 -1  0  1
b3

a 2a - b a + 2b  3a + 4b

-a - 4b  4a + b  3b
b

a -1  7  15

-13  7  9
b

a -0.25  0.5  1

-1  0.25  0.75
b

a -5  0 -2

-2 -7  3
b

a1 -2 -4

4 -1 -3
ba 8 4 12

-4 16  0
b2

a -28 -16

10 -10
ba4.5  1.5

-1  0.5
b

a12 -6

3 -9
ba 5  5

-3  4
b

a -5 -5

3 -4
ba 13  1

-1 -2
b1 (c) (d)

(e) (f) 

(a)

(b)

(c)

(d)

If the determinant is zero, then the matrix has
no inverse.

(a) (b)

(c) (d)

(e) (f)

(g) P
6  0

2  4

8 -2
Q

P
6  0

2  4

8 -2
Qa6  2  8

0  4 -2
b

P
12 -6

4  3

6 -1
Qa 12  4  6

-6  3 -1
b

a 9  3  2

-6  1  0
bP

3  0

1  2

4 -1
Q11

10

1

5
 P

2 -3  2

2  2 -3

-3  2  2
Q

1

16 P
1  4 -1

-4  0  4

-5  12 -11
Q

1

10
 P

0  6 -2

0 -2  4

5  6 -7
Q

1

2
 P

1 -1  1

1 -1 -1

-1  3  1
Q9

1

a2
- b2

 a a -b

-b a
b§ 1 -

2

x

-1 
3

x

¥

a1  0

0  1
ba0  1

1  0
b

598 Block 5 Computer graphics
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12End of chapter exercises 599

(a) not possible (b) (c)

(d) (e) not possible (f)

(a) not possible (b)

(c) (d) not possible (e)

(f) not possible (g)

(h)

Line joins to .

a1  2

3  1
b16

a -3.5981

0.2321
b15

a 3.7070

-1.8051
ba -5.3888

-3.3107
b14

a 3 -1

15  11
b

P
12 -2  4

13  2  6

-1  1  0
Q

(-2 3)(9 11)

P
5  6

0  4

-1  2
Q13

(4  9)-3

a -6  9

-2  3
ba0

7
b12 The transformed line joins the points 

and .

(a) (b)

(a) (b) 23

70

D is skew symmetric, E is symmetric and C is
neither.

(a)

(b)

Poles are . System is unstable.s =

3 ; 2-15

2
24

1

s2
+ 2s + 3

 as + 2 1

-3 s
b

a s -1

3  s + 2
b23

A-1
= acos u -sin u

sin u cos u
b22

21

20

-219

a0

2
bP

0 -1  2

1  0  3

0  0  1
Q18

a 7

-0.5
b

a 4

1.5
b17
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Chapter 13
Using matrices and determinants to solve
equations

This chapter looks at some of the ways in which matrices and
determinants can be used to solve linear simultaneous equations.

Block 1 introduces Cramer’s rule, which expresses the solution to
simultaneous equations as a ratio of two determinants. The next block
shows how simultaneous equations may be written in matrix form.
Once in this form an inverse matrix method can be used to solve them.

Block 3 explains the method of Gaussian elimination. When the
simultaneous equations have been written as a matrix, the rows of the
matrix are systematically manipulated to yield the solution. The block
includes an explanation of the way in which the manipulation is carried
out.

Matrices are sometimes used in calculations that model vibrating
objects, and in particular those vibrating because of forces in stretched
and compressed springs. In such applications engineers are interested
in the possible frequencies of vibration. These frequencies are related
to what are known as the eigenvalues of a matrix. The eigenvectors
represent the various modes of vibration. Block 4 will explain how the
eigenvalues and eigenvectors of a matrix are calculated. As they are
usually studied in terms of linear systems, they are included here. In
many practical applications, approximate solutions of linear equations
are obtained using what are called numerical methods. These are
introduced in Block 5.
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The final block focuses on the application of matrices to the analysis of
electrical networks. Engineers often need to know the currents in the
various branches of a circuit. The idea of branch currents is introduced.
A set of simultaneous equations can be formed that models these
branch currents, and which can be solved using matrix methods.
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Chapter 13 contents

Block 1 Cramer’s rule

Block 2 Using the inverse matrix to solve simultaneous equations

Block 3 Gaussian elimination

Block 4 Eigenvalues and eigenvectors

Block 5 Iterative techniques

Block 6 Electrical networks

End of chapter exercises
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BLOCK 1
Cramer’s rule

1.1 Introduction

In Chapter 12 we introduced determinants. In this block we study Cramer’s rule,
which uses determinants to solve a set of simultaneous linear equations. Such equa-
tions are often referred to as a system of linear equations.

1.2 Cramer’s rule

Consider a system of two linear simultaneous equations in the two unknowns x
and y.

Here are known constants and we wish to find the values of x
and y.

Cramer’s rule is a method of obtaining the solution of equations like these as the
ratio of two determinants.

a1, b1, k1, a2, b2 and k2

 a2x + b2y = k2

 a1x + b1y = k1

Key point Cramer’s rule states

x =

` k1  b1

k2  b2
 `

` a1   b1

a2   b2
 `

 , y =

` a1   k1

a2  k2
 `

` a1  b1

a2   b2
 `

Note that the denominator is the same in each case. The denominator is simply the
determinant made up of the coefficients of x and y. If the denominator is zero then
Cramer’s rule cannot be applied. In such a case, either a unique solution to the
system does not exist or there is no solution.

Note how the numerator of each fraction is formed. To form the numerator for the
x fraction we replace the column of as in

by a column of ks. Similarly the numerator for the y fraction is formed by replacing
the column of bs by a column of ks.

` a1 b1

a2 b2
 `
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604 Block 1 Cramer’s rule13

Example 1.1 Electrical Engineering – Currents in a circuit
The currents and in a simple circuit are connected by the equations

Calculate and using Cramer’s rule.

Solution
Using Cramer’s rule we have

The currents in the circuit are .

Cramer’s rule may be extended to systems of linear equations with more than two
unknowns. Consider the following linear system with three unknowns, x, y and z.

Then Cramer’s rule states

 a3x + b3y + c3z = k3

 a2x + b2y + c2z = k2

 a1x + b1y + c1z = k1

i1 = 2, i2 = 1

` 1 3

2 7
 `1

1
= 1i2 =

  

` 1 1

2 3
 `

=i1 =

` 3 1

7 3
 `

` 1 1

2 3
 `

=

2

1
= 2,

i2i1

 2i1 + 3i2 = 7
 i1 + i2 = 3

i2i1

Key point

z =

†
a1  b1  k1

a2  b2  k2

a3  b3  k3

 †

†
a1  b1  c1

a2  b2  c2

a3  b3  c3

 †
y =

†
a1  k1  c1

a2  k2  c2

a3  k3  c3

 †

†
a1  b1  c1

a2  b2  c2

a3  b3  c3

 †
,x =

†
k1  b1  c1

k2  b2  c2

k3  b3  c3

 †

†
a1  b1  c1

a2  b2  c2

a3  b3  c3

 †
,

Note again that, in all three cases, the denominators are the same. The numerators
are formed by replacing a column of as, bs or cs by a column of ks.

Example 1.2 Electrical Engineering – Circuit voltages
The voltages in an electric circuit are connected by the system

Use Cramer’s rule to determine the three voltages.

 2v1 + 2v2 + 3v3 = 7
 2v1 - v2 - 2v3 = 5
 v1 + 2v2 + v3 = 2

v1, v2 and v3
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1.2 Cramer’s rule 605 13

Solution
Using Cramer’s rule we have

� 3

The voltages are .

Cramer’s rule can be extended to four and more unknowns in an obvious way, but the
determinants become too large to make this a sensible approach. Gaussian elimina-
tion, described in Block 3, is a practical alternative.

v1 = 3, v2 = -1 and v3 = 1

 =

-13

-13
= 1

 v3 =

             
-13 

†
1 2 2

2 -1 5

2 2 7
†

 =  
13

-13
= -1

 v2 =

              

-13 

†
1 2 1

2 5 -2

2 7 3
†

v1 =

†
1  2  1

2 -1 -2

2  2  3
†

=

-13

†
2  2 1

5 -1 -2

7  2 3
† , -39

Exercises

Solve the following systems of two linear
equations using Cramer’s rule:
(a)

(b)
2u1 + u2 = 1
-u1 - u2 = 1
3x - 2y = 1
2x + y = 10

1 (c)

(d)

(e)
b + 2a = -3.9
a -  3b = 0.5
2v1 - 3v2 = -1.9
3v1 - v2 = 6.6
3i1 - 2i2 = 5.9
2i1 + i2 = 9.3
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606 Block 1 Cramer’s rule13

Solve the following systems of three linear
equations using Cramer’s rule:
(a)

(b)

3a + 2g = 3
a + 3b + g = 2
b - 2g = -6
-2x + 3z = -1
x + y + 3z = 6
2x - y - 2z = 1

2 (c)

(d)

(e)

u1 + 2u2 - u3 = 9.2
2u1 - u2 + u3 = 5.4
u1 + u2 + 4u3 = 0
-3v1 + 2v3 = -3.1
v1 +

1
2v2 - v3 = 0.7

2v1 - v2 + v3 = 5.9
- i1 + 2i2 - i3 = -0.5
3i1 - i2 + 2i3 = 7
i1 + i2 - i3 = 1

Solutions to exercises

(a)
(b)
(c)
(d)
(e) a = -1.6, b = -0.7

v1 = 3.1, v2 = 2.7
i1 = 3.5, i2 = 2.3
u1 = 2, u2 = -3
x = 3, y = 41 (a)

(b)
(c)
(d)
(e) u1 = 4.3, u2 = 1.7, u3 = -1.5

v1 = 2.3, v2 = 0.6, v3 = 1.9
i1 = 1.5, i2 = 1.5, i3 = 2
a = -1, b = 0, g = 3
x = 2, y = 1, z = 12

End of block exercises

Electrical Engineering. Voltages and in
a circuit are related by the system of equations

Calculate and using Cramer’s rule.

Electrical Engineering. The currents and
of a circuit are related by

Use Cramer’s rule to evaluate the three
currents.

 3i1 + 2i2 = 9
 i1 - i2 + i3 = -5

 2i1 + i2 - i3 = 8

i3
i1, i22

v2v1

 -4v1 + 10v2 = -27
 3v1 + 2v2 = 6

v2v11 Explain why Cramer’s rule cannot be applied
to the following system of equations:

Mechanical Engineering. The magnitudes of
forces f and g in a mechanical system are
connected by the equations

Use Cramer’s rule to determine the magnitudes
of f and g.

 2f - g - 3.8 = 0
 3f + 5g - 16.1 = 0

4

 y - 1.5x = -5 
 3x - 2y = 10

3

Solutions to exercises

The matrix

has a zero determinant.

a 3 -2

-1.5  1
b

3

i1 = 1,  i2 = 3,  i3 = -32

v1 = 3,  v2 = -1.51 f = 2.7, g = 1.64
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BLOCK 2
Using the inverse matrix to solve 
simultaneous equations

2.1 Introduction

Block 1 dealt with Cramer’s rule for solving a system of linear equations. The solu-
tions were given in terms of determinants. This block shows how an inverse matrix
can be used to solve a system of linear simultaneous equations. You will need to be
familiar with the techniques for finding the inverses of and matrices as
described in Chapter 12, Block 4.

2.2 Writing equations in matrix form

Consider the simultaneous equations

Recalling how matrices are multiplied we note that the product

is equivalent to

Hence we can write the simultaneous equations as

This is the matrix form of the simultaneous equations.
Writing

we have the standard form

Note that the elements of A come from the coefficients of x and y and that the
elements of B come from the right-hand sides of the equations.

AX = B

A = a7  2

3  1
b , X = ax

y
b , B = a12

5
b

a7 2

3 1
b  ax

y
b = a12

5
b

a7x + 2y

3x + y
b

a7 2

3 1
b  ax

y
b

 3x + y = 5
 7x + 2y = 12

3 * 32 * 2
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608 Block 2 Using the inverse matrix to solve simultaneous equations

Example 2.1
Write the following system of equations in the standard matrix form .

Solution
The elements of A are the coefficients of x, y and z. Hence

and

Hence in matrix form the equations are written as

Example 2.2
Express the following system in the form .

Solution
The equations are rewritten so that the variables x, y and z appear in the same order.

Then

£ 7

7

-9

≥X = £x

y

z

≥ , B =

£ -1 3 4

-4 1  0

3 1 -1

≥A =

 3x + y - z = -9
 -4x + y + 0z = 7
 -x + 3y + 4z = 7

 y + 3x - z = -9
 y - 4x = 7

 -x + 3y + 4z = 7

AX = B

£2  1 -1

1 -1  3

2  2 -3

≥  £x

y

z

≥ = £ 4

-2

9

≥

X = £x

y

z

≥ , B = £ 4

-2

9

≥

A = £ 2 1 -1

1 -1 3

2 2 -3

≥

 2x + 2y - 3z = 9
 x - y + 3z = -2
 2x + y - z = 4

AX = B

13
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2.3 Solving equations using the inverse matrix method 609 13

In matrix form the equations are

£ -1 3 4

-4 1 0

3 1 -1

≥  £x

y

z

≥ = £ 7

7

-9

≥

Exercises

Write the following simultaneous equations in
matrix form:
(a)

(b)
3a + 7b = 11.6
a - b = 0.5
x + 2y = 6
3x -  4y = 9

1 (c)

-2x + 3z = -2
3x + 4y + z = 1
2x -  y + 3z = 0

Solutions to exercises

(a)

(b) a1 -1

3 7
b aa
b
b = a 0.5

11.6
b

a3 -4

1 2
b ax

y
b = a9

6
b1

(c) £ 2 -1 3

3 4 1

-2 0 3

≥ £x

y

z

≥ = £ 0

1

-2

≥

2.3 Solving equations using the inverse matrix method

Consider a system of equations written in matrix form, that is

where A is a square matrix. Note that A and B are matrices with numerical elements.
We wish to find an expression for the unknowns, that is the elements of X. To achieve
this we premultiply both sides of the equation by the inverse of A, if it exists, to
obtain

(1)

The left-hand side can be simplified by noting that multiplying a matrix by its
inverse gives the identity matrix, that is . Hence

 = IX
  A-1 AX = (A-1 A) X

A-1 A =  I

A-1 AX = A-1B 

AX = B
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610 Block 2 Using the inverse matrix to solve simultaneous equations13

Multiplying a matrix by the identity matrix has no effect and so . So the left-
hand side of equation (1) simplifies to

and so, from (1),

X = A-1 B

 = X
 A-1 AX = IX

IX = X

Key point Given , then if exists.A-1X = A-1 BAX = B

Example 2.3
Solve

using the inverse matrix method.

Solution
Writing the equations in matrix form, , gives

Here

We calculate .

Hence

We have

that is , .y = -1x = 2

 = a 2

-1
b

 X = ax

y
b

 = a 2

-1
b

 = a 1 -2

-3  7
b  a12

5
b

 X = A-1 B

A-1
= a 1 -2

-3  7
b

A-1

A = a7  2

3  1
b , B = a12

5
b , X = ax

y
b

a7  2

3  1
b  ax

y
b = a12

5
b

AX = B

 3x + y = 5
 7x + 2y = 12
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2.3 Solving equations using the inverse matrix method 611 13

Example 2.4 Electrical Engineering – Circuit currents
The currents and in a circuit are connected by the equations

Use the inverse matrix method to find the values of and .

Solution
We have where

,

We calculate .

So

So and .

Example 2.5 Mechanical Engineering – Forces in a pulley system
Forces , and in a simple pulley system satisfy the equations

Solve the system for , and .

Solution
The equations are written in matrix form:

Writing

A = £ -1  3  4

-4  1  0

3  1 -1

≥

£ -1  3  4

-4  1  0

3  1 -1

≥  £ f1
f2
f3

≥ = £ 7

7

-9

≥

f3 f2f1

 f2 + 3f1 - f3 = -9
 f2 - 4f1 = 7

 - f1 + 3f2 + 4f3 = 7

f3f2f1

i2 = 1.4i1 = 3.6

a3.6

1.4
b =

 = £1
5 

1
5

3
5
 -

2
5

≥ a8.6

9.4
b

 X = A-1 B

£1
5 

1
5

3
5
 -

2
5

≥A-1
=

A-1

a2  1

3 -1
b B = a8.6

9.4
b and X = a i1

i2
bA =

AX = B

i2i1

  3i1 - i2 = 9.4
 2i1 + i2 = 8.6

i2i1
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612 Block 2 Using the inverse matrix to solve simultaneous equations13

we then calculate as

Hence

So , , .f3 = 2f2 = -1f1 = -2

 = £ -2

-1

2

≥
 £ f1

f2
f3

≥ =

1

39
 £ 1 -7 4

4 11 16

7 -10 -11

≥  £ 7

7

-9

≥

 A-1
=

1

39
 £ 1 -7 4

4 11 16

7 -10 -11

≥
A-1

Exercises

Solve the following systems of linear
equations using the inverse matrix method:
(a)

(b)

(c)

(d)

(e)

State conditions under which the inverse
matrix method will fail to find a set of
solutions.

Given that the inverse of

is

1

22
 £ 8 -2  4

-5  4  3

-1 -8  5

≥

£2 -1 -1

1 2 -2

2 3 1

≥
3

2

2p - q = -1.1
p -  2q = -0.7
- i1 + 2i2 = 3.5
2 i1 + i2 = 3.5
3v1 + 5v2 = 17
v1 -  2v2 = -3.5

1
2a + b = 1

2a -  b = -11
x + 2y = 13
3x -  y = 4

1 solve the following system of equations:

Given that the inverse of

is

solve the system of linear equations

Electrical Engineering. Resistances ,
in a circuit are connected by the

equations

Use the inverse matrix method to calculate ,
and .r3r2

r1

 r1 - 2r2 - r3 = -2.3
 2r1 - r2 + r3 = 0.8
 r1 - 2r2 + r3 = -0.9

r2 and r3

r15

 x - y + 2y = 4
 3x - y + 4z = 10
 4x + 3y - z = 3

1

4
 £ 11  2 -5

-19 -2  9

-13 -2  7

≥

£1 -1  2

4  3 -1

3 -1  4

≥
4

 2x + 3y + z = 9
 x + 2y - 2z = 13
 2x - y - z = 7
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2.3 Solving equations using the inverse matrix method 613 13

Solutions to exercises

(a) , 
(b) , 
(c) , 
(d) , 
(e) , 

Given , the method will fail if ;
that is, if does not exist.A-1

ƒA ƒ = 0AX = B2

q = 0.1p = -0.5
i2 = 2.1i1 = 0.7
v2 = 2.5v1 = 1.5
b = 3a = -4

y = 5x = 31 , , 

, , 

, , r3 = 0.7r2 = 1.1r1 = 0.65

z = 3y = 2x = 04

z = -3y = 2x = 33

Computer and calculator exercises

Using a computer algebra package to calculate
the relevant inverse matrix and perform the
matrix multiplication, solve the following
systems using the inverse matrix method:
(a)

4x + 3z = 0
x + 2y +

1
2 z = 19

2x -  y +  z = -7

1 (b)

(c)

- i1 + i2 - i3 + 4i4 = 14
- i1 + i2 + i3 -  i4 = 0
i1 -  i2 + i3 + i4 = 6
i1 +  i2 +  i3 -  i4 = 2

a + b = 0.5
a + 2b + 3g = 20
2a + 4b - g = -2

Solutions to exercises

(a) , , 
(b) , , 
(c) , , , i4 = 4i3 = 3i2 = 2i1 = 1

g = 6b = 1.5a = -1
z = -4y = 9x = 31

End of block exercises

Use the inverse matrix method to solve
(a)

(b)

Explain why the inverse matrix method cannot
be applied to the following system:

 -6x + 2y = -14

 3x - y = 7

2

3a - 4b = -9
a +  2b = 2

-2x + y = -4
4x - 3y = 6

1 Given that the inverse of

is

1

29
 £ 3  7 -4

-11  13  5

5  2  3

≥

£ 1 -1  3

2  1  1

-3  1  4

≥
3
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614 Block 2 Using the inverse matrix to solve simultaneous equations13

solve the following systems:
(a)

(b)

x - y + 3z = -7
-3x + y + 4z = -7
2x + y + z = -1

-3x + y + 4z = 0
2x + y + z = 7
x - y + 3z = 3

(c)

4x + 2y + 2z = 6
-3x + y + 4z = 20
3x - 3y + 9z = 30

Solutions to exercises

(a) , 
(b) , 

The matrix

has no inverse.

a 3 -1

-6  2
b

2

b = 1.5a = -1
y = 2x = 31 (a) , , 

(b) , , 
(c) , , z = 4y = 1x = -1

z = -2y = 1x = 0
z = 1y = 2x = 23
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BLOCK 3
Gaussian elimination

3.1 Introduction

Gaussian elimination is a systematic way of simplifying a system of equations so
that a solution can easily be found. Rather than work with the actual equations, a
matrix, whose elements capture all the properties of the equations, is used.

Manipulation of the matrix is carried out by performing a sequence of elementary
row operations. These operations eventually bring the matrix into a form known as
echelon form. Once in this form, the solution to the original equations is easily
found.

3.2 The augmented matrix

Consider the system of linear equations

This system may be represented in the matrix form

This is an example of an augmented matrix. Note that the elements of the
augmented matrix comprise the coefficients of x and y and also the right-hand sides
of the equations.

Example 3.1
State the augmented matrix for the system

Solution
The augmented matrix is

£3 -1  2  7

4  1  0  6

1  2 -1  2

≥

 x + 2y - z = 2
 4x + y = 6

 3x - y + 2z = 7

a2  3  16

1 -1 -2
b

 x - y = -2
 2x + 3y = 16
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616 Block 3 Gaussian elimination13

Exercises

Write the augmented matrix for each of the
following systems of equations:
(a)

(b)

(c)

(d)

(e)

Write the augmented matrix for each of the
following systems of equations:
(a)

(b)

5x + 2z = -8
3x + 2y + z = -5
x -

1
2y + 3z = 1

2x + 3y + 2z = 6
3x - 2y + 4z = 25
x + y + z = 4

2

-5x + 2y = -1
3x + 4y = 50

6x + 3y = 1.5
x - y = 4

2x + y = -1
x - 3y = 10

5x + 2y = 0
3x + 2y = 4

x + 2y = 14
2x - y = 8

1 (c)

(d)

(e)

2y - 7z = 3
-4x + y = 10
x - 2y + z = 0

4x - 2y - z = -1
5x + y + 2z = 7
x - y + z = 2

5x + 2y + 3z = 20
3x + 2y + z = 4
7x - y - z = 3

Solutions to exercises

(a) (b) 

(c) (d) 

(e)

(a)

(b) §
 1 -

1

2
3 1

3 2 1 -5

5 0 2 -8

¥

£1 1 1 4

3 -2 4 25

2 3 2 6

≥2

a 3 4 50

-5 2 -1
b

a1 -1 4

6 3 1.5
ba1 -3 10

2 1 -1
b

a3 2 4

5 2 0
ba2 -1 8

1 2 14
b1

(c)

(d)

(e) £  1 -2 1 0

-4 1 0 10

0 2 -7 3

≥
£  1 -1 1 2

5 1 2 7

4 -2 -1 -1

≥
£  7 -1 -1 3

3 2 1 4

5 2 3 20

≥
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3.3 Types of solutions to systems of linear equations 617 13

3.3 Types of solutions to systems of linear equations

When a system of linear equations is solved, there are three possible outcomes.

Key point A system of linear equations may have

1 a unique solution
2 an infinite number of solutions
3 no solution.

These three possible outcomes were studied in Block 4 of Chapter 7. In this section we
revisit these three possibilities and note the form of the augmented matrix in each case.

Case 1

For example, consider the system

This system has a unique solution, , . The corresponding augmented
matrix is

Case 2

Consider the system

There is really only one equation here because the second states that . There are
an infinite number of solutions of the first equation. For example, and ;

and . In general, whatever the value of y, the equation is satisfied if
. We write this as follows: letting , say, then . This is

true for any value of t we choose, so t is called a free variable. The corresponding
augmented matrix is

Case 3

Finally consider the system

  0x + 0y = 2
 x + 3y = 7

a1  3  7

0  0  0
b

x = 7 - 3ty = tx = 7 - 3y
y = -1x = 10

y = 0x = 7
0 = 0

 0x + 0y = 0
 x + 3y = 7

a1  3  7

0  1  2
b

y = 2x = 1

 0x + y = 2
 x + 3y = 7
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The second equation seems to state that . This is nonsense. There are no
solutions and the augmented matrix is

It is worthwhile rereading Block 4 in Chapter 7 before continuing.

Example 3.2
A system has augmented matrix

State the solution of the system.

Solution
The second row of the augmented matrix is equivalent to the equation

that is

The first row of the matrix is equivalent to the equation

Substituting in we can obtain x.

The system has a unique solution , .

In Example 3.2 the value of y was found and substituted back into the remaining
equation so that x could be found. This technique is known as back substitution.

Example 3.3
A system has augmented matrix

Solve the system.

Solution
The second row of the augmented matrix corresponds to the equation

This equation has no solution and so the system has no solution.

0x + 0y = 4

a1  3 -6

0  0  4
b

y = -3x = 1

  x = 1
 x + 12 = 13

 x - 4(-3) = 13

y = -3

x - 4y = 13

y = -3

0x + 1y = -3

a1 -4  13

0  1 -3
b

a1  3  7

0  0  2
b

0 = 2

618 Block 3 Gaussian elimination13

M13_CROF5939_04_SE_C13.QXD  9/25/18  8:43 AM  Page 618



3.3 Types of solutions to systems of linear equations 619 13

Example 3.4
A system has augmented matrix

Solve the system.

Solution
The second row of the matrix is equivalent to the equation

This equation is satisfied for any value of x and y. The first row is equivalent to

This has an infinite number of solutions: , .

Example 3.5
A system has augmented matrix

Solve the system.

Solution
From the third row, the equation is

that is

From the second row, the corresponding equation is

Substituting in the equation can be solved for y.

The equation corresponding to the first row is

By substituting in the values already obtained for y and z, we can determine x.

The system has a unique solution: , .z = -1y = 3x = 2,

2x =

1x + 2y - 3z = 11

 y = 3
 y + 4 = 7

 y - 4(-1) = 7

z = -1

y - 4z = 7

z = -1

0x + 0y + 1z = -1

£1  2 -3  11

0  1 -4  7

0  0  1 -1

≥

y = tx = 17 - 3t

x + 3y = 17

0x + 0y = 0

a1  3  17

0  0  0
b
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3.4 Row-echelon form of an augmented matrix

We now introduce the row-echelon form of an augmented matrix. The matrices
given in Examples 3.4 and 3.5 are in row-echelon form. When a matrix is in row-
echelon form it is then easy to determine the solution of the system.

620 Block 3 Gaussian elimination13

Exercises

Solve the systems whose augmented matrices
are

(a)

(b)

(c)

(d) a1 5 6

0 0 1
b

a1 5 6

0 1 0
b

a1 -2 10

0 0 0
b

a1 2 18

0 1 7
b

1
(e)

(f)

(g) a1 3 6 25

0 0 1 3
b

£1 3 4 2

0 1 -2 6

0 0 0 0

≥
£1 -2 -1 5

0 1 3 1

0 0 1 1

≥

Solutions to exercises

(a) , (b) , 
(c) , (d) no solution
(e) , , z = 1y = -2x = 2

y = 0x = 6
y = tx = 2t + 10y = 7x = 41 (f) , , 

(g) , , z = 3y = tx = 7 - 3t
z = ty = 2t + 6x = -10t - 16

Key point For a matrix to be in row-echelon form:

1 Any rows that consist entirely of zeros are the last rows of the matrix.
2 For a row that is not all zeros, the first non-zero element is a one. We call this 

a leading 1.
3 As you move down the rows of the matrix, the leading 1s move progressively to 

the right.

Example 3.6
Determine which of the following matrices are in row-echelon form:

(a) a1 2 5

0 1 7
b
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3.4 Row-echelon form of an augmented matrix 621 13

(b)

(c)

(d)

Solution
(a) This is in row-echelon form. Note that the leading 1 in the second row is further

to the right than the leading 1 in the first row.
(b) This is not in row-echelon form since the leading 1 in the first row is further to

the right than the leading 1 in the second row.
(c) This is in row-echelon form.
(d) This is in row-echelon form.

£1 6 9 4

0 1 -3 6

0 0 1 5

≥
a0 0 1 6

0 0 0 0
b

£0 1 3 6

1 4 -1 3

0 0 0 0

≥

Exercises

Explain what is meant by row-echelon form.

Determine which of the following matrices are
in row-echelon form:

(a)

(b)

(c) £1 2 5 6

1 0 3 6

0 0 1 4

≥
a1 -1 0

0 1 0
b

a1 4 3 9

0 1 -3 6
b

2

1
(d)

(e) £1 0 0 2

0 0 1 -1

0 1 0 3

≥
£1 -1 3 7

0 0 0 0

0 1 5 6

≥

Solutions to exercises

(a) row-echelon form
(b) row-echelon form
(c) not row-echelon form
(d) not row-echelon form
(e) not row-echelon form

2
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3.5 Elementary row operations

Given any augmented matrix we would like to be able to transform it into row-
echelon form as the solution of the system can then easily be found. The way we
effect this transformation is by using elementary row operations.

We define three elementary operations that we can apply to the equations of the
system.

622 Block 3 Gaussian elimination13

Key point The elementary operations that change a system but leave the solution unaltered are as
follows:

1 Change the order of the equations.
2 Multiply or divide an equation by a non-zero constant.
3 Add, or subtract, a multiple of one equation to, or from, another equation.

When applied to a system, elementary row operations may change the equations but
the solution to the resulting system remains unchanged. We apply elementary row
operations to a simple system to illustrate this.

Consider the system of linear equations

(1)
(2)

The system has solution , .
If we interchange the order of the equations, the system becomes

The solution to the system is obviously still , .
To illustrate the second of the elementary operations consider multiplying

equation (1) by, say, 6 and dividing equation (2) by, say, 5. The system is then

You can check that this system still has solution , .
Finally, to illustrate the third elementary operation, we add 3 times equation (1) to

equation (2). The system becomes

Check that this resulting system has solution , .
Thus elementary operations may change the system, but they do not change the

solutions of a system.

y = 2x = 1

  7x + 16y = 39
 2x + 5y = 12

y = 2x = 1

 
x

5
+

y

5
=

3

5

 12x + 30y = 72

y = 2x = 1

 2x + 5y = 12
 x + y = 3

y = 2x = 1

 x + y = 3
 2x + 5y = 12

M13_CROF5939_04_SE_C13.QXD  9/25/18  8:43 AM  Page 622



3.5 Elementary row operations 623 13

We have been writing a system in the form of an augmented matrix, where each
row of the matrix corresponds to an equation of the system. Thus we can apply ele-
mentary operations to the rows of an augmented matrix rather than the equations of
the system. When elementary operations are applied to the rows of a matrix they are
called elementary row operations.

Example 3.7
(a) Write down the augmented matrix of the system

(b) Carry out the following elementary row operations, each time applying the
operation to the most recent augmented matrix:
(i) interchange the rows
(ii) subtract the first row from the second row
(iii) divide the second row by 3.

(c) Hence solve the system.

Solution
(a) The augmented matrix is

(b) (i) The rows are interchanged. The augmented matrix becomes

(ii) We now use the augmented matrix in (b) (i). Subtracting
from the second row results in

(iii) We now use the augmented matrix in (b) (ii). Dividing the second row 
by 3 gives

(c) Note that the matrix is now in row-echelon form. From the second row we see
that . From the first row we have

Substituting into this equation we obtain . Thus the solution to the
original system is , .

The method of solution of Example 3.7 is thus

1 Write down the augmented matrix.
2 Apply elementary row operations to obtain row-echelon form.
3 Solve the system.

This method is known as Gaussian elimination.

y = 2x = 1
x = 1y = 2

1x + 1y = 3

y = 2

a1  1  3

0  1  2
b

a1  1  3

0  3  6
b

2 * the first row

a1  1  3

2  5  12
b

a2  5  12

1  1  3
b

2 *

 x + y = 3
 2x + 5y = 12
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Example 3.8
Use Gaussian elimination to solve

Solution
The augmented matrix is

We now apply a series of elementary row operations to transform the augmented
matrix into row-echelon form.

Subtract the second row from the first row.

Subtract 2 � the first row from the second row.

Divide the second row by 11.

The matrix is now in row-echelon form. From the second row we see that . The
first row corresponds to the equation

Substituting into this equation allows x to be found.

The solution to the system is , .

Example 3.9
Use Gaussian elimination to solve

Solution
The augmented matrix is

We apply a series of elementary row operations to transform the matrix into row-
echelon form.

£2  1  2  8

1 -3  3 -4

4  2 -1  1

≥

 4x + 2y - z = 1

  x - 3y + 3z = -4

  2x + y + 2z = 8

y = 5x = 2

2

y = 5

1x - 4y = -18

y = 5

a1 -4 -18

0  1  5
b

a1 -4 -18

0  11  55
b

a1 -4 -18

2  3  19
b

a3 -1  1

2  3  19
b

 2x + 3y = 19

 3x - y = 1

624 Block 3 Gaussian elimination13
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3.5 Elementary row operations 625 13

Interchange the first row and second row.

Subtract from the second row, subtract from the
third row. This produces

Subtract from the third row to get

Divide the second row by 7, divide the third row by .

The matrix is now in row-echelon form. From the third row we see that

The second row is equivalent to the equation

Substituting and solving for y yields

The first row is equivalent to the equation

Substituting in the values for y and z and solving for x yields

The solution to the system is , , .z = 3y = 4x = -1

-1x =

1x - 3y + 3z = -4

 4y =

z = 3

1y -

4

7
 z =

16

7

3z =

§
1 -3  3 -4

0  1 -

4

7
 

16

7

0  0  1  3

¥
-5

£1 -3  3 -4

0  7 -4  16

0  0 -5 -15

≥
2 * the second row

£1 -3  3 - 4

0  7 -4  16

0  14 -13  17

≥
4 * the first row2 * the first row

£1 -3  3 -4

2  1  2  8

4  2 -1  1

≥

Exercises

Use Gaussian elimination to solve the systems
of linear equations given in question 1 of
Section 3.2.

1 Use Gaussian elimination to solve the systems
of linear equations given in question 2 of
Section 3.2.

2
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626 Block 3 Gaussian elimination13

Use Gaussian elimination to solve

Use Gaussian elimination to solve

 -3x + 4y = 4
 6x - 8y = 10

4

 3x + 1.5y = 12
 2x + y = 8

3 Use Gaussian elimination to solve

 7x - 6y + 5z = 8
 3x - 4y + 2z = 1

 x + 2y + z = 6

5

Solutions to exercises

(a) , (b) , 
(c) , (d) , 
(e) , 

(a) , , 
(b) , , 
(c) , , 

(d) , , 

(e) , , z = -1y = -2x = -3

z = 2y =
1
2x =

1
2

z = 7y = -3x = 1
z = 1y = 0x = -2
z = 3y = -2x = 32

y = 9.5x = 4
y = -2.5x = 1.5y = -3x = 1

y = 5x = -2y = 4x = 61 , 

no solution

, , z = ty =

17 - t

10
x =

13 - 4t

5
5

4

y = tx = 4 -

t

2
3

End of block exercises

State the augmented matrix of each of the
following systems of equations:
(a)

(b)

Determine which of the following matrices are
in echelon form:

(a)

(b) £1 0 1 0 3

0 1 4 3 6

0 0 0 0 0

≥

£1 1 1 0 1

0 0 0 1 3

0 0 0 0 0

≥
2

5a + 3b = 11
2a - b = 0
a + b = 3
a - b + g = 11
2b + 3g = -7
3a - b = 4

1

(c)

Use Gaussian elimination to solve each of the
following systems of equations:
(a)

(b)

Use Gaussian elimination to solve

2x + 2y - z = 8
x + 2y + 3z = -1

 2x - y + z = -2

4

-2x + y = -24
3x + 4y = 14

y + 2x = 15
x - 2y = -15

3

§
1 3 1 0 -4

0 0 1 0 2

0 0 0 1 -1

0 0 0 0 0

¥
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Use Gaussian elimination to solve

Use Gaussian elimination to solve

Use Gaussian elimination to solve

 6x - 9y = 24
 2x - 3y = 12

7

 4x + 17y = -4
 3x + y = -3

6

 x + 0.5y = 5
 2x + y = 10

5 Use Gaussian elimination to solve

Use Gaussian elimination to solve

 x + y + 2z = 9
 3x + 2y + z = 6

 2x + y - z = -3
9

 x + y + 2z = 8
 3x + 2y + z = 6

 2x + y - z = -3
8

Solutions to exercises

(a)

(b)

(a) echelon form (b) echelon form
(c) echelon form

(a) , (b) , y = -4x = 10y = 9x = 33

2

£1 1 3

2 -1 0

5 3 11

≥
£3 -1 0 4

0 2 3 -7

1 -1 1 11

≥1
, , 

, 

, 

no solution

no solution

, , z = ty = 21 - 5tx = 3t - 129

8

7

y = 0x = -16

y = tx = 5 -

t

2
5

z = -2y = 2x = 14
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BLOCK 4
Eigenvalues and eigenvectors

4.1 Introduction

In this block we consider the meaning and calculation of eigenvalues and eigenvectors.
Although such calculations may at first sight appear abstract, eigenvalues have
important applications in the area of vibration analysis. Familiarity with the evalu-
ation of determinants and the solution of simultaneous equations by Gaussian elimi-
nation is essential.

4.2 Trivial and non-trivial solutions

Before we can discuss eigenvalues some preliminary results about determinants are
required. These are now developed.

Consider the simultaneous equations

where a, b, c and d are constants. Clearly , is a solution of these equa-
tions. We call this the trivial solution. Let us explore the relationship that must exist
between a, b, c and d so that the system has non-trivial solutions. These are solu-
tions other than , . For definiteness we consider two cases with values of
a, b, c and d given.
Case 1:

Case 2:

Solving Case 1, for example, by Gaussian elimination leads to , as the
only possible solution. Thus the only solution is the trivial solution.

Looking at Case 2 we see that the second equation is simply twice the first equation.
This means that the second equation can be deduced from the first equation. In
essence, there is only one equation to work with. So we consider the solution of

5x - 3y = 0

y = 0x = 0

 10x - 6y = 0
 5x - 3y = 0

 10x - 2y = 0
 5x - 3y = 0

y = 0x = 0

y = 0x = 0

 cx + dy = 0
 ax + by = 0
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4.2 Trivial and non-trivial solutions 629 13

Rearranging we have

As long as the y value is of the x value the equation is satisfied. Hence, for example,

, ; , ; , are all solutions. In general, the

solutions have the form , for any value of t. Thus there are an infinite
number of non-trivial solutions.

We now return to the system

As seen, depending upon the values of a, b, c and d the system has either only the
trivial solution or an infinity of non-trivial solutions. For there to be an infinity of
solutions the second equation must be a multiple of the first. When this is the case
then c is a multiple of a and d is the same multiple of b: that is,

In this case, consider the quantity :

Hence the condition for non-trivial solutions to exist is that . Writing
the system in matrix form gives

or

where

We note that is the determinant of A, so non-trivial solutions exist when the
determinant of A is zero, that is when A is a singular matrix.

In summary

ad - bc

A = aa  b

c  d
b , X = ax

y
b and 0 = a0

0
b

AX = 0

aa  b

c  d
b ax

y
b = a0

0
b

ad - bc = 0

 = 0

 = aab - aab

 ad - bc = a(ab) - b(aa)

ad - bc

c = aa, d = ab       for some value of a

 cx + dy = 0

 ax + by = 0

y =
5
3tx = t

y = -
25
3x = -5y =

10
3x = 2y =

5
3x = 1

5
3

y =

5

3
 x

Key points Consider the system

• If the system has non-trivial solutions.

• If the system has only the trivial solution.ƒ A ƒ  Z  0

ƒ A ƒ = 0

AX = 0

This Key point holds true for a square matrix of any size.
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630 Block 4 Eigenvalues and eigenvectors13

Example 4.1
Decide which system has non-trivial solutions.

(a) (b)

Solution
(a) We write the system as

Let

Then

Since the determinant of A is non-zero the system has only the trivial solution.
(b) We write the system as

Then

and . Since the determinant of A is zero the system has
non-trivial solutions.

Example 4.2
Determine which system has non-trivial solutions.
(a)

(b)

Solution
(a) We have

where

A = P
3 -1  1

1  2  2

4  1  3
Q and X = P

x

y

z
Q

AX = 0

5x - y + 3z = 0
x + 2y + 2z = 0
3x - y + z = 0

4x + y + 3z = 0
x + 2y + 2z = 0
3x - y + z = 0

|A| = 6 - 6 = 0

A = a1  2

3  6
b

a1  2

3  6
b ax

y
b = a0

0
b

det(A) = 4(-3) - (-1)(2) = -10

A = a4 -1

2 -3
b

a4 -1

2 -3
b  ax

y
b = a0

0
b

3x + 6y = 02x - 3y = 0
x + 2y = 04x - y = 0
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4.2 Trivial and non-trivial solutions 631 13

Evaluate the determinant of A:

Since the system has non-trivial solutions.
(b) Here

Evaluate the determinant of A:

Since the system has only the trivial solution.|A| Z 0

ƒA ƒ = 6

A = P
3 -1  1

1  2  2

5 -1  3
Q

|A| = 0

ƒA ƒ = 0

Exercises

Explain what is meant by the trivial solution of
a system of linear equations and what is meant
by a non-trivial solution.

Determine which of the following systems
have non-trivial solutions:
(a)

(b)

(c)

(d)

(e)
x = 3y
y = 2x

2x -
2
3  
y = 0

6x - 2y = 0

-4x + 3y = 0
4x - 3y = 0

9x + 2y = 0
3x + y = 0

3x - 6y = 0
x - 2y = 0

2

1 Determine which of the following systems
have non-trivial solutions:
(a)

(b)

(c)

(d)

y + 2z = 0
x - y = 0
x + 3z = 0

6x + y + 3z = 0
4x - 3y - z = 0
x + 2y + 3z = 0

x - 7y - z = 0
3x + y - 3z = 0
2x - 3y - 2z = 0

x + y = 0
3x + y + 2z = 0
x + 2y - z = 0

3

Solutions to exercises

(a), (c) and (d) have non-trivial solutions.2 (a) and (b) have non-trivial solutions.3
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4.3 Eigenvalues

We shall explain the meaning of the term eigenvalue by means of an example. 
Consider the system

where is some unknown constant. Clearly these equations have the trivial solution
, . The equations may be written in matrix form as

or, using the usual notation,

We now seek values of so that the system has non-trivial solutions. Although it is
tempting to write this would be incorrect since is not defined;
A is a matrix and is a constant. Hence to progress we need to write the right-hand
side in a slightly different way. To help us do this we use the identity matrix, I.

Now may be expressed as

since multiplying by the identity matrix leaves it unaltered. So may be

written as . Hence we have

which can be written as

Note that the expression is defined since both A and are square matrices
of the same size.

We have seen in Section 4.2 that for to have non-trivial solutions then
. Hence for

to have non-trivial solutions then

ƒA - lI ƒ = 0

(A - lI)X = 0

|A| = 0
AX = 0

lI(A - lI)

 (A - lI)X = 0
 AX - lIX = 0

AX = lIX

lIX

lXax

y
b

la1  0

0  1
b ax

y
b

lax

y
b

2 * 2
l

A - l(A - l)X = 0
l

AX = lX

a2  1

3  4
b ax

y
b = lax

y
b

y = 0x = 0
l

 3x + 4y = ly
 2x + y = lx
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Now

So the condition gives

It follows that

so that

These are the values of that cause the system to have non-trivial
solutions. They are called eigenvalues.

The equation

which when written out explicitly is the quadratic equation in , is called the
characteristic equation.

Example 4.3
Find values of for which

has non-trivial solutions.

Solution
We write the system as

where

To have non-trivial solutions we require

ƒA - lI ƒ = 0

A = a1  4

2  3
b , X = ax

y
b

AX = lX

 2x + 3y = ly
 x + 4y = lx

l

l

ƒA - lI ƒ = 0

AX = lXl

l = 1 or 5

 (l - 1)(l - 5) = 0
 l2 - 6l + 5 = 0

  (2 - l)(4 - l) - 3 = 0

` 2 - l  1

3  4 - l
 ` = 0

ƒA - lI ƒ = 0

 = a2 - l  1

3  4 - l
b

 = a2  1

3  4
b - a l  0

0 l
b

  A - lI = a2  1

3  4
b - l a1  0

0  1
b
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Now

Hence

To have non-trivial solutions we require

which yields

The given system has non-trivial solutions when and . These are the
eigenvalues.

If A is a matrix, the characteristic equation will be a polynomial of degree 2,
that is a quadratic equation in , leading to two eigenvalues. If A is a matrix,
the characteristic equation will be a polynomial of degree 3, that is a cubic, leading to
three eigenvalues. In general an matrix gives rise to a characteristic equation of
degree n and hence to n eigenvalues.

n * n

3 * 3l

2 * 2

l = 5l = -1

l = -1 or l =  5

  (l + 1)(l - 5) = 0
 l2 - 4l - 5 = 0

 = l2 - 4l - 5

 ƒA - lI ƒ = (1 - l)(3 - l) - 8

 = a1 - l  4

2  3 - l
b

 = a1  4

2  3
b - a l  0

0 l
b

  A - lI = a1  4

2  3
b - la1  0

0  1
b

Key point The characteristic equation of a square matrix A is given by

Solutions of this equation are the eigenvalues of A. These are the values of for which
has non-trivial solutions.AX = lX

l

ƒA - lI ƒ = 0

Example 4.4
Determine the characteristic equation and eigenvalues, , in the system

Solution
In this example the equations have been written in matrix form with

A = a 3  1

-1  5
b

a 3  1

-1  5
b ax

y
b = lax

y
b
l

M13_CROF5939_04_SE_C13.QXD  9/25/18  8:43 AM  Page 634
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The characteristic equation is given by

The characteristic equation is . Solving the characteristic
equation gives

There is one repeated eigenvalue: .

Example 4.5
Find the eigenvalues in the system

Solution
We form the characteristic equation, . Now

Then

Solving the characteristic equation gives

There are two eigenvalues, and .

The process of finding the characteristic equation and eigenvalues of a matrix has
been illustrated using matrices. This same process can be applied to a square
matrix of any size.

Example 4.6
Find (a) the characteristic equation and (b) the eigenvalues of A where

A = P
1  2  0

-1 -1  1

3  2 -2
Q

2 * 2

l = 5l = 1

 1, 5l =

l2
- 6l + 5 = 0

l2
- 6l + 5ƒ A - lI ƒ =

a4 - l  1

3  2 - l
bA - lI =

|A - lI| = 0

a4  1

3  2
b ax

y
b = lax

y
b

l

l = 4

 l = 4 (twice)
  (l - 4)(l - 4) = 0

 l2
- 8l + 16 = 0

l2
- 8l + 16 = 0

 l2
- 8l + 16 = 0

  (3 - l)(5 - l) + 1 = 0

 ̀
3 - l  1

-1  5 - l
 ` = 0

 ̀ a 3  1

-1  5
b - la1  0

0  1
b ` = 0

 ƒ A - lI ƒ = 0
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Solution
(a) We need to calculate . Now

and

Upon simplification this reduces to . Hence

yields

which may be written as

The characteristic equation is .
(b) We solve the characteristic equation to find the eigenvalues. This cubic can be

factorised using the technique described in Chapter 7, Block 3, to give 

and so the characteristic equation may be written as

from which

The eigenvalues are .l = -2, -1, 1

l = -2, -1, 1

(l + 2)(l + 1)(l - 1) = 0

(l + 2)(l + 1)(l - 1)

l3
+ 2l2

- l - 2 = 0

l3
+ 2l2

- l - 2 = 0

-l3
- 2l2

+ l + 2 = 0

ƒ A - lI ƒ = 0

-l3
- 2l2

+ l + 2

 = (1 - l)[(-1 - l)(-2 - l) - 2] - 2[-1(-2 - l) - 3]

= (1 - l) ` -1 - l  1

2 -2 - l
 ̀ - 2 ` -1  1

3 -2 - l
 ̀†

1 - l  2  0

-1 -1 - l  1

3  2 -2 - l

 †

A - lI = P
1 - l  2  0

-1 -1 - l  1

3  2 -2 - l
Q

|A - lI|

Exercises

Calculate (i) the characteristic equation and
(ii) the eigenvalues of the system 
where A is given by

(a) (b)

(c) (d) a1  3

4  -1
ba7  -2

1  4
b

a -3  4

-4  5
ba5  6

2  1
b

AX = lX
1 Calculate (i) the characteristic equation and

(ii) the eigenvalues of the following 
matrices:

(a) P
1  -1  2

-3 -2  3

2  -1 1
Q

3 * 3
2
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4.4 Eigenvectors

We have studied the system

(1)

and determined the values of for which non-trivial solutions exist. These values of
are called eigenvalues of the system or, more simply, eigenvalues of A. For each

eigenvalue there is a non-trivial solution of the system. This solution is called an
eigenvector.

Example 4.7
Find the eigenvectors of

where

Solution
We seek solutions of that may be written as

(A - lI) X = 0

AX = lX

A = a4  1

3  2
b and X = ax

y
b

AX = lX

l

l

AX = lX

(b)

(c) P
2  1  2

-1 1  -1

8  3 0
Q

P
1  0  -1

3 1  4

0  2 2
Q (d)

(e) P
3  -2  1

2 -4  3

16  -4 1
Q

P
-2  6   2

0 3  4

3  -3 5
Q

Solutions to exercises

(a) (i) (ii) 

(b) (i) (ii) 

(c) (i) (ii)

(d) (i) (ii) 

(a) (i) 
(ii) l = -2, -1, 3

-l3
+ 7l + 6 = 02

l = - 213, 213l2
- 13 = 0

l = 5, 6l2
- 11l + 30 = 0

l = 1 (twice)l2
- 2l + 1 = 0

l = -1, 7l2
- 6l - 7 = 01 (b) (i) 

(ii) 

(c) (i) 
(ii) 

(d) (i) (ii) 

(e) (i) (ii) l = -4, 1, 3l3
- 13l + 12 = 0

l = 0, 1, 5l3
- 6l2

+ 5l = 0

l = -3, 2, 4
l3

- 3l2
- 10l + 24 = 0

l = - 23, 23, 4

l3
- 4l2

- 3l + 12 = 0
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The eigenvalues were found in Example 4.5 to be .
First we consider . The system equation becomes

Written as individual equations we have

Clearly there is only one equation, which is repeated. As long as the equa-
tion is satisfied. Thus there are an infinite number of solutions such as ,

; , ; and so on. Generally we write

for any number t. Thus the eigenvector corresponding to is

Note that the eigenvector has been determined to within an arbitrary scalar, t. Thus
there is an infinity of solutions corresponding to .

We now consider and seek solutions of the system equation

Written as individual equations we have

We note that the second equation is simply a multiple of the first so that in essence
there is only one equation. Solving gives for any x. So we write

, . Hence the eigenvector corresponding to is

X = ta1

1
b

l = 5y = tx = t
y = x -x + y = 0

 3x - 3y = 0
 -x + y = 0

 a -1  1

3 -3
b ax

y
b = a0

0
b

c a4  1

3  2
b - 5a1  0

0  1
b d ax

y
b = a0

0
b

 (A - lI) X = 0

l = 5
l = 1

 = ta 1

-3
b

 = a t

-3t
b

X = ax

y
b

l = 1

x = t, y = -3t

y = 15x = -5y = -3
x = 1

y = -3x

 3x + y = 0
 3x + y = 0

 a3  1

3  1
b ax

y
b = a0

0
b

c a4  1

3  2
b - a1  0

0  1
b d ax

y
b = a0

0
b

 (A - I) X = 0
 (A - lI) X = 0

l = 1
l = 1, 5
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Again the eigenvector has been determined to within an arbitrary scaling constant.
Sometimes the arbitrary scaling constants are not written down; it is understood

that they are there. In such a case we say the eigenvectors of the system are

Example 4.8
Determine the eigenvectors of

Solution
In Example 4.4 we found that there is only one eigenvalue, . We seek the solu-
tion of . Write down the equations that result from letting ,
firstly in matrix form and then as a single equation.

Find the infinite number of solutions.

Hence there is one eigenvector:

The concept of eigenvectors is easily extended to matrices of higher order.

Example 4.9
Determine the eigenvectors of

The eigenvalues were found in Example 4.6.

Solution
From Example 4.6 the eigenvalues are . We consider each eigenvalue
in turn.

P
1  2  0

-1 -1  1

3  2 -2Q P
x

y

z
Q = -2 P

x

y

z
Q

l = -2

l = -2, -1, 1

P
1  2  0

-1 -1  1

3  2 -2
Q P

x

y

z
Q = lP

x

y

z
Q

X = ta1

1
b

x = t, y = t

-x + y = 0

a -1  1

-1  1
b  ax

y
b = a0

0
b

l = 4(A - lI) X = 0
l = 4

a 3  1

-1  5
b ax

y
b = lax

y
b

X = a 1

-3
b     and    X = a1

1
b
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We note that the first and last rows are identical. So we have

Solving these equations gives

Hence the corresponding eigenvector is

We have

Thus we have

We note that the third equation can be derived from the first two equations: the first
equation minus the second produces the third. If you cannot spot this, the equations
should be solved by Gaussian elimination. In effect we have only two equations:

Solving these gives , , . The eigenvector is

X = tP
1

-1

1
Q

z = ty = - tx = t

 -x + z = 0
 2x + 2y = 0

 3x + 2y - z = 0
 -x + z = 0

 2x + 2y = 0

= P
0

0

0
Q  P

2  2  0

-1  0  1

3  2 -1
Q P

x

y

z
Q

= P
0

0

0
Q P

1  0  0

0  1  0

0  0  1
Q K P

x

y

z
Q J P

1  2  0

-1 -1  1

3  2 -2
Q +

l = -1

X = t• -

1

3

2
 

5

2
 

 μ

x = t, y = -
3
2t, z =

5
2t

 -x + y + z = 0
 3x + 2y = 0

= P
0

0

0
Q P

3  2  0

-1  1  1

3  2  0
Q P

x

y

z
Q

+ 2P
1  0  0

0  1  0

0  0  1
Q K P

x

y

zQ = P
0

0

0
QJ P

1  2  0

-1 -1  1

3  2 -2Q
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We have

Thus we have

From the first equation, ; putting into the other equations yields

Here the second equation can be derived from the first by multiplying the first by .
Solving, we have , . So the eigenvector is

X = tP
1

0

1
Q

z = tx = t
-3

  3x - 3z = 0
 -x + z = 0

y = 0y = 0

 3x + 2y - 3z = 0
 -x - 2y + z = 0

 2y = 0

= P
0

0

0
Q P

0  2  0

-1 -2  1

3  2 -3
Q P

x

y

z
Q

P
0

0

0
QP

1  0  0

0  1  0

0  0  1
Q K P

x

y

z
Q =  J P

1  2  0

-1 -1  1

3  2 -2
Q -

l = 1

Eigenvalues and eigenvectors are important in the analysis of vibrating systems and
consequently have a wide variety of applications in, for example, the aerospace and
motor industries. In Example 4.10 below we see how eigenvalues are related to the
possible angular frequencies of vibration. Further, the eigenvectors describe the pos-
sible patterns or modes of vibration.

Many computer algebra packages will calculate eigenvalues and eigenvectors of a
square matrix A. For example, in Maple, with the LinearAlgebra package
loaded, with(LinearAlgebra), the command Eigenvalues(A) will return
a vector containing the eigenvalues of A. The command Eigenvectors(A) will
return a vector containing the eigenvalues and also a matrix containing the corre-
sponding eigenvectors.

The Matlab instruction [V, D] = eig(A) returns two matrices V and D. The
columns of V are the eigenvectors of A. The matrix D is diagonal with the eigenval-
ues of A on the diagonal.

Example 4.10 Mechanical Engineering Eigenvalues and eigenvectors
for vibrating systems
When a spring is extended beyond its natural length by a distance x, the resulting
tension, T, in the spring is given by T = kx where k is called the spring constant.
This constant depends upon the material properties of the spring and its natural
length.
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Figure 4.1 shows two masses, m1 and m2, suspended from a fixed point and cou-
pled with two springs having spring constants k1 and k2. The diagram on the left
shows the masses at rest in their equilibrium positions. The diagram on the right
depicts an instant in which the masses are in motion. The displacements x1(t) and
x2(t) are measured from the equilibrium positions in the directions indicated.

Applying Newton’s second law of motion to each of the two masses in turn
leads to the following differential equations (see Chapters 20 and 22) that govern
their behaviour:

These can be written in matrix form as

or more concisely as AX = B where 

Using knowledge of the solution of differential equations it canand B = ±
d2x1

dt2

d2x2

dt2

≤ .

A = a -1k1 + k22/m1 k2/m1

k2/m2 -k2/m2
b , X = ax1

x2
b  

a -1k1 + k22 k2

k2 -k2
b ax1

x2
b = ±

m1
d2x1

dt2

m2
d2x2

dt2

≤

 k2x1 - k2x2 = m2
d2x2

dt2

 -1k1 + k22x1 + k2x2 = m1
d2x1

dt2

k1 = 12

k2 = 8

m1

m2

x1

x2Masses at rest

in equilibrium

Masses set in motion

= 1

= 1

642 Block 4 Eigenvalues and eigenvectors13

Figure 4.1
Two masses
coupled with
springs, in static
equilibrium (left)
and in motion
(right).
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be shown that the angular frequencies, , with which the system can oscillate are
found from where is an eigenvalue of A. The corresponding eigenvectors
are related to the possible modes of vibration.

Given that as indicated in Figure 4.1, we can
calculate the eigenvalues and eigenvectors using software as follows:

k1 = 12, k2 = 8 and m1 = m2 = 1,

lv2
= -l

v

Maple
> with(LinearAlgebra):
A:=Matrix([[-20, 8], [8,-8]]);
Eigenvectors(A);

which yields the following output

showing that there are two eigenvalues and with corresponding

eigenvectors and  respectively.a 1
2

1
ba -2

1
b

l2 = -4l1 = -24

c -24

-4
d , c -2 1

2

1 1
d

A J c -20 8

8 -8
d

Matlab
Using the Matlab commands given above we find

>> A = [-20 8; 8 -8]

A =

>> [V, D] =eig(A)

V =

D =

You should compare the output here with that from Maple above and be able to explain
why the eigenvectors are apparently different.

From these results we can deduce that the system can oscillate at angular frequencies

and 2.v = 2-l = 226

-24 0

0 -4

-0.8944 -0.4472

   0.4472 -0.8944

-20 8

8 -8
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End of block exercises

Determine which of the following systems
have non-trivial solutions:
(a)

(b)

(c)

(d)

(e)
3x - 4y = 0
-4x + 5y = 0
1 .4x - 0 .6y = 0
7x - 3y = 0
2x + 8y = 0
-x - 4y = 0
5x + 6y = 0
6x + 5y = 0
3x - 1 .5y = 0
2x - y = 0

1 Determine which of the following systems
have non-trivial solutions:
(a)

(b)

(c)

5x + 6y - 9z = 0
x - 3z = 0
x + 2y - z = 0
6x + 5y = 0
4x - y + 2z = 0
x + 3y - z = 0
2x + 2y - z = 0
x - y + z = 0
3x - 2y + 2z = 0

2

Exercises

Calculate the eigenvectors of the matrices
given in question 1 of the previous section.

1 Calculate the eigenvectors of the matrices
given in question 2 of the previous section.

2

Solutions to exercises

(a) (b)

(c) 

(d) 

(a) 

(b) tP
1

-5.0981

2.7321 Q , tP
1

0.0981

-0.7321Q , tP
1

-3

-3Q

tP
1

5

1Q , tP
1

12

5 Q , tP
1

0

1Q2

ta 1

-
1 + 213

3

b , ta 1
213 - 1

3

b

ta1

1
b , ta1

1
2

b

ta1

1
bta 1

-1
b , ta1

1
3

b1
(c)

(d)

(e) tP
1
19
6

-
2
3
Q , tP

1

4

6Q , tP
1

2

4Q

tP
1
4
9

-
1
3
Q , tP

1

0.6

-0.3Q , tP
1

1

0.5Q

tP
1
-

1
3

-
7
3
Q , tP

1

-2

1 Q , tP
1

-0.8

1.4 Q
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Solutions to exercises

(a), (c) and (d) have non-trivial solutions.

(b) and (c) have non-trivial solutions.

(a)

(b)

(c) a 1

-3
b a 1

-0.5
b

l = -3, 2

l2
+ l - 6 = 03

2

1 (a)

(b)

(a)

(b) P
1

1

-1Q , P
1

2

1Q , P
0

1

1Q
l = 2, 3, 45

a 1

-1
b

l = 34

The matrix A is defined by

(a) Determine the characteristic equation of A.
(b) Determine the eigenvalues of A.
(c) Determine the eigenvectors of A.
(d) Form a new matrix M whose columns are

the two eigenvectors of A. M is called a
modal matrix.

(e) Show that is a diagonal matrix, D,
with the eigenvalues of A on its leading
diagonal. D is called the spectral matrix
corresponding to the modal matrix M.

(a) Show that the matrix

has only one eigenvalue and determine it.
(b) Calculate the eigenvector of A.

A = a 5  2

-2  1
b

4

M- 1AM

A = a 3  2

-3 -4
b

3 The matrix H is given by

(a) Find the eigenvalues of H.
(b) Determine the eigenvectors of H.
(c) Form a new matrix M whose columns are

the three eigenvectors of H. M is called a
modal matrix.

(d) Show that is a diagonal matrix, D,
with the eigenvalues of H on its leading
diagonal. D is called the spectral matrix
corresponding to the modal matrix M.

M-1HM

H = P
4 -1  1

-2  4  0

-4  3  1
Q

5
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BLOCK 5
Iterative techniques

5.1 Introduction

So far we have met a number of techniques used for solving systems of linear
equations – Cramer’s rule (Block 1), the inverse matrix method (Block 2) and
Gaussian elimination (Block 3) are three such methods.

We now examine two techniques that provide approximate solutions to linear sys-
tems. In these, an initial guess of the solution is repeatedly improved, generating a
sequence of approximate solutions. With repeated application of the method, under
certain conditions, the approximate solutions approach the exact solution. Such
methods are known as iterative methods. The two iterative methods we look at are
Jacobi’s method and the Gauss–Seidel method.

5.2 Jacobi’s method

We illustrate the method with examples.

Example 5.1
Solve

using Jacobi’s iterative method.

Solution
We rewrite the equations so that x and y are the subjects. This yields

(1)

(2)

We now guess a solution. In practice an educated guess may be possible if realistic
estimates of x and y are known. Suppose we guess , . To show this is
our initial guess and not the exact solution we write , .

We improve our initial guess by substituting , into the right-hand
side of equations (1) and (2). The values of x and y so obtained are labelled and .y1x1

y0 = -4x0 = 0
y0 = -4x0 = 0

y = -4x = 0

  y = -

x

4
 -  

11

4

  x =

2

3
y + 3

  x + 4y = -11
  3x - 2y = 9
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5.2 Jacobi’s method 647 13

Hence

At this stage we have made one application, or iteration, of Jacobi’s method. To
obtain the next approximate solution, , , we substitute and into the right-
hand side of equations (1) and (2). This produces

At this stage two iterations have been performed. We perform another iteration to
obtain and .

Similarly

 = 0.9722

 =

2

3
 (-3.0417) + 3

  x4 =

2

3
y3 + 3

 = -3.0417

 = -  
(1.1667)

4
 -  

11

4

  y3 = -  
x2

4
 -  

11

4

 = 1.1111

 =

2

3
 (-2.8333) + 3

  x3 =

2

3
 y2 + 3

y3x3

 = -2.8333

 = -  
(0.3333)

4
-

11

4

  y2 = -  
x1

4
-

11

4

 = 1.1667

 =

2

3
 (-2.7500) + 3

  x2 =

2

3
y1 + 3

y1x1y2x2

 = -2.7500

 = -  
0

4
-

11

4

  y1 = -  
x0

4
-

11

4

 = 0.3333

 =

2

3
(-4) + 3

  x1 =

2

3
y0 + 3
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648 Block 5 Iterative techniques13

The iterations can be continued. Table 5.1 summarises the results of successive
iterations.

 = -3.0278

 = -  
(1.1111)

4
 -  

11

4

  y4 = -

x3

4
 -  

11

4

Table 5.1
Iteration no. (n)

0 0.0000
1 0.3333
2 1.1667
3 1.1111
4 0.9722
5 0.9815
6 1.0046
7 1.0031
8 0.9992
9 0.9995

10 1.0001
11 1.0001
12 1.0000 -3.0000

-3.0000
-2.9999
-2.9998
-3.0008
-3.0012
-2.9954
-2.9931
-3.0278
-3.0417
-2.8333
-2.7500
-4.0000

ynxn

The value of seems to converge to 1 as n increases; the value of seems to con-
verge to as n increases. It is easy to verify that the exact solution of the given
equations is , . So Jacobi’s method has produced a sequence of
approximate solutions that has converged to the exact solution.

Example 5.2
Find an approximate solution to

using Jacobi’s method. Perform five iterations and take , as your
initial guess.

Solution
The equations are rearranged to make x and y the subjects.

The initial guess is , . Then

  x1 = -0.25y0 + 3

y0 = 3x0 = 0

 0.4x + 3.2 y =

x = -0.25y + 3

y0 = 3x0 = 0

 -2x + 5y = 16
  4x + y = 12

y = -3x = 1
-3

ynxn
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5.2 Jacobi’s method 649 13

We now find and .

Continuing in this way we find

If the iterations are continued then approaches 2 and approaches 4, the exact
solution.

Clearly, this sort of approach is simple to program, and iterative techniques are best
implemented on a computer. When writing a program a test is incorporated so that
after each iteration a check for convergence is made by comparing successive esti-
mates. The method may not converge, and, even if it does, convergence may be very
slow. Other methods with improved rates of convergence are available such as the
Gauss–Seidel method, which is covered in Section 5.3.

ynxn

2.003, 3.99 , y5 = x5 =

1.98, 3.99 , y4 = x4 =

1.975, 4.08 , y3 = x3 =

0.4x1 + 3.2 = 0.4(2.25) + 3.2 = 4.1

 y2 =

-0.25y1 + 3 = -0.25(3.2) + 3 = 2.2

 x2 =

y2x2

0.4x0 + 3.2 = 3.2 y1 =

 = 2.25
 = -0.25(3) + 3

Exercises

Use five iterations of Jacobi’s method to find
approximate solutions of each system of
equations:
(a)

Take , .
(b)

Take , .y0 = 7x0 = 0
x - 3y = -26
2x + y = 11

y0 = 0x0 = 3
2x - 5y = 20
3x - y = 17

1 (c)

Take , .
(d)

Take , .
(e)

Take .x0 = -3, y0 = 9
x + 5y = 50
-3x + 2y = 37

y0 = 5x0 = 1
-3x + 7y = 40
4x + y = 19

y0 = -2x0 = -4
2x - 7y = 16
-3x + y = 14
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Solutions to exercises

(a)1 Iteration no. (n)

0 3.0000 0.0000
1 5.6667
2 4.7333
3 5.0889
4 4.9644
5 5.0119 -2.0142

-1.9644
-2.1067
-1.7333
-2.8000

ynxn

Iteration no. (n)

0 0.0000 7.0000
1 2.0000 8.6667
2 1.1667 9.3333
3 0.8333 9.0556
4 0.9722 8.9444
5 1.0278 8.9907

ynxn

Iteration no. (n)

0
1
2
3
4
5 -3.9948-5.9940

-3.9819-5.9819
-3.9456-5.9365
-3.8095-5.8095
-3.4286-5.3333
-2.0000-4.0000

ynxn

Iteration no. (n)

0 1.0000 5.0000
1 3.5000 6.1429
2 3.2143 7.2143
3 2.9464 7.0918
4 2.9770 6.9770
5 3.0057 6.9902

ynxn

Iteration no. (n)

0 9.0000
1 10.6000
2 11.2667
3 11.0533
4 10.9644
5 10.9929-5.0237

-4.9644
-4.8222
-5.2667
-6.3333
-3.0000

ynxn(b)

(c)

(d)

(e)

5.3 Gauss–Seidel method

The Gauss–Seidel method is very similar to Jacobi’s method. The difference comes
in the calculation of the y values. When calculating the y values the most recent x
value is used. Example 5.3 illustrates this.

Example 5.3
Use the Gauss–Seidel method to find an approximate solution to the system given in
Example 5.1. Perform five iterations and take , .

Solution
We arrange the equations so that x and y are the subjects:

  y = -

x

4
 -  2.75

  x =

2

3
y + 3

y0 = -4x0 = 0
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135.3 Gauss–Seidel method 651

We make an initial guess, say , . Now we calculate .

Up to this point, the method is identical to Jacobi’s method.
When calculating the most recent value of x, that is , is used.

This completes the first iteration. We are now ready to calculate and .

When calculating we use the most recent value of x, that is .

This completes the second iteration. The process is repeated.

Table 5.2 summarises some further iterations.

 = -2.9954

 = -

(0.9815)

4
 -  2.75

  y3 = -

x3

4
 -  2.75

 = 0.9815

 =

2

3
(-3.0278) + 3

 x3 =

2

3
y2 + 3

 = -3.0278

 = -

(1.1111)

4
 -  2.75

 y2 = -

x2

4
 -  2.75

x2y2

 = 1.1111

 =

2

3
(-2.8333) + 3

 x2 =

2

3
y1 + 3

y2x2

 = -2.8333

 = -

(0.3333)

4
 -  2.75

  y1 = -

x1

4
 -  2.75

x1y1

 = 0.3333

 =

2

3
 (-4) + 3

  x1 =

2

3
y0 + 3

x1y0 = -4x0 = 0
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Note that the Gauss–Seidel method converges more rapidly than Jacobi’s method
(see Table 5.1). This is because the Gauss–Seidel method uses the most recent value
of x in the calculation of the y values.

Example 5.4
Use the Gauss–Seidel method to find an approximate solution of

Perform five iterations taking , .

Solution
The equations are rearranged to make x and y the subjects.

The initial guess is , . So

and

Continuing in this way we find

-2.4481, 3.5260 , y5 = x5 =

-2.6384, 3.4308 , y4 = x4 =

-2.1309, 3.6846 , y3 = x3 =

 0.5x2 + 4.75 = 3.0078 y2 =

-0.75y1 + 0.125 = -3.4844 x2 =

0.5x1 + 4.75 = 4.8125 y1 =

 = 0.125
 x1 = -0.75y0 + 0.125

y0 = 0x0 = 0

0.5x + 4.75 y =

-0.75y + 0.125 x =

y0 = 0x0 = 0

  x - 2y = -9.5
 4x + 3y = 0.5

Iteration no. (n)

0 0.0000
1 0.3333
2 1.1111
3 0.9815
4 1.0031
5 0.9995
6 1.0001 -3.0000

-2.9999
-3.0008
-2.9954
-3.0278
-2.8333
-4.0000

ynxn
Table 5.2
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135.3 Gauss–Seidel method 653

Unfortunately, as with all iterative methods, convergence is not guaranteed. How-
ever, it can be shown that, if the matrix of coefficients of the equations is diagonally
dominant (i.e. the modulus of each diagonal element is greater than the sum of the
moduli of the other elements in its row), then the Gauss–Seidel method will con-
verge. For further details you should consult a text on numerical methods.

Exercises

Find approximate solutions to the linear
systems in question 1 of Section 5.2 using five
iterations of the Gauss–Seidel method.

1

Iteration no. (n)

0 3.0000 0.0000
1 5.6667
2 5.0889
3 5.0119
4 5.0016
5 5.0002 -1.9999

-1.9994
-1.9953
-1.9644
-1.7333

ynxn

Iteration no. (n)

0 0.0000 7.0000
1 2.0000 9.3333
2 0.8333 8.9444
3 1.0278 9.0093
4 0.9954 8.9985
5 1.0008 9.0003

ynxn

Iteration no. (n)

0
1
2
3
4
5 -4.0000-5.9999

-3.9998-5.9994
-3.9983-5.9940
-3.9819-5.9365
-3.8095-5.3333
-2.0000-4.0000

ynxn

Iteration no. (n)

0 1.0000 5.0000
1 3.5000 7.2143
2 2.9464 6.9770
3 3.0057 7.0025
4 2.9994 6.9997
5 3.0000 7.0000

ynxn

Iteration no. (n)

0 9.0000
1 11.2667
2 10.9644
3 11.0047
4 10.9994
5 11.0001-5.0004

-4.9668
-5.0237
-4.8222
-6.3333
-3.0000

ynxn

Solutions to exercises

(a)1

(b) (e)

(c)

(d)
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End of block exercises

Use five iterations of Jacobi’s method to find
approximate solutions of the following system:

Take and .

Use five iterations of the Gauss–Seidel method
to find approximate solutions to the system

Take , .y0 = -1x0 = 2

  2x + 5y = -7
 4x - 3y = 25

2

y0 = 3x0 = -1

  2x + 5y = 19
 -4x + y = 17

1 Consider the system

(a) Use three iterations of Jacobi’s method to
find an approximate solution to the given
system. Take , , .

(b) Repeat (a) using the Gauss–Seidel method.
z0 = 0y0 = 2x0 = 0

  3x - y + 6z = -6
  2x + 5y - z = 18

 4x + y + z = 6

3

Solutions to exercises

1 (a)3Iteration no. (n)

0 3.0000
1 4.2000
2 5.2000
3 5.0800
4 4.9800
5 4.9920-3.0050

-2.9800
-2.9500
-3.2000
-3.5000
-1.0000

ynxn

Iteration no. (n)

0 2.0000
1 5.5000
2 3.5500
3 4.1350
4 3.9595
5 4.0122 -3.0049

-2.9838
-3.0540
-2.8200
-3.6000
-1.0000

ynxn2

Iteration no. (n)

0 0.0000 2.0000 0.0000
1 1.0000 3.6000
2 0.7667 3.0667
3 0.9583 3.1133 -0.8722

-0.9000
-0.6667

znynxn

Iteration no. (n)

0 0.0000 2.0000 0.0000
1 1.0000 3.2000
2 0.9417 3.0300
3 0.9840 3.0133 -0.9898

-0.9658
-0.9667

znynxn(b)
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BLOCK 6
Electrical networks

6.1 Introduction

In this block we consider electrical networks comprising known resistors and known
voltage sources. We wish to determine the current in various parts of the network.

The network can be modelled by a set of simultaneous equations, which may be
solved by matrix methods. In order to formulate the simultaneous equations we
introduce the idea of a mesh current and a branch current.

6.2 Mesh and branch currents

Figure 6.1 shows an example of an electrical network.

E1

E2

R1

R2

R3

�

�

� �

A B

E

F C

D

I1

I2

Figure 6.1
An electrical
network with mesh
currents marked.

A mesh is a loop that does not contain any smaller loops. Figure 6.1 contains two
meshes: ABCF and CDEF. Note, for example, that ABCDEF is not a mesh.

We introduce mesh currents, and , as shown in Figure 6.1. Mesh currents are
usually denoted as running clockwise although in reality they may run anticlockwise.
Upon calculation this would be denoted by the current being negative.

The net current in a particular branch is called the branch current. The branch
currents are found by combining the mesh currents. For example, the current from C
to F is .I1 - I2

I2I1
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The aim of analysing the network is to determine the mesh currents, and .
Once these are known the branch currents can easily be found.

Extensive use is made of Kirchhoff’s voltage law, which states that the algebraic
sum of voltages around a mesh is zero: that is, the sum of the voltage drops equals
the sum of the voltage rises.

Example 6.1 Electrical Engineering – Mesh currents
Figure 6.1 shows a circuit with two meshes, ABCF and CDEF. The values of volt-
ages , and resistances , and are known. The unknowns are the values of
the currents and .
(a) By applying Kirchhoff’s voltage law to each mesh formulate two equations in

the unknowns and .
(b) Given , , , and , find and .
(c) Find the branch current running from F to C.

Solution
(a) Kirchhoff’s voltage law states that the algebraic sum of voltages around a mesh

is zero: that is, the sum of the voltage drops equals the sum of the voltage rises.
Recall that the voltage drop, V volts, across a resistor of resistance R ohms
carrying I amps is given by .

Consider the mesh ABCF. Starting at A and working clockwise around the
mesh we equate voltage drops to voltage rises.

This may be written as

(1)

Consider now the mesh CDEF. Applying Kirchhoff’s voltage law we obtain

which is then written as

(2)

Equations (1) and (2) are written in matrix form as

(b) Substituting in the values of , , , and we get

These equations can be solved by any of the techniques described in this
chapter. You should verify that , .

(c) Consider the branch FC. The net current in FC is .I2 - I1 = 0

I2 = 3I1 = 3

a 5 -4

-4  6
b a I1

I2
b = a3

6
b

R3R2R1E2E1

aR1 + R2 -R2

-R2  R2 + R3
b a I1

I2
b = aE1

E2
b

-I1R2 + I2(R2 + R3) = E2

(I2 - I1)R2 + I2R3 = E2

I1(R1 + R2) - I2R2 = E1

R1I1 + (I1 - I2)R2 = E1

V = IR

I2I1R3 = 2R2 = 4R1 = 1E2 = 6E1 = 3
I2I1

I2I1

R3R2R1E2E1

I2I1
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Example 6.2 Electrical Engineering – Mesh currents
Determine the mesh currents , and in Figure 6.2 given , ,

, , , and .R5 = 2R4 = 6 R3 = 1R2 = 5R1 = 3
E2 = 15E1 = 5I3I2I1

R1

R2

R5

R3 R4E2

�

�

E1
� � BA

D

FGH

E C

I1

I2 I3

Figure 6.2
Electrical network
for Example 6.2.

R1

R2

E1
� � BA

D
E C

I1

I2 I3

Figure 6.3
Mesh ABCDE.

Solution
We use Kirchhoff’s voltage law. Recall that the voltage drop, V, across a resistor of
resistance R ohms carrying a current I amps is given by .

Consider the mesh ABCDE. For clarity this is shown in Figure 6.3.
V = IR

Starting from A and working clockwise around the mesh we apply Kirchhoff’s
voltage law, equating the voltage rises to the voltage drops. We obtain

This is rewritten as

(3)

Consider the mesh EDGH, as shown in Figure 6.4.

I1(R1 + R2) - I2R2 = E1

I1R1 + (I1 - I2)R2 = E1
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Starting at E and working clockwise we equate the voltage drops and the voltage
rises to obtain

which is then rewritten as

(4)

Finally we look at mesh DCFG, as shown in Figure 6.5.

-I1R2 + I2(R2 + R3 + R5) - I3R3 = E2

(I2 - I1)R2 + (I2 - I3)R3 + I2R5 = E2

R2

R5

R3E2

�

�

D

GH

E

I1

I2

I3

Figure 6.4
Mesh EDGH.

R3 R4

D

FG

C

I1

I3
I2

Figure 6.5
Mesh DCFG.

Starting at D and working clockwise we have

which is written as

(5)

The equations (3), (4) and (5) are written in matrix form as

P
R1 + R2 -R2  0

-R2  R2 + R3 + R5 -R3

0 -R3  R3 + R4
Q  P

I1

I2

I3
Q = P

E1

E2

0
Q

-I2R3 + I3(R3 + R4) = 0

I3R4 + (I3 - I2)R3 = 0

658 Block 6 Electrical networks
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Substituting in the given values we have

The system may be solved using one of the methods explained in this chapter. We
find

Example 6.3 Electrical Engineering – Mesh currents
Figure 6.6 shows an electrical network with the mesh currents , , and marked
in meshes 1, 2, 3 and 4 respectively. The resistances , , , and and the
voltage sources , , and are known.E4E3E2E1

R5R4R3R2R1

I4I3I2I1

I1 = 3.0189, I2 = 3.8302, I3 = 0.5472

P
8 -5  0

-5  8 -1

0 -1  7
Q  P

I1

I2

I3
Q = P

5

15

0
Q

R1

R4 R3

R2

R5

E2

�

�

E1
� �

E4
� �E3

� �

CBA

D
E

F

IHG

I1 I2

I3 I4

Figure 6.6
Electrical network
for Example 6.3.

(a) Formulate a matrix equation for the unknowns , , and .
(b) Given , , , , , , , 

and , solve for , , and .
(c) State the value of the current from E to H.

Solution
(a) We apply Kirchhoff’s voltage law to each of the meshes.

Mesh 1 (ABED)
We equate voltage drops to voltage rises.

which is written as

(6)I1(R1 + R4) - I3R4= E2 

(I1 - I3)R4 + I1R1 = E2

I4I3I2I1E4 = 5
E3 = 5 E2 = 10E1 = 6R5 = 4R4 = 7R3 = 1R2 = 4R1 = 3

I4I3I2I1
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Mesh 2 (BCFE)

which is written as

(7)

Mesh 3 (DEHG)

which is written as

(8)

Mesh 4 (EFIH)

which is written as

(9)

Equations (6), (7), (8) and (9) are written in matrix form as

(b) Substituting in the given values, the matrix equation becomes

The system is solved to give

(c) The current running from E to H is

 = 0.0587 
  I3 - I4 = 5.6024 - 5.5437

I3 - I4 

I1 = 4.9217, I2 = 0.3087, I3 = 5.6024, I4 = 5.5437

= §
10

-4

5

5

¥§
10  0 -7  0

0  5  0 -1

-7  0  11 -4

0 -1 -4  5

¥  §
I1

I2

I3

I4

¥

= §
E2

E1 - E2

E3

E4

¥§
R1 + R4  0 -R4  0

0  R2 + R3  0 -R3

-R4  0  R4 + R5 -R5

0 -R3 -R5  R3 + R5

¥  §
I1

I2

I3

I4

¥

-I2R3 - I3R5 + I4(R3 + R5) = E4

(I4 -  I3)R5 + (I4 -  I2)R3= E4 

-I1R4 + I3(R4 + R5) - I4R5 = E3

(I3 - I1)R4 + (I3 - I4)R5 = E3

I2(R2 + R3) - I4R3 = E1 - E2

I2R2 + (I2 - I4)R3 + E2= E1 

660 Block 6 Electrical networks
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Exercises

Figure 6.7 shows a circuit with two meshes.1

(b) Calculate the mesh currents given ,
, , , , 

and .
(c) Calculate the current in the branch XY.

(a) Formulate a matrix equation for the mesh
currents , , and as shown in
Figure 6.10.

I4I3I2I1

4

R4 = 7
R3 = 2 R2 = 4R1 = 5E3 = 6E2 = 4
E1 = 5

R1 R2

E1
� � E2

� �

Y

X

I1 I2

Figure 6.7

(a) Formulate a matrix equation for and .
(b) Solve for and given , ,

and .
(c) Calculate the current in the branch XY.

Figure 6.8 shows a circuit with three meshes.2

R2 = 10R1 = 6
E2 = 7E1 = 3I2I1

I2I1

R2

R3

R1 R4E1

�

�
E2

�

�

X

Y

I2 I3I1

Figure 6.8

(a) Formulate a matrix equation for the mesh
currents , and .

(b) Given , , , ,
and , find , and .

(c) Calculate the current in the branch XY.

(a) Formulate a matrix equation for the
mesh currents , and as shown in
Figure 6.9.

I3I2I1

3

I3I2I1R4 = 6R3 = 2
R2 = 1R1 = 3E2 = 5E1 = 4

I3I2I1

R3

R1 R2

R4

E3� �

E2
� �

E1
� �

X
Y

I3I2

I1

Figure 6.9

R1 R2

R5

E1

�

� E2

�

�

YX

I1 I2

I4

R3

R4

E3

�

�I3

Figure 6.10
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(b) Calculate the mesh currents given ,
, , , ,
, and .

(c) Calculate the current in the branch XY.

Figure 6.11 shows a circuit with four meshes.5

R5 = 6R4 = 1R3 = 10
R2 = 7R1 = 6E3 = 10E2 = 2

E1 = 5 (a) Formulate a matrix equation for the mesh
currents , , and .

(b) Given , , , ,
, , , , 

and , find the mesh currents.
(c) Calculate the current in the branch XY.

R6 = 9
R5 = 7R4 = 1R3 = 2R2 = 4R1 = 1

E4 = 12E3 = 6E2 = 5E1 = 5
I4I3I2I1

R1 R2 R3

E2
� �E1

� �

R4 R5 R6

E4
� �E3

� �

X

Y

I1

I3

I2

I4

Figure 6.11

Solutions to exercises

(a)

(b)

(c) , that is a current of from Y to X.

(a)

= £ E1

E2 - E1

-E2

≥
£R1 0 0

0 R2 + R3 0

0 0 R4

≥ £  

I1

I2

I3

≥2

21
30-  

21
30

I1 =
5
3, I2 =

71
30

= aE1

E2
b

aR1 + R2 -R2

-R2 R2
b  a I1

I2
b1

(b)

(c)

(a)

(b) , , 

(c) I3 - I1 = 5

I3 = 6.2222I2 = 6.7937I1 = -1.2222

= £E1 - E2

E2

E3

≥
£R1 + R2 + R3 0 -R3

0 R4 -R4

-R3 -R4 R3 + R4

≥ £  

I1

I2

I3

≥
3

I2 - I3 =
7
6

I1 =
4
3, I2 =

1
3, I3 = -

5
6
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136.2 Mesh and branch currents 663

(a)

(b) , , 
, 

(c) , that is a current of
10.5 from Y to X.
I3 - I1 = -10.5

I4 = 1.1047I3 = -10.0000
I2 = 0.7674I1 = 0.5000

= §
E1 - E2

E2

-E3

E3

¥

§
R1 0 0 0

0 R2 + R3 0 -R3

0 0 R4 0

0 -R3 0 R3 + R5

¥ §
I1

I2

I3

I4

¥4 (a)

(b) , , 
, 

(c) I1 - I2 = 0.3571
I4 = 1.7468I3 = 2.2785

I2 = -2.7857I1 = -2.4286

= §
E1 - E3

E2 - E4

E3

E4

¥

§
R1 + R2 -R2 0 0

-R2 R2 + R3 0 0

0 0 R4 + R5 -R5

0 0 -R5 R5 + R6

¥§
I1

I2

I3

I4

¥5

End of block exercises

Figure 6.12 shows an electric circuit with
mesh currents and marked.
(a) Determine a matrix equation for 

and .
(b) Solve for and given , 

and .
(c) Calculate the current in branch XY.

R2 = 4
R1 = 3E1 = 12I2I1

I2

I1

I2I1

1

(b) Solve for and given , ,
, and .

(c) Calculate the current in branch XY.

Figure 6.14 shows an electric circuit with
mesh currents , and marked.
(a) Determine a matrix equation for , 

and .
(b) Solve for , and given ,

, , , 
and .

(c) Calculate the current in branch XY.
R4 = 1

R3 = 2 R2 = 3R1 = 2E2 = 12
E1 = 6I3I2I1

I3

I2I1

I3I2I1

3

R3 = 4R2 = 3R1 = 4
E2 = 6E1 = 12I2I1

R1 R2E1

�

�

X

Y

I1 I2

Figure 6.12

Figure 6.13 shows an electric circuit with
mesh currents and marked.
(a) Determine a matrix equation for 

and .I2

I1

I2I1

2

R1

R3R2

E1

�

�
E2

�

�

X

Y

I1 I2

Figure 6.13
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Figure 6.15 shows an electric circuit with
mesh currents , , and marked.
(a) Determine a matrix equation for , , 

and .
(b) Solve for , , and given ,

, , , ,
, , and .

(c) Calculate the current in branch XY.
R5 = 1R4 = 5R3 = 4R2 = 5

R1 = 3E4 = 10E3 = 6E2 = 12
E1 = 6I4I3I2I1

I4

I3I2I1

I4I3I2I1

4

R1

R2

R3 R4

E1
� � E2

� �

I2 I3

I1

X

Y

Figure 6.14

R1

R5

R2

R4R3

E1

�

�

E2

�

�

E3 ��
E4 ��

X Y

I1 I2

I3 I4

Figure 6.15

Solutions to exercises

(a)

(b) , 
(c)

(a)

(b) , 
(c)

(a)

= £E1 + E2

-E1

-E2

≥
£R1 0 0

0 R2 + R3 -R3

0 -R3 R3 + R4

≥  £I1

I2

I3

≥3

I1 - I2 = 1.8
I2 = -0.15I1 = 1.65

= a E1

E2 - E1
b

aR1 + R2 -R2

-R2 R2 + R3
b  a I1

I2
b2

I1 - I2 = 7
I2 = -3I1 = 4

aR1 0

0 R2
b a I1

I2
b = a E1

-E1
b1

(b) , , 

(c)

(a)

(b) , , ,

(c) , that is a current of
1.2101 from Y to X.
I4 - I2 = -1.2101
I4 = 6.5445

I3 = 4.3025I2 = 7.7546I1 = 5.5966

= §
E1

E2

E3

E4

¥

§
R1 + R2 -R2 0 0

-R2 R2 + R5 0 -R5

0 0 R3 + R4 -R4

0 -R5 -R4 R4 + R5

¥ §
I1

I2

I3

I4

¥4

I2 - I2 =
30
11

I3 = -
72
11I2 = -

42
11I1 = 9
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13End of chapter exercises 665

End of chapter exercises

Determine which of the following systems
have a non-trivial solution:
(a)

(b)

(c)

(d)

(e)

Determine which of the following systems
have a non-trivial solution:
(a)

(b)

(c)

(d)

(e)

Figure C13.1 illustrates an electrical network
with two mesh currents, and , shown.
(a) Determine a matrix equation for and .I2I1

I2I1

3

11x + 2y = 0
4x + z = 0
-x + 2y - 3z = 0
2x - 2y + 3z = 0
x + y + 2z = 0
3x - y - z = 0
6x - 3y + z = 0
9x - 10y - z = 0
x + 4y + 3z = 0
7x - 4y + 3z = 0
2x - 3y + 2z = 0
3x + 2y - z = 0
5x + 5z = 0
x + 2y - z = 0
2x - y + 3z = 0

2

2x - 6y = 0
-x + 4y = 0

3x - 4y = 0

x

2
-

2y

3
= 0

-3x + 9y = 0
x - 3y = 0
x + 9y = 0
9x - y = 0
4x + 6y = 0
2x + 3y = 0

1 (b) Calculate and given , ,
, and .

(c) Calculate the current in the branch XY.

Figure C13.2 illustrates an electrical network
with mesh currents , and shown.
(a) Determine a matrix equation for , 

and .
(b) Calculate , and given ,

, , , and
.

(c) Calculate the current in the branch XY.
R3 = 10

R2 = 5R1 = 15E3 = 12E2 = 6
E1 = 5I3I2I1

I3

I2I1

I3I2I1

4

R3 = 5R2 = 6R1 = 10
E2 = 5E1 = 5I2I1

R1

R3

R2

E1

�

�

E2

�

�

X

Y

I1 I2

Figure C13.1

R2

R1

R3

E3

�

�

E1
� �

E2
� �

I1

I3

I2

X Y

Figure C13.2

Figure C13.3 illustrates an electrical network
with mesh currents , , and shown.
(a) Determine a matrix equation for , , 

and .
(b) Calculate , , and given ,

, and
.

(c) Calculate the current in the branch XY.
R3 = R4 = R5 = 2

R1 = R2 = 3 E2 = 12
E1 = 6I4I3I2I1

I4

I3I2I1

I4I3I2I1

5

R5R4R3

R1 R2

E1
� � E2

� �

I1 I2

I3 I4

Y
X

Figure C13.3
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Solve the following simultaneous equations
using Cramer’s rule:
(a)

(b)

(c)

Solve the following simultaneous equations
using Cramer’s rule:
(a)

(b)

(c)

Solve the following simultaneous equations
using the inverse matrix method:
(a)

(b)

(c)

Solve the following simultaneous equations
using the inverse matrix method:
(a)

(b)

(c)

Given that

1

21
 §

4  51  49 -28

-9 -57 -63  42

-6 -66 -63  42

4  9  7 -7

¥
10

r -  4s -  2t = -5
-2r -  s + 2t = -0 .2
r + s -  t = 0 .5
3I1 - 3I2 + 4I3 = 0.5
4I1 + 3I2 + 2I3 = 18
2I1 + I2 - I3 = 10
2x + 3y - z = -3
2x - y + 2z = 8
x + y - z = -1

9

a +

b

2
= 0.5

2a + 3b = 5

3r1 + r2 = 23
r1 + 2r2 = 13.5
2x - y = 7
x + 2y = 11

8

a + 4b - g = -3
2a + 3b + 2g = 2
a + 2b + g = 1
a + b - 5c = 4
a - 2b + 3c = 2
3a - b + c = 4
2i1 - i3 = 3
i1 + i2 + 2i3 = 7
i1 + 2i2 - i3 = 7

7

2x - 5y = -9
x + 3y = 1
-x + 3y = 0
2x - y = 5
x + y = 1
2x - y = 5

6 is the inverse of

solve the following systems of equations:
(a)

(b)

State which of the following matrices are in
echelon form:

(a)

(b)

(c)

(d)

(e)

Use Gaussian elimination to solve the following
systems of equations:
(a)

(b)

(c)

2x - 7y = -11

-

x

2
+ 3y = 4

a

2
+

b

3
= 6

4a - b = 4

2i1 - 5i2 = 16

3i1 - 2i2 = 13

12

a0 0 1 2 0 -4

0 0 0 0 1 3
b

£1 0 1 -3

0 0 0 0

0 1 4 3

≥

£1 2 3 1 4

0 0 1 -1 0

0 0 0 1 2

≥

£1 1 1 0

0 0 0 1

0 0 0 0

≥
a1 0 1

0 1 1
b

11

3a - b + 4g + 6d = 1
5a + 4g + d = 15
a + 2b - g + 2d = -2
2a - 2b + 3g - 2d = 11

5w + 4y + z = 2
2w - 2x + 3y - 2z = -11
w + 2x - y + 2z = 11
3w - x + 4y + 6z = 19

§
3 -1  4  6

1  2 -1  2

2 -2  3 -2

5  0  4  1

¥

666 Block 6 Electrical networks

M13_CROF5939_04_SE_C13.QXD  11/28/18  7:42 PM  Page 666



13End of chapter exercises 667

Use Gaussian elimination to solve the
following sets of equations:
(a)

(b)

(c)

Use Jacobi’s method to find the solution of

Take , and perform five
iterations.

Solve the equations in question 14 using the
Gauss–Seidel method; take , 
and perform five iterations.

Use Jacobi’s method to solve

Take , and perform five
iterations.

Solve the equations of question 16 using the
Gauss–Seidel method. Use the same initial
values and perform five iterations.

17

y0 = 1.5x0 = -1

  3x + 5y = 7.9
  4x - y = -9.4

16

y0 = 2 x0 = -2
15

y0 = 2x0 = -2

  3x + 4y = 1
 -2x + y = 8.5

14

2i1 - 3i3 = -9
-3i1 + 2i2 + i3 = 10
i1 + 2i2 - 3i3 = 2

3b - 7g = -37

a

2
+ b + 2g = 6

2a - b + g = 11

-3x - y + 4z = -17
5x + 7y + 3z = 10
2x - y - z = 3

13 The matrix, A, is defined by

(a) Calculate the characteristic equation of A.
(b) Calculate the eigenvalues of A.
(c) Calculate the eigenvectors of A.

(a) Show that the matrix

has only one eigenvalue.
(b) Find the eigenvector of the matrix.

The matrix A is defined by

(a) Calculate the eigenvalues of A.
(b) Calculate the eigenvectors of A.

The matrix B is defined by

(a) Calculate the eigenvalues of B.
(b) Calculate the eigenvectors of B.

B = £ -3 -1  0

5  2  1

-5  5 -4

≥
21

A = £3  2 -2

0 -4  4

7  2 -2

≥
20

a5 -1

4  1
b

19

A = a 3  7

-1 -5
b

18

Solutions to exercises

(a), (c) and (d) have non-trivial solutions.

(a), (b) and (e) have non-trivial solutions.

(a)

(b) , 

(c) 0.1786 from Y to X

I2 = 0.7857I1 = 0.6071

aR1 + R2 -R2

-R2 R2 + R3
b a I1

I2
b = aE1

E2
b3

2

1
(a)

(b) , , 
(c) 0.2

I3 = 1.7I2 = 1.1I1 = 1.5

= £ E1

-E2

E2 + E3

≥
£R1 + R2 -R1 –R2

-R1 R1 0

-R2 0 R2 + R3

≥ £  

I1

I2

I3

≥4
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(a)

(b) , , , 
(c) 9

(a) , 
(b) , 
(c) , 

(a) , , 
(b) , , 
(c) , , 

(a) , 
(b) , 
(c) , 

(a) , , 
(b) , , 
(c) , , 

(a) , , , 
(b) , , , 

(a), (b), (c) and (e) are in echelon form.

(a) , 
(b) , 
(c) , 

(a) , , 
(b) , , 
(c) , , 

14

i3 = 5i2 = 7i1 = 3
g = 4b = -3a = 2

z = -3y = 2x = 113

y = 1x = -2
b = 12a = 4
i2 = -2i1 = 312

11

d = -2g = 3b = 2a = 1
z = 4y = -3x = -1w = 210

t = 1.5s = 0.8r = 1.2
I3 = -1I2 = 2I1 = 3.5

z = 1y = -2x = 29

b = 2a = -0.5
r2 = 3.5r1 = 6.5

y = 3x = 58

g = 2b = 0a = -1
c = -1b = -2a = 1

i3 = 1i2 = 3i1 = 27

y = 1x = -2
y = 1x = 3
y = -1x = 26

I4 = 5I3 = 4I2 = -4I1 = -2

= §
-E1

-E2

E1

E2

¥

§
R1 0 0 0

0 R2 0 0

0 0 R3 + R4 -R4

0 0 -R4 R4 + R5

¥ §
I1

I2

I3

I4

¥5

15

n

0 2
1 1.75
2 2.6875
3 2.7813
4 2.4297
5 2.3496-3.0351

-2.8594
-2.9063
-3.375
-3.25
-2

ynxn

The exact answer is , .y = 2.5x = -3

n

0 2
1 2.6875
2 2.4297
3 2.5264
4 2.4901
5 2.5037-3.0049

-2.9868
-3.0352
-2.9063
-3.25
-2

ynxn

16 n

0 1.5
1 2.18
2 2.765
3 2.663
4 2.5753
5 2.5906-1.7062

-1.6843
-1.6588
-1.805
-1.975
-1

ynxn

The exact answer is , .

17

y = 2.6x = -1.7

n

0 1.5
1 2.765
2 2.5753
3 2.6037
4 2.5994
5 2.6001-1.7001

-1.6991
-1.7062
-1.6588
-1.975
-1

ynxn

(a)
(b)

(c)

(a)

(b)

(a)

(b)

(a)

(b) £ -0.0902

-0.0902

0.9919

≥ , £ -0.1961

0

0.9806

≥ , £ 0.1400

-0.7001

-0.7001

≥
-4,-3, 221

£ -0.2747

0.9615

0

≥ , £ 0

0.7071

0.7071

≥ , £0.1543

0.6172

0.7715

≥
-4, 0, 120

a1

2
b

l = 319

a -0.7071

0.7071
b , a 0.9899

-0.1414
b

-4, 2
l2

+ 2l - 8 = 018
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Chapter 14
Vectors

In many engineering applications the direction of a physical quantity is
of particular interest. Vectors are mathematical quantities that contain
information about direction as well as magnitude and so are
particularly suited to modelling physical situations where direction is
important.

Special rules and methods have been developed for handling vectors,
and these are described and developed in this chapter.
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Block 1 Basic concepts of vectors

Block 2 Cartesian components of vectors

Block 3 The scalar product, or dot product

Block 4 The vector product, or cross product

Block 5 The vector equation of a line and a plane

End of chapter exercises
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BLOCK 1
Basic concepts of vectors

1.1 Introduction

In engineering, frequent reference is made to physical quantities, such as force,
speed and time. For example, we talk of the speed of a car, and the force in a com-
pressed spring. It is useful to separate physical quantities into two types. Quantities
of the first type are known as scalars. These can be fully described by a single
number known as the magnitude. An example of a scalar quantity is the mass of an
object, so we might state

‘the mass of the stone is 3 kg’

It is important to give the units in which the quantity is measured.
Quantities of the second type are those that require the specification of a

direction, in addition to a magnitude, before they are completely described.
These are known as vectors. An example of a vector quantity is the force applied
to an object to make it move. When the object shown in Figure 1.1 is moved by
applying a force to it we can achieve different effects by applying the force in
different directions.

Figure 1.1
Applying the force
in a different
direction will
achieve a different
effect.

In order to specify the force completely we must state the direction in which the
force acts. For example, we might state

‘a force of 5 newtons is applied vertically upwards’

Clearly this would achieve a different effect from applying the force horizontally to
the right. The direction in which the force acts is crucial.

Special methods have been developed for handling vectors in calculations, giving
rise to subjects known as vector algebra, vector geometry and vector calculus. Quan-
tities that are vectors must be manipulated according to certain rules, which are
described in this and subsequent blocks.
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672 Block 1 Basic concepts of vectors14

There are many engineering applications in which vector and scalar quantities play
an important role. For example, speed, mass, work, voltage, energy are all scalars,
whereas force, acceleration, velocity, electromagnetic field strength are all vectors.
Furthermore, when computer software is written to control the position of a robot,
the position is described by vectors.

Sometimes confusion can arise because words used in general conversation
have specific technical meanings when used in engineering calculations. An ex-
ample of this ambiguity is the use of the words ‘speed’ and ‘velocity’. In everyday
conversation these words have the same meaning and can be used interchangeably.
However, in engineering and science they are not the same. Speed is a scalar quan-
tity described by giving a single number in appropriate units. So we can make
statements such as

‘the speed of the car is 40 kilometres per hour’

On the other hand velocity is a vector quantity and must be specified by giving a
direction as well. So, for example, we can state

‘the velocity of the aircraft is 200 metres per second due north’

In engineering calculations, the words ‘speed’ and ‘velocity’ should not be used
interchangeably. Similar problems arise from use of the words ‘mass’ and ‘weight’.
In engineering and science these are different. Mass is a scalar that describes the
amount of substance in an object. The unit of mass is the kilogram. Weight is a vec-
tor, the direction of which is vertically downwards. Weight arises through the action
of gravity. The unit of weight is the newton.

Displacement and distance are related quantities that can cause confusion.
Whereas distance is a scalar, displacement is ‘directed distance’: that is, distance
together with a specified direction. So, referring to Figure 1.2, if an object is moved
from point A to point B, we can state that the distance moved is 10 metres, but the
displacement is 10 metres in the direction from A to B.

Key point Vectors are quantities that are specified by giving both their magnitudes and directions,
and which are manipulated according to particular, and well-defined, rules.

Figure 1.2
Displacement
means directed
distance.

A B

10 m

You will meet many other quantities in the course of your studies, and it will be
helpful to know which are vectors and which are scalars. Some common quantities
and their type are listed in Table 1.1. The common units in which these are measured
are also shown.
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1.2 The mathematical description of vector quantities 673 14

Table 1.1
Some common
scalar and vector
quantities.

1.2 The mathematical description of vector quantities

Because a vector has a direction as well as a magnitude we can represent a vector by
drawing a line. The length of the line represents the magnitude of the vector given
some appropriate scale, and the direction of the line represents the direction of the
vector. We call such a representation a directed line segment. The length of the line
is also referred to as the modulus of the vector.

Quantity Type SI unit

Distance Scalar metre, m

Area Scalar metres squared, 

Mass Scalar kilogram, kg

Temperature Scalar kelvin, K

Pressure Scalar pascal, Pa

Work Scalar joule, J

Energy Scalar joule, J

Displacement Vector metre, m

Force Vector newton, N

Velocity Vector metres per second, 

Acceleration Vector metres per second per 
second, m s- 2

m s- 1

m2

Exercises

State, or find out, which of the following are
scalars and which are vectors: (a) the volume
of a petrol tank, (b) a length measured in
metres, (c) a length measured in miles, 

1
(d) the angular velocity of a flywheel, (e) the
relative velocity of two aircraft, (f) the work
done by a force, (g) electrostatic potential,
(h) the momentum of an atomic particle.

Solutions to exercises

(a), (b), (c), (f), (g) are scalars; (d), (e) and 
(h) are vectors.

1
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For example, Figure 1.3 shows a vector that might represent a velocity of
3 north-west. Note that the arrow on the vector indicates the direction
required.

m s- 1

674 Block 1 Basic concepts of vectors14

Figure 1.3
A vector quantity
can be represented
by drawing a line
marked with an
arrow.

Scale: � 1 m s�1

More generally, Figure 1.4 shows an arbitrary vector quantity. It is important
when writing vectors to distinguish them from scalars, and so various notations are
used. In Figure 1.4 we can write the vector as where the arrow is used to empha-
sise that we mean the vector from A to B. In books and other printed work, vectors
are often indicated by using a bold typeface such as a. It is difficult when handwrit-
ing to reproduce the bold face and so it is conventional to underline vector quantities
and write instead. So , a and all represent the same vector in Figure 1.4. In
Figure 1.4 the point A is the tail of vector and point B is referred to as its head.AB

:aAB
:

a

AB
:

Figure 1.4
Vectors can be
written in different
ways:

.AB
:

= a = a

A     Tail

B
Head

AB

A

B

or
a � a

Example 1.1
Consider Figure 1.5, which shows an object being pulled by a force of 5 N at 
an angle of 60° to the horizontal. Show how this force can be represented by a
vector.

Figure 1.5
An object being
pulled by a force.

60°

5 N
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Solution
The force can be represented by drawing a line of length 5 units at an angle of 60° to
the horizontal, as shown in Figure 1.6. Note that we have labelled the force F. The
modulus of the force is 5 newtons. Whenever several forces are involved they can be
labelled , , and so on.F2F1

1.2 The mathematical description of vector quantities 675 14

Figure 1.6
The force in 
Figure 1.5
represented as a
vector.

Scale: = 1 unit

F

When we wish to refer to just the magnitude of a vector we write this using the
modulus sign as , or , or . Alternatively we write simply a.

Referring to Figure 1.6, we can write the magnitude of the force F as or
simply F (not bold, and without the underline or modulus signs).

|F |

|a||a||AB
:

|

Key point The magnitude, or modulus, of a vector can be written as

ƒ a ƒ , ƒ a ƒ , or ƒ AB
:

ƒ ,  or simply a

a = AB
:

Equal vectors

In general two vectors are said to be equal vectors if they have the same magnitude
and direction. So, in Figure 1.7 the vectors and are equal even though their
locations differ.

This is a useful and important property of vectors: a vector can be translated main-
taining the same direction and magnitude, without changing the vector itself.

AB
:

CD
:

Figure 1.7
Vectors can be
equal even when
their locations
differ.

A

B

C

D
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There are exceptions to this property. For example, a vector is sometimes used to
represent the position of an object that might be located at a particular point in space.
Such a vector cannot be translated freely. Nevertheless most of the vectors we shall
meet can be translated, and as such are called free vectors.

Negative vectors

The vector is a vector in the opposite direction to a, but with the same magnitude
as a, as shown in Figure 1.8. Geometrically, if then .-a = BA

:
a = AB

:-a

676 Block 1 Basic concepts of vectors14

Figure 1.8
The negative
vector has the
opposite direction
to a.

-a

A

B

a

A

B

�a � BA

Exercises

An object is subject to two forces, one of 3 N
vertically downwards, and one of 8 N
horizontally to the right. Draw a diagram
representing these two forces as vectors.

Draw a diagram showing an arbitrary vector F.
On the diagram show the vector .-F

2

1 Vectors p and q are equal vectors. Draw a
diagram that might be used to represent
p and q.

3

Solutions to exercises

See Figure 1.9.

See Figure 1.10.2

1 See Figure 1.11.3

Figure 1.9 Figure 1.10 Figure 1.11

F

�F3 N

8 N

p

q
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1.3 Addition and subtraction of vectors 677 14

1.3 Addition and subtraction of vectors

Addition of vectors is carried out according to a rule known as the triangle law.

Figure 1.14

Figure 1.12
Two vectors
a and b.

Figure 1.13
Addition of the
two vectors of
Figure 1.12 using
the triangle law.

b
a

Consider Figure 1.12. Suppose we wish to add b to a. To do this b is translated,
keeping its direction and length unchanged, until its tail coincides with the head of a.
Then the sum is defined by the vector representing the third side of the com-
pleted triangle, that is c in Figure 1.13. Note from Figure 1.13 that we can write

.c = a + b

a + b

b

a

c � a � b

Key point Vectors are added using the triangle law:

bb
a a

c � a � b

Example 1.2
Redraw the diagram in Figure 1.14 to show the vector sum .a + b

b

a
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Solution

b

a

a � b

Key point vector addition is commutative.

vector addition is associative.a + (b + c) = (a + b) + c

a + b = b + a

It is possible, using the triangle law, to prove the following rules, which apply to any
three vectors a, b and c:

To see why it is appropriate to add vectors using the triangle law consider the follow-
ing examples.

Example 1.3 The route taken by an automated vehicle
An unmanned vehicle moves on tracks around a factory floor carrying components
from the store at A to workers at C, as shown in Figure 1.15.

Figure 1.15

.AB
:

+ BC
:

= AC
:

AC

AB

BC

C
Workers

A B
Store

The vehicle may arrive at C either directly or via a second location at B. The
movement from A to B can be represented by a displacement vector . Similarly

movement from B to C can be represented by the displacement vector , and 

movement from A to C can be represented by . Since the head of vector touches

the tail of the triangle law can be applied immediately to find the combined effect
of the two displacements.

Example 1.4 Mechanical Engineering – Resultant of two forces acting
upon a body

A force of 2 N acts vertically downwards, and a force of 3 N acts horizontally
to the right, upon the body shown in Figure 1.16. Both forces act through the same
point in the body.

F2F1

AB
:

+ BC
:

= AC
:

BC
:

AB
:

AC
:

BC
:

AB
:
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We can use vector addition to find the combined effect of the two forces, known as
the resultant force. Translating until its tail touches the head of , we complete the
triangle as shown. The vector represented by the third side is the resultant, R. We write

and say that R is the vector sum of and . The resultant force acts at an angle of

below the horizontal where , so that , and has magnitude given

by Pythagoras’s theorem as N.213

u = 33.7°tan u =
2
3u

F1F2

R = F2 + F1

F2F1

1.3 Addition and subtraction of vectors 679 14

Figure 1.16
The combined
effect of forces 
and is the
resultant R.

F2

F1

A

B C

F2  � 3 N

F1  � 2 N
R

θ

Key point The resultant of two vectors a and b is their vector sum .a + b

Example 1.5 Mechanical Engineering – Resolving a force into two 
perpendicular directions

In the previous example we saw that two forces acting upon a body can be replaced
by a single force which has the same effect. It is sometimes useful to consider a
single force as two forces acting at right angles to each other. Consider the force F in
Figure 1.17.

Figure 1.17
Force F has two
perpendicular
components.

θ

F sin θ

F cos θ
θ

F

This force can be replaced by two perpendicular forces as shown. It is a straight-
forward use of trigonometry to show that the horizontal force has magnitude F cos .
The vertical force has magnitude F sin . We say that F has been resolved into two
perpendicular components.

u

u
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For example, Figure 1.18 shows a force of 5 N acting at an angle of 30° to the
x axis. It can be resolved into two components, one directed along the x axis with
magnitude 5 cos 30° and one perpendicular to this of magnitude 5 sin 30°. Together,
these two components have the same effect as the original force.

Figure 1.18 y

x

5 N

30°

5 N

30°
5 cos 30° 

5 sin 30° 

Example 1.6
Consider the force shown in Figure 1.19. Resolve this force into two perpendicular
components, one horizontally to the right, and one vertically upwards.

Figure 1.19

40°

15 N

Solution

Subtraction of one vector from another is performed by adding the corresponding
negative vector. That is, if we seek we form . This is shown
geometrically in Figure 1.20.

a + (-b)a - b

15 cos 40° = 11.49 N horiz., 15 sin 40° = 9.64 N vert.

Figure 1.20
Subtraction of
a vector is
performed by
adding a negative
vector.

Figure 1.21

a

a

b a � (�b)

�b

Example 1.7
Figure 1.21 shows vectors and . What is the geometrical signifi-
cance of the vector ?q - p

q = OQ
:

p = OP
:

p

qO

P

Q
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Solution
We know that is interpreted as .

Start by drawing in the vector . This is shown in Figure 1.22(a). It has been
drawn with its tail touching the head of q so that we can apply the triangle rule for
addition. Figure 1.22(b) shows the application of the triangle rule. Note that the
resultant is the same as the vector . This result is very important.PQ

:
q + (-p)

-p
q + (-p)q - p

1.3 Addition and subtraction of vectors 681 14

Figure 1.22

q

p

O

P

�p

Q

p

qO

P

�pq � (�p)

Q

Key point Given two vectors and (Figure 1.23) the vector from P to Q is given
by .q - p

q = OQ
:

p = OP
:

Exercises

Vectors p and q represent two perpendicular

sides of a square ABCD with and

. Find vector expressions that represent

the diagonals of the square and .

In the rectangle ABCD, side AB is represented
by the vector p and side BC is represented by
the vector q. State the physical significance of
the vectors and .

An object is positioned at the origin of a set
of axes. Two forces act upon it. The first has
magnitude 9 N and acts in the direction of the

3

p - qp + q

2

BD
:

AC
:

q = BC
:

p = AB
:

1 positive y axis. The second has magnitude 4 N
and acts in the direction of the negative x axis.
Calculate the magnitude and direction of the
resultant force.

An object moves in the x–y plane with a
velocity of 15 in a direction at 48°
above the positive x axis. Resolve this velocity
into two components, one along the x axis and
one along the y axis.

Draw a right-angled triangle ABC with the
right angle at B. Label as . Show that
(a)
(b) AB = AC sin u

BC = AC cos u
u∠ACB

5

m s- 1
4

p

qO

P

Q

Figure 1.23

(a) (b)
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1.4 Multiplying a vector by a scalar

If k is any positive scalar and a is a vector then ka is a vector in the same direction as
a but k times as long. If k is negative, ka is a vector in the opposite direction to a and
k times as long. The vector ka is said to be a scalar multiple of a. Consider the
vectors shown in Figure 1.24.

Solutions to exercises

is the diagonal AC, is the
diagonal DB.

magnitude , at an angle 66° above the
negative x axis

2973

p - qp + q2

p + q,  q - p1 10.04 along the x axis, and 11.15 
along the y axis

m s- 1m s- 14

Figure 1.24
Multiplying a
vector by a scalar.

a

ka

if k is positive

a

ka

if k is negative

The vector 3a is three times as long as a and has the same direction. The vector r
is in the same direction as r but is half as long. The vector 4b is in the opposite
direction to b and four times as long.

For any scalars k and l, and any vectors a and b, the following rules hold:

-

1
2

Key point

 k(l )a = (kl )a

 (k + l)a = ka + la

 k(a + b) = ka + kb

Unit vectors

A vector that has a modulus of 1 is called a unit vector. Unit vectors will play an
important role when we come to study cartesian components in Block 2.

If a has modulus 3, say, then a unit vector in the direction of a is a, as shown in
Figure 1.25.

1
3
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More generally, to obtain a unit vector in the direction of any vector a we divide
by its modulus. A unit vector in the direction of a is given the ‘hat’ symbol .aN

1.4 Multiplying a vector by a scalar 683 14

Figure 1.25 a

a1
3

Key point aN =

a

ƒ a ƒ

Exercises

Draw an arbitrary vector r. On your diagram
draw 2r, 4r, �r, and r.

In triangle OAB the point P is the midpoint
of AB.
(a) If and depict this on a

diagram.
(b) Write down an expression for in terms

of a and b.
(c) Write down an expression for in terms

of a and b.
(d) Find an expression for in terms of

a and b.
OP
:

AP
:
AB
:

OB
:

= bOA
:

= a

2

1
2-3r

1 In triangle OAB the point P divides AB in the
ratio m:n. If and depict this
on a diagram and then find an expression for

in terms of a and b.

Explain what is meant by a unit vector. Given
an arbitrary vector n, how is a unit vector
having the same direction as n found?

If is a unit vector, how would you write a
vector in the same direction as but having
modulus 8?

eN
eN5

4

OP
:

OB
:

= bOA
:

= a
3

Solutions to exercises

(b) (c) 

(d) 

OP
:

= a +

m

m + n
 (b - a)3

a +
1
2(b - a) =

1
2a +

1
2b

1
2(b - a)b - a2 Divide n by its modulus.

8eN5

4

End of block exercises

Draw three arbitrary vectors a, b and c. By
using the triangle law verify that vector
addition is associative, that is

(a + b) + c = a + (b + c)

1 Draw two arbitrary vectors a and b. By using
the triangle law verify that vector addition is
commutative, that is

a + b = b + a

2
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A force of 13 N acts at an angle of 62°
above the x axis. Resolve this force into two
components: one along the x axis and one
along the y axis.

In the triangle ABC, M is the midpoint of BC
and N is the midpoint of AC. Show that 

A particle is positioned at the origin. Two
forces act on the particle. The first has

5

NM
:

=
1
2 AB

:
.

4

3 magnitude 7 N and acts in the negative x
direction. The second has magnitude 12 N and
acts in the y direction. Calculate the magnitude
and direction of the resultant force.

Draw two arbitrary vectors a and b. Verify that

(This is the first of the rules concerning scalar
multiplication given at the start of Section 1.4.)

2(a + b) = 2a + 2b

6

Solutions to exercises

6.10 N along the x axis, 11.48 N along the
y axis

3 13.9 N at 59.7° to the negative x axis5
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BLOCK 2
Cartesian components of vectors

2.1 Introduction

It is useful to be able to describe vectors with reference to various coordinate
systems, such as the x–y plane. So, in this block, we show how this is possible by
defining unit vectors in the directions of the x and y axes. Any other vector in the
x–y plane can be represented as a combination of these basis vectors. Such a
representation is called a cartesian form. You will learn how to calculate the
modulus of a vector given in cartesian form. Then, the idea is extended to three-
dimensional vectors. This is useful because most engineering problems arise in
three-dimensional situations.

2.2 Two-dimensional coordinate frames and the vectors i and j

The unit vectors i and j

Figure 2.1 shows a two-dimensional coordinate frame. Any point in the plane of the
figure can be defined in terms of its x and y coordinates.

Figure 2.1
A two-dimensional
coordinate frame.

y

x

P (x, y)

A unit vector pointing in the positive direction of the x axis is denoted by i. (Note
that it is common practice to write this particular unit vector without the ‘hat’ ^ .) It
follows that any vector in the direction of the x axis will be a multiple of i. Figure 2.2
shows vectors i, 2i, 5i and �3i. In general a vector of length a in the direction of the
x axis will be ai.
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y

x

i

�3i

2i

5i

Figure 2.2
All these vectors
are multiples of i.

Similarly, a unit vector pointing in the positive direction of the y axis is denoted
by j. Any vector in the direction of the y axis will be a multiple of j. Figure 2.3
shows j, 4 j and �2j. In general a vector of length b in the direction of the y axis
will be b j.

Figure 2.3
All these vectors
are multiples of j.

y

x

−2 j

4 jj

Key point i represents a unit vector in the direction of the positive x axis.
j represents a unit vector in the direction of the positive y axis.

Example 2.1
Draw the vectors 5i and 4j. Use your diagram and the triangle law of addition to add
these two vectors together to obtain the sum .

Solution
First draw the vectors 5i and 4j.

5i + 4j

By translating the vectors so that they lie head to tail, find the vector sum .5i + 4 j

y

x

4 j

5 i
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We now generalise the situation in the previous example. Consider Figure 2.4, which
shows a vector .r = AB

:

2.2 Two-dimensional coordinate frames and the vectors i and j 687 14

y

x

4 j
5i

5i � 4 j

Figure 2.4

by the triangle law.
AB
:

= AC
:

+ CB
:

y

x

aiA C

B

b jr

We can regard r as being the resultant of the two vectors and .
From the triangle law of vector addition

We conclude that any vector in the x–y plane can be expressed in the form
. An alternative way of writing this vector is to use column vector

notation. We write

A row vector would be written as (a, b), but care must be taken not to confuse this
form with cartesian coordinates.

r = aa

b
b

r = ai + bj

r = AB
:

= AC
:

+ CB
:

= ai + bj

CB
:

= bjAC
:

= ai

Key point Any vector in the x–y plane can be written or as

The numbers a and b are called the i and j components of r.

r = aa

b
b

r = ai + bj
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Addition, subtraction and scalar multiplication of vectors

Example 2.2
(a) Draw an x–y plane and show the vectors and .
(b) By translating one of the vectors apply the triangle law to show the sum .
(c) Express the resultant in terms of i and j.

Solution
(a) Draw the x–y plane and the required vectors. They can be drawn from any point

in the plane.

a + b
b = 5i + ja = 2i + 3j

688 Block 2 Cartesian components of vectors14

y

x1 2 3 4 5 6 7

1

2

3

4
2i � 3 j

5i � j

(b) Translate one of the vectors so that they lie head to tail, completing the third
side of the triangle to give the resultant .

(c) By studying your diagram note that the resultant consists of the two components
7i horizontally, and 4j vertically. Hence write down an expression for .a + b

a + b

y

x1 2 3 4 5 6 7

1

2

3

4

7i � 4 j

Note that this result consists of the sum of the respective components of a and b.
That is,

It is important to note from the last example that vectors in cartesian form can be added
by simply adding their respective i and j components.

(2i + 3j) + (5i + j) = 7i + 4    j

7i + 4ja + b =

Key point If and then

a + b = (ax + bx)i + (ay + by) j

b = bxi + by ja = axi + ay j
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Example 2.3
If and find
(a)
(b)

Solution
(a) Simply add the respective components:

(b) Simply subtract the respective components:

Example 2.4
If

find .

Solution
The vectors are added by adding their respective components.

It follows that to multiply any vector a by a scalar k, we multiply each component of
a by k.

Example 2.5
If write down (a) , (b) .

Solution

(a)

(b) -3i - j-
1
3 
a =

36i + 12 j4a =

-
1
3 a4aa = 9i + 3j

a10

6
b

r + s

r = a 7

11
b   and  s = a 3

-5
b

i + 4 ja - b =

17i + 10ja + b =

a - b
a + b

b = 8i + 3ja = 9i + 7j

Key point If then .ka = kax i + kay ja = axi + ay  j

Position vectors

Now consider the special case when r represents the vector from the origin to the point
P(x, y) as shown in Figure 2.5. This vector is known as the position vector of P.

Key point The position vector of is .r = OP
:

= xi + yjP(x, y)
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Unlike most vectors, position vectors cannot be freely translated. Because they
indicate the position of a point they are fixed vectors in the sense that the tail of a
position vector is always located at the origin.

Example 2.6
State the position vectors of the points with coordinates (a) (b) ,
(c) , (d) .

Solution
(a) The position vector of P is . This could be written

(b) The position vector of Q is .
(c) The position vector of R is .
(d) The position vector of S is .

Example 2.7
Sketch the position vectors , and .

Solution
The vectors are shown in Figure 2.6. Note that all position vectors start at the origin.

r3 = -3i - 2jr2 = -2i + 5jr1 = 3i + 4j

8i - 4 j
-i - 7j
-i + 5j

a2

4
b

2i + 4j

S(8, -4)R(-1, -7)
Q(-1, 5)P(2, 4),

Figure 2.5
is the

position vector of
the point P with
coordinates (x, y ).

r = xi + yj
y

y

xxO

r � x  i � y  j

P ( x , y)

Figure 2.6
The position vectors

, 
and
.r3 = -3i - 2 j

r2 = -2i + 5j
r1 = 3i + 4 j

y

x

(�3, �2)

(�2, 5)

(3, 4)

r2

r3

r1
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Modulus

The modulus of any vector r is equal to its length. When the modulus
can be obtained by Pythagoras’s theorem. Referring to Figure 2.5, if r is the position
vector of point P then the modulus is clearly the distance of P from the origin.

r = xi + yj

2.2 Two-dimensional coordinate frames and the vectors i and j 691 14

Key point If then .|r | = 2x2
+ y2r = xi + yj

Example 2.8
Find the modulus of each of the vectors (a) , (b) ,
(c) and (d) .

Solution
(a) The modulus of .

(b) The modulus of .

(c) Similarly .

(d) .

Example 2.9
Find the modulus of the vector

Solution

Example 2.10
Point A has coordinates . Point B has coordinates .
(a) Depict these points on a diagram and state their position vectors.
(b) Find an expression for .
(c) Find .

Solution
(a) Draw a diagram that shows points A and B.

|AB
:

|

AB
:

(7, 8)(3, 5)

272
+ (-3)2

= 258

r = a 7

-3
b

|r4| = 2(-5)2
+ (-3)2

= 225 + 9 = 234

|r3| = 292
+ (-2)2

= 285

r2 = |-2i + 5 j| = 2(-2)2
+ 52

= 24 + 25 = 229

r1 = |3i + 4 j| = 232
+ 42

= 225 = 5

r4 = -5i - 3 jr3 = 9i - 2 j
r2 = -2i + 5jr1 = 3i + 4 j

y

x

B
(7, 8)

A (3, 5)

b
a

2 4 6 8

2

4

6

8

O

The position vector of A is then OA
:

= a = 3i + 5j
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The position vector of B is 
(b) Refer to your figure and use the triangle law to write

so that

Hence write down an expression for in terms of the unit vectors i and j.

(c) The length of 

242
+ 32

= 225 = 5

AB
:

= |4i + 3 j| =

(7i + 8j) - (3i + 5j) = 4i + 3j

AB
:

 = b - a

 AB
:

= OB
:

- OA
:

OA
:

+ AB
:

= OB
:

OB
:

= b = 7i + 8 j

Exercises

Explain the distinction between a position
vector and a more general or free vector.

What is meant by the symbols i and j?

State the position vectors of the points with
coordinates (a) , (b) ,
(c) , (d) .

State the coordinates of the point P if its
position vector is given as (a) ,
(b) , (c) , (d) .ai + bj-0.5i + 13j-4i

3i - 7j
4

S(-1, 0)R(0, 3)
Q(-3, 5)P(4, 7)

3

2

1 Find the modulus of each of the following
vectors:
(a) (b) (c) 
(d) (e) (f) 

Point P has coordinates . Point Q has
coordinates .
(a) Draw a sketch showing P and Q.
(b) State the position vectors of P and Q.
(c) Find an expression for .
(d) Find .|PQ

:
|

PQ
:

(-2, 4)
(7, 8)6

r = ai - bjr = ai + bjr = -3 j
r = 2i - 3 jr = 17ir = 7i + 3j

5

Solutions to exercises

Free vectors can be translated keeping their
direction and length the same. Position vectors
must always start at the origin.

i is a unit vector in the direction of the positive
x axis. j is a unit vector in the direction of the
positive y axis.

(a) (b) (c) (d) - i3j-3i + 5j4i + 7j3

2

1 (a) (b) (c) 
(d) 

(a) (b) (c) (d)

(e) (f ) 

(b) , 

(c) (d) |PQ
:

| = 297PQ
:

= -9i - 4 j

q = -2i + 4jp = 7i + 8j6

2a2
+ b22a2

+ b2

3213172585

(a, b)
(-0.5, 13)(-4, 0)(3, -7)4
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2.3 The direction ratio and direction cosines 693 14

2.3 The direction ratio and direction cosines

Consider the point and its position vector as shown in Figure 2.7.4i + 5jP(4, 5)

The direction ratio of the vector is defined to be 4:5. We can interpret this as
stating that to move in the direction of the line we must move 5 units in the y direc-
tion for every 4 units in the x direction.

The direction cosines of the vector are the cosines of the angles between the
vector and each of the positive axes. Specifically, referring to Figure 2.7 these are

Noting that the length of is we can write

It is conventional to label the direction cosines as l and m so that

More generally we have the following result:

l =

4

241
 , m =

5

241

cos a =

4

241
 , cos b =

5

241

242
+ 52

= 241OP
:

direction cosines:  cos a and  cos b

OP
:

OP
:

Key point For any vector , its direction ratio is . Its direction cosines are

l =

a

2a2
+ b2 

 , m =

b

2a2
+ b2 

a:br = ai + bj

Example 2.11
Refer back to Example 2.10, in which point A has coordinates , and point B has
coordinates .(7, 8)

(3, 5)

y

x

P (4, 5)

4

5

O
α

β

Figure 2.7
The direction 
cosines of 
are and 

.cos b

cos a

OP
:
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694 Block 2 Cartesian components of vectors14

(a) Find the direction ratio of the vector .
(b) Find its direction cosines, l and m.
(c) Show that .

Solution
From Example 2.10 we know that .

(a) The direction ratio of is therefore 4:3.
(b) The direction cosines are

(c)

The final result in the previous example is true in general:

 = 1

 =

25

25

 =

16

25
+

9

25

 l2 + m2 = a4

5
b2

+ a3

5
b2

l =

4

242
+ 32

=

4

5
, m =

3

242
+ 32

=

3

5

AB
:

AB
:

= 4i + 3j

l2 + m2
= 1

AB
:

Key point If l and m are the direction cosines of a line lying in the x–y plane, then

l2 + m2
= 1

Exercises

For the vectors in question 6 of the previous
section, find
(a) the direction ratio of the vector 
(b) the direction cosines of .PQ

: PQ
:

1
(c) Explain why the direction cosines are both

negative.

Solutions to exercises

(a) (b) , 

(c) The angle between the vector and the
positive direction of both axes is greater

-

4

297
-

9

297
-9:-41 than 90° and hence each cosine is negative.

(Draw the vector to see
this.)

PQ
:

= -9i - 4j
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2.4 Three-dimensional coordinate frames

The real world is three-dimensional, and in order to solve many engineering prob-
lems it is necessary to develop expertise in the mathematics of three-dimensional
space. An important application of vectors is their use to locate points in three
dimensions. When two distinct points are known we can draw a line between them.
Three distinct points that do not lie on the same line form a plane. Vectors can be
used to describe points, lines and planes in three dimensions. These mathematical
foundations underpin much of the technology associated with computer graphics
and the control of robots. In this section we shall introduce the vector methods that
underlie these applications.

Figure 2.8 shows a three-dimensional coordinate frame. Note that the third dimen-
sion requires the addition of a third axis, the z axis. Although these three axes are
drawn in the plane of the paper you should remember that we are now thinking of
three-dimensional situations. Just as in two dimensions the x and y axes are perpen-
dicular, in three dimensions the x, y and z axes are perpendicular to each other. We
say they are mutually perpendicular. There is no reason why we could not
have chosen the z axis in the opposite sense to that shown in Figure 2.8. However, it
is conventional to choose the directions shown in Figure 2.8. Any point in the three
dimensions can be defined in terms of its x, y and z coordinates. Consider the point P
with coordinates as shown. The vector from the origin to the point P is 

known as the position vector of or r. To arrive at P from O we can think of mov-
ing x units in the x direction, y units in the y direction and z units in the z direction.

P, OP
:

(x, y, z)

2.4 Three-dimensional coordinate frames 695 14

z

y
y

P (x, y, z)

O

Q

x

x

r

Figure 2.8
The position vector
of the point with
coordinates 

is 

.r = xi + yj + zk
(x, y, z)

Extending the concept of unit vectors in the direction of each of the axes, a unit
vector pointing in the positive direction of the z axis is denoted by k. Noting that

and that we can state

 = x  i + y  j + z  k

 = OQ
:

+ QP
:

 r = OP
:

QP
:

= zkOQ
:

= xi + yj
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Example 2.12
State the position vector of the point with coordinates .

Solution
The position vector is 

Addition and subtraction

Addition and subtraction are carried out in an obvious way.

Example 2.13
If

find (a) , (b) .

Solution

(a)

(b)

P
-3

7

-4
Q

P
5

1

0Q

r - sr + s

r = P
1

4

-2
Q and s = P

4

-3

2

 Q

9i - 8j + 6k

(9, -8, 6)

696 Block 2 Cartesian components of vectors14

We conclude that the position vector of the point with coordinates is
.

In column vector notation we would write

r = P
x

y

z
Q

r = xi + yj + zk
(x, y, z)

Key point The position vector of is or, alternatively,

r = P
x

y

zQ
r = OP

:
= xi + yj + zkP(x, y, z)
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Modulus

The modulus of the vector is equal to the distance OP, which can be obtained by
Pythagoras’s theorem.

OP
:

2.4 Three-dimensional coordinate frames 697 14

Example 2.14
Find the modulus of the vector .

Solution

Example 2.15
Points A, B and C have coordinates and respectively.
(a) Find the position vectors of A, B and C.

(b) Find and .

(c) Find and .

Solution
(a) Denoting the position vectors of A, B and C by a, b and c respectively, we find

(b) ,

(c)

ƒBC
:

ƒ = 2(-3)2
+ (-2)2

+ 92
= 294

ƒ AB
:

ƒ = 292
+ (-1)2

+ (-2)2
= 286,

 BC
:

= c - b = -3i - 2j + 9kAB
:

= b - a = 9i - j - 2k

a = -i + j + 4  k, b = 8i + 2  k, c = 5i - 2   j + 11k

ƒ BC
:

ƒƒ AB
:

ƒ

BC
:

AB
:

(5, -2, 11)(-1, 1, 4), (8, 0, 2)

242
+ 22

+ 32
= 216 + 4 + 9 = 229

=ƒ r ƒ

r = 4i + 2j + 3k

Key point If then .|r | = 2x2
+ y2

+ z2r = xi + yj + zk

Exercises

State the position vector of the point with
coordinates .

Find the modulus of each of the following
vectors:
(a) (b)
(c) (d)
(e) ai + bj + ck

- i - 2j + 3k2j + 8k
7i - 2j + 3k7i + 2j + 3k

2

(4, -4, 3)
1 Points P, Q and R have coordinates

and respectively.
(a) Find the position vectors of P, Q and R.

(b) Find and .

(c) Find and 

If and 
write down .b - a

b = 2i + j - 4ka = 5i - 2j + 3k4

ƒ QR
:

ƒ .ƒ PQ
:

ƒ

QR
:

PQ
:

(5, 5, 7)(9, 1, 0), (8, -3, 5)
3
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698 Block 2 Cartesian components of vectors14

2.5 Direction ratios and direction cosines in three dimensions

The concepts of direction ratio and direction cosines extend naturally to three dimen-
sions. Consider Figure 2.9.

Consider point P with position vector

r = ai + bj + ck

Solutions to exercises

(a) (b) (c) (d)

(e)

(a) , 
r = 5i + 5j + 7k
p = 9i + j, q = 8i - 3j + 5k3

2a2
+ b2

+ c2

2142682622622

4i - 4j + 3k1 (b)

(c)

-3i + 3j - 7k4

ƒ PQ
:

ƒ = 242, ƒ QR
:

ƒ = 277

QR
:

= -3i + 8j + 2k

PQ
:

= - i - 4j + 5k,

Its direction ratio is

This means that to move in the direction of the vector we must move b units in the y
direction and c units in the z direction for every a units in the x direction.

The direction cosines are the cosines of the angles between the vector and each of
the axes. It is conventional to label them as l, m and n, and they are given by

  l = cos a =

a

2a2
+ b2

+ c2
, m = cos b =

b

2a2
+ b2

+ c2
 ,

a:b:c

z

y

P (a, b, c)

x

r

α β

γ

Figure 2.9
The direction
cosines of are
cos , cos and
cos .g

ba

OP
:
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2.5 Direction ratios and direction cosines in three dimensions 699 14

In general we have the following result:

  n = cos g =

c

2a2
+ b2

+ c2

Key point For any vector , its direction ratio is a:b:c. Its direction cosines are

and

l2 + m2
+ n2

= 1

l =

a

2a2 + b2
+ c2

, m =

b

2a2
+ b2 + c2

, n =

c

2a2 + b2 + c2

r = ai + bj + ck

Example 2.16
(a) Calculate the direction ratio of 
(b) Calculate its direction cosines.

Solution
(a) The direction ratio is .
(b) The direction cosines are

  n =

1

232
+ (-2)2

+ 12
=

1

214

  m =

- 2

232
+ (-2)2

+ 12
= -

2

214

  l =

3

232
+ (-2)2

+ 12
=

3

214

3:-2:1

r = 3i - 2j + k.

Exercises

Points A and B have position vectors
and 

respectively. Find

(a)

(b)

(c) the direction ratios of 

(d) the direction cosines of .

(e) Show that the sum of the squares of the
direction cosines equals 1.

AB
:

AB
:

ƒ AB
:

ƒ

AB
:

b = 3i + 4j - 5ka = -3i + 2j + 7k
1 Find the direction ratios, the direction cosines

and the angles that the vector makes with
each of the axes when P is the point with
coordinates .

A line is inclined at to the x axis and 
to the y axis. Find its inclination to the z axis.

45°60°3

(2, 4, 3)

OP
:2
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2.6 N-dimensional vectors

The vectors we have described so far have been either two- or three-dimensional.
However, there are some situations when it is desirable to generalise what we have
done to higher dimensions. No geometrical interpretation is then available. Never-
theless we can still refer to the components of a vector and the modulus of a vector.

Two examples of four-dimensional column vectors are

and

The modulus of a, which is generally referred to as its norm, is then defined as

An n-dimensional vector will have n components.

Example 2.17 Electronic Engineering – Vector norms and digital 
signal processing

Signals are quantities used to transmit information. If a signal changes, then this cor-
responds to information being conveyed. For example, the sequence of symbols

contains no information, whereas

contains information relating to a change occurring in the middle of the sequence.
Consider a signal such as that depicted in Figure 2.10, which corresponds to the
sequence of symbols 0, 0, 3, 5, 0.

000000000010000000000

000000000000000000000

 = 230

 ƒ a ƒ = 232
+ 12

+ 22
+ 42 

b = ±
1

0

3

1

≤a = ±
3

1

2

4

≤

Solutions to exercises

(a) (b) (c)

(d) , , 
-12

2184

2

2184

6

2184

6:2:-1221846i + 2j - 12k1 ; , , ; , , 

or 120°60°3

56.1°42.0°68.2°
3

229

4

229

2

229
2:4:32
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2.6 N-dimensional vectors 701 14

This sequence can also be represented by a vector: for example, we could write it
as the row vector

The norm of the signal is the modulus of the vector f, defined, by generalising the
two- and three-dimensional case, as

More generally a vector, f, with N components can represent a signal of length N, that is

and its norm is given by

A related quantity is the power in a signal, which is given by

Therefore the power in the signal is .
One of the main problems in signal processing is that of representing a large

amount of information by a smaller amount without significantly distorting the orig-
inal signal. Very often a signal, f, with a large information content is approximated by

, which is a signal with a smaller information content. Then

is a measure of the ‘distance’ or difference between the two signals and is therefore
a measure of the quality of the approximation.

ƒ   f - f ¿ ƒ

f ¿

34
5(0, 0, 3, 5, 0)

1

N
 ƒ  f   ƒ

2
=

1

N
 a
N - 1

n = 0
 f 2

n

ƒ   f   ƒ = Aa
N - 1

n = 0
 f 2

n  

f = ( f0, f1, . . . , fN - 1)

 = 234

 ƒ   f   ƒ = 202
+ 02

+ 32
+ 52

+ 02 

f = (0, 0, 3, 5, 0)

1 2 3 4 5 6

1

2

3

4

5

O n

Figure 2.10

End of block exercises

If

p = P
3

1

2Q and q = P
7

9

1Q
1 find (a) , (b) , (c) , (d) .3p - 2q-2qp - q3p
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If

show that where 0 is the
zero vector.

A triangle has vertices A, B and C with
coordinates , and 
respectively. Calculate the vectors that
represent the sides of the triangle.

Find a unit vector in the direction of the vector
.i - j

4

(2, 7, 1)(-1, 5, 9)(1, 3, 2)
3

x1 + x2 - x3 = 0

x1 = P
1

2

3
Q , x2 = P

1

0

1
Q , x3 = P

2

2

4
Q

2 Find the norm of the row vector .

If

and

find the norm of a, the norm of b, and the
norm of .a - b

b = •
3

2

1

0

1

μa = •
1

1

0

1

1

μ
6

x = (2, 3, 6)5

Solutions to exercises

(a) (b)

(c) (d)

,

, 

AC
:

= i + 4j - k

BC
:

= 3i + 2j - 8k

AB
:

= -2i + 2j + 7k3

P
-5

-15

4 QP
-14

-18

-2 Q
P

-4

-8

1 QP
9

3

6Q1

7

2, , 272156

5

1

22
 (i - j)4
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BLOCK 3
The scalar product, or dot product

3.1 Introduction

Multiplication of two vectors is defined in two different ways. The first way is known
as the scalar product. When the scalar product of two vectors is calculated the result
is a scalar and not a vector. The second way is known as the vector product. When
this is calculated the result is a vector. These products are summarised in Table 3.1.
The ways in which these products are defined seem rather strange when first met, but
the reason for this lies in their applications. In this block we consider only the scalar
product.

Table 3.1
The two types 
of vector
multiplication.

Name Written as Result

Scalar product Scalar
Vector product Vectora * b

a #  b

3.2 Definition of the scalar product

Consider the two vectors a and b shown in Figure 3.1.

a

b

θ

Figure 3.1
Two vectors
separated by an
angle .u

Note that the tails of the two vectors coincide and that the angle between the vectors
has been labelled . Their scalar product, denoted , is defined as

It is very important to use the dot in the formula. The dot is the symbol for the scalar
product, and is the reason why the scalar product is also known as the dot product.

a #  b = ƒa ƒ  ƒb ƒ  cos u

a # bu
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704 Block 3 The scalar product, or dot product14

You should never use a sign in this context because the sign is reserved for the
vector product, which is quite different.

**

a

b

60°

Figure 3.2
When the tails of a
and b coincide the
angle between
them is .60°

Key point Scalar product

a #  b = ƒa ƒ  ƒb ƒ  cos u

We can remember this formula as: the length of the first vector times the length of
the second times the cosine of the angle in between them.

Example 3.1
Vectors a and b are shown in Figure 3.2. The vector a has modulus 6, the vector b has
modulus 7, and the angle between them is . Calculate .a #  b60°

Solution
Identify the angle between the two vectors, and also their moduli. Then apply the
formula for the dot product.

The scalar product of a and b is equal to 21. Note that when finding a scalar product
the result is always a scalar.

Example 3.2
Find , where i is a unit vector in the direction of the positive x axis.

Solution
Because i is a unit vector its modulus is 1. The angle between any two parallel vec-
tors is zero. So the angle between i and itself is zero. Therefore

So the scalar product of i with itself equals 1. It is easy to verify that and
.k #  k = 1

j #  j = 1

 = 1     since cos 0° = 1

 i #  i = (1)(1) cos 0°

i #  i

a #  b = ƒa ƒ  ƒb ƒ  cos u = (6)(7) cos 60° = 21
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Example 3.3
Find , where i and j are unit vectors in the directions of the x and y axes.

Solution
Because i and j are unit vectors they both have a modulus of 1. The angle between
the two vectors is as shown in Figure 3.3.90°

i #  j

y

x

j

i

Figure 3.3
The angle between
the unit vectors i
and j is .90°

Therefore

That is, .

More generally, the following results are easily verified:

i #  j = 0

 = 0 since cos 90° = 0

 i #  j = (1)(1) cos 90°

Key point
 i #  j = i #  k = j #  k = 0

 i #  i = j #  j = k #  k = 1

Exercises

Write down the definition of the scalar product
of two vectors and illustrate your definition
with a diagram.

Use the definition of the scalar product to
show that, if two vectors are perpendicular,
their scalar product is zero.

Two vectors have moduli 7 and 13 respectively.
The angle between them is . Evaluate their
scalar product.

45°
3

2

1 Two unit vectors are parallel. What can you
deduce about their scalar product?

Two vectors have modulus 10 and 12. The
angle between them is . Find their scalar
product.

p

3

5

4

3.2 Definition of the scalar product 705
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706 Block 3 The scalar product, or dot product14

3.3 Some properties of the scalar product

The scalar product has a number of properties that are necessary for further
development.

Commutativity

If then it follows that . Since , and 
are numbers, and multiplication of numbers is commutative,

Clearly then Thus we can evaluate a scalar product in any order – the
operation is commutative.

Distributivity

For three vectors a, b and c

This means that the scalar product is distributive over addition.

Example 3.4
Simplify 

Solution
Using the distributivity property,

which simplifies to .

Multiplication by a scalar

For two vectors a and b, and a scalar k,

 = a #  (kb)

 k(a #  b) = (ka) #  b

1 + 0 = 1

i #  (i + j) = i #  i + i #  j

i #  (i + j).

a #  (b + c) = a #  b + a #  c

a # b = b # a.

ƒa ƒ  ƒb ƒ  cos u = ƒb ƒ  ƒa ƒ  cos u

cos uƒa ƒƒb ƒcos ub # a = ƒb ƒ  ƒa ƒcos ua # b = ƒa ƒ  ƒb ƒ

Solutions to exercises

64.35

It equals 1.4

3 605
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Example 3.5
Simplify .

Solution
Using this rule, with , can be written . So

Example 3.6
Simplify .

Solution
Using the distributivity property we can write

This can be expanded further to give

This simplifies to

Finally

 = 29

 (3i + 2j) #  (7i + 4j) = 21 + 0 + 0 + 8

(3)(7) i #  i + (2)(7) j #  i + (3)(4) i #  j + (2)(4) j #  j

3i #  7i + 2j #  7i + 3i #  4j + 2j #  4j

(3i + 2j) #  (7i + 4j) = (3i + 2j) #  (7i) + (3i + 2j) #  (4j)

(3i + 2j) #  (7i + 4j)

 = 7(1) = 7

 i #  7i = 7(i #  i)

7(i #  i)i #  (7i)k = 7

i #  7i

Exercises

If a and b are perpendicular, simplify

(a - 2b) #  (3a + 5b)

1

Solutions to exercises

3a2
- 10b21

3.3 Some properties of the scalar product 707
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708 Block 3 The scalar product, or dot product14

3.4 A formula for finding the scalar product

We can use the previous results to obtain a formula for finding a scalar product when the
vectors are given in cartesian form. Suppose and . Then

Now, since , and , we can simplify this to give the
following formula:

i #  j = j #  i = 0i #  i = j #  j = 1

 = a1b1 i #  i + a1b2 i #  j + a2b1 j #  i + a2b2 j #  j
 = a1 

i #  (b1i + b2 j) + a2 j #  (b1 i + b2 j)
 a #  b = (a1 i + a2 j) #  (b1i + b2 j)

b = b1i + b2 ja = a1i + a2 j

Key point If and then

a #  b = a1b1 + a2b2

b = b1i + b2 ja = a1i + a2 j

Thus to find the scalar product of two vectors their i components are multiplied
together, their j components are multiplied together and the results are added.

Example 3.7
If and , find the scalar product .

Solution
We use the previous Key point and multiply corresponding components together,
adding the results.

Note that the answer is a scalar.

Example 3.8
If and , find the scalar product .

Solution

This result readily generalises to vectors in three dimensions as follows:

(5)(2) + (-3)(1) = 7

p #  qq = 2i + jp = 5i - 3j

 = 19
 = 35 - 16
 = (7)(5) + (8)(-2)

 a #  b = (7i + 8j) #  (5i - 2 j)

a # bb = 5i - 2 ja = 7i + 8j

Key point If and then

a #  b = a1b1 + a2b2 + a3b3

b = b1i + b2 j + b3 ka = a1i + a2 j + a3k

Example 3.9
If and , find .

Solution
Corresponding components are multiplied together and the results are added.

a #  bb = 8i - 9j + 11ka = 5i + 3j - 2k
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Note again that the result is a scalar: there are no is, js or ks in the answer.

Example 3.10
If and , find .

Solution
Corresponding components are multiplied together and the results are added.

Example 3.11
If find . Show that this is the same as .

Solution

94

ƒr ƒ
2r #  rr = 3i + 2j + 9k

41

p #  qq = 6i - j + 2kp = 4i - 3j + 7k

(5)(8) + (3)(-9) + (-2)(11) = 40 -  27 -  22

  = -9

a #  b =

Exercises

If and find 
and verify that .

If and ,
find .

Show that the vectors and are
perpendicular.

2i - j1
2  
i + j3

p #  q
q = 3i - 2j + 5kp = i + 8j + 7k2

a #  b = b #  a
a #  bb = 3i + 2ja = 2i - 5j1 The work done by a force F in moving a body

through a displacement r is given by .
A force causes a body to move
from the point with coordinates (1, 1, 2) to the
point (7, 3, 5).
(a) Find the displacement, r, of the body.
(b) Find the work done by the force.

F = 3i + 7k
F #  r

4

Solutions to exercises

222

-41 (a) (b) 39 units.6i + 2j + 3k4

3.5 Using the scalar product to find the angle between two vectors

Using the scalar product we can find the angle between two vectors.

Example 3.12
Find the angle between the vectors and of
Example 3.9.

b = 8i - 9j + 11ka = 5i + 3j - 2k

3.5 Using the scalar product to find the angle between two vectors 709
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710 Block 3 The scalar product, or dot product14

Solution
Their scalar product has already been found to be . The modulus of a is

The modulus of b is

Substituting these into the formula for the scalar product we find

from which

so that

In general, the angle between two vectors can be found from the following formula:

 = 95.14°

 u = cos-1(-0.0895)

 = -0.0895

 cos u =

-9

238 2266

 -9 = 238 2266 cos u

 a #  b = ƒa ƒ  ƒb ƒ  cos u

282
+ (-9)2

+ 112
= 2266

252
+ 32

+ (-2)2
= 238

-9

Key point cos u =

a #  b

ƒa ƒ  ƒb ƒ

 

Exercises

Find the angle between and
.q = -4i + 6j

p = 3i - j1 Find the angle between the vectors 
and .2i + j + 2k

i - j - k2

Solutions to exercises

142.1°1 101.1°2

M14_CROF5939_04_SE_C14.QXD  9/25/18  12:56 PM  Page 710



14

3.6 Using the scalar product to find the component of a vector 
in the direction of another vector

Consider Figure 3.4, which shows arbitrary vectors a and n. Let be a unit vector
in the direction of n.

nN

n

a

θ
O

Q

P

Projection of a onto n

n̂

Figure 3.4
OQ is the
component of a in
the direction of n.

Study the figure carefully and note that a line has been drawn from P to meet n at
right angles. The distance OQ is called the projection of a onto n, or alternatively
‘the component of a in the direction of n’. Simple trigonometry tells us that

so that the length of the projection is .
Now by taking the scalar product of a with the unit vector we find

We conclude that is the length of the projection OQ.a #  nN

 = ƒ a ƒ  cos u since ƒ nN ƒ = 1

 a #  nN = ƒ a ƒ  ƒ nN ƒ  cos u

nN
ƒ a ƒ  cos u

cos u =

length of projection OQ

ƒ a ƒ

 

Key point is the length of the projection of a onto n

alternatively

is the component of a in the direction of na #  nN

a #  nN

Example 3.13
Find the component of the vector in the direction of the vector

.

Solution
First we need a unit vector in the direction of n.

 =

1

226
 (i + 5j)

 nN =

n

ƒ n ƒ

n = i + 5j
a = 2i + 3j

3.6 Using the scalar product to find the component of a vector in the direction of another vector 711

M14_CROF5939_04_SE_C14.QXD  9/25/18  12:56 PM  Page 711



712 Block 3 The scalar product, or dot product14

Then the component of a in the direction of n is

This is illustrated in Figure 3.5.

 = 3.334

 =

17

226

 =

1

226
 (2 + 15)

 =

1

126
 (2i + 3j) #  (i + 5j)

 a #  nN = (2i + 3j) #  
1

226
 (i + 5j)

y

xO

Length
� 3.334

n � i � 5 j

a � 2i � 3 j

Figure 3.5
The projection of a
onto n is 3.334.

a

n
n

A

B

O

Figure 3.6
OB is the
perpendicular
distance of the
plane from the
origin.

Example 3.14
Figure 3.6 shows a plane containing the point A with position vector a. The vector n
is a perpendicular, or normal, to the plane. Find an expression for the perpendicular
distance of the plane from the origin.

Solution
From the figure note that the perpendicular distance of the plane from the origin,
which is OB, is the projection of a onto n. Thus the perpendicular distance of the
plane from the origin is .

Example 3.15 The scalar product and digital signal recognition 
and identification

A problem arising in digital signal analysis is to attempt to compare a given but
unrecognised signal with a collection of known ones. Such recognition and identifi-
cation problems arise for example when astronomers interpret signals received from
outer space and attempt to identify the objects from which they originated, perhaps
stars or galaxies.

a #  nN
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If the unrecognised signal resembles one of the known ones sufficiently well it
may be possible to identify it. To quantify this resemblance we can make use of vec-
tor methods.

Suppose that the unrecognised digital signal is represented by the vector x as
shown in Figure 3.7 whereas the vectors , , . . . , represent known signals.
Usually these vectors are normalised, that is they are unit vectors. We seek the
particular unit vector that most closely resembles x. The ‘distance’ between the
unrecognised vector and any one of the known vectors, e say, is defined as

ƒx - e ƒ

eNe2e1

x

e2

e1

eN

Figure 3.7

We would like to choose the particular e for which this distance is minimal. First
consider the square of this distance . Recall that, for any vector a, then

So,

since e is a unit vector and the scalar product is commutative. We see that the square
distance, and hence the distance between x and e, is minimal when is maximal.
So, the unit vector most closely resembling x is the one having the largest scalar
product with x.

For example, suppose an unrecognised signal is represented by

while the known unit vectors are

Evaluating the three scalar products in turn we find

We conclude that x most closely resembles .e2

x  #  e1 = 4, x #  e2 =

16

26
= 6.53, x #  e3 =

8

3
= 2.67

e1 = (1, 0, 0), e2 =

1

26
 (1, 2, 1) and e3 =

1

3
 (2, 2,-1)

x = (4, 3, 6)

x #  e

 = ƒx ƒ
2

+ 1 - 2x #  e

 = x #  x + e #  e -  e #  x -  x #  e

 ƒx -  e ƒ
2 = (x -  e) #  (x -  e)

ƒ  a ƒ2 = a #  a.
ƒx - e ƒ

2

Exercises

(a) What is the component of the vector
in the direction of the vector i?2i + 7j

1 (b) What is the component of in the
direction of the vector j? Interpret your
results graphically.

2i + 7j

3.6 Using the scalar product to find the component of a vector in the direction of another vector 713
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714 Block 3 The scalar product, or dot product14

Find the component of the vector

in the direction of the vector

£2

1

7

≥
2

What is the projection of the vector 
onto the vector 3i - 2k?

2i - j + k3

£1

1

1

≥

Solutions to exercises

(a) 2 (b) 7. These are just the x and y
components.

10

13
2

1 4

113
3

End of block exercises

If and find 
and verify that .

Find the angle between and
.

If a and b are perpendicular, simplify
.

If and ,
find .

Show that the vectors and
are perpendicular.

Find the angle between the vectors 
and .5i + j - 3k

2i + j - k6

i - 4j + k
7i + 2j + k5

a #  b
b = i - 2j - 7ka = 5i + 3j + 7k4

15a + 2b2 # 1a + 7b23

q = 5i + 11j
p = 2i + j2

a #  b = b #  a
a #  bb = 3i - 3ja = 4i + 6j1 If

find .

Find the component of the vector 
in the direction of the vector .

Write down an expression for the component
of a in the direction of b.

A rhombus is a parallelogram in which all
sides have equal length. Use the scalar product
to show that the diagonals of a rhombus
intersect at .90°

10

9

i - j + 2k
7i + 2j - k8

r #  a

r = £x

y

z

≥ and a = £3

2

5

≥
7

Solutions to exercises

-504

5a2
+ 14b23

39°2

-61

a #  bN9

3

16
8

3x + 2y + 5z7

15°6
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BLOCK 4
The vector product, or cross product

4.1 Introduction

In this block we describe how to find the vector product of two vectors. Like the
scalar product its definition may seem strange when first met but it is defined in this
way because of its many applications. When multiplying vectors using the vector
product the result is always a vector. To understand how this vector is formed it is
helpful to consider first the right-handed screw rule.

4.2 The right-handed screw rule

Consider the two vectors a and b shown in Figure 4.1.

b

a

θ

Figure 4.1
Two vectors
separated by an

.angle u

The two vectors lie in a plane; this plane is shaded in Figure 4.1. Figure 4.2 shows
the same two vectors and the plane in which they lie together with a unit vector,
denoted , which is perpendicular to this plane. Imagine turning a right-handed
screw in the sense from a towards b as shown. A right-handed screw is one that when
turned clockwise enters the material into which it is being screwed. You will see
from Figure 4.2 that the screw will advance in the direction of .eN

eN

ê

b

a

Figure 4.2
A right-handed
screw turned from
a towards b will
advance in the
direction of .eN
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14 716 Block 4 The vector product, or cross product

Example 4.1
If a right-handed screw is turned from b towards a, in which direction will it
advance? Show this on a diagram similar to Figure 4.2.

Solution

b

a

Direction in which
the screw will advance

We are now in a position to describe the vector product.

4.3 Definition of the vector product

The result of finding the vector product of two vectors a and b is a vector of modulus
in the direction of , where is a unit vector perpendicular to the plane

containing a and b in a sense defined by the right-handed screw rule, as we imagine
turning the screwdriver from a towards b, as shown in Figure 4.3.

eNeNƒa ƒ  ƒb ƒ  sin u

Length |a| |b| sin θa � b

a

b

θ

Figure 4.3
The vector 
is perpendicular
to the plane
containing a and b.

a * b

The symbol we shall use for the vector product is the times , which is
why the vector product is also called the cross product. The quantity is read as
a cross b.

a * b
sign *

Key point Vector product

a * b = ƒa ƒ  ƒb ƒ  sin u eN
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Note that is the modulus of the vector product whereas gives the
direction.

Now study Figure 4.4, which is used to illustrate the calculation of . In
particular note the direction of arising through the application of the right-
handed screw rule.

b * a
b * a

eNƒa ƒ  ƒb ƒ  sin u

b

b � a

a

Figure 4.4
Calculation of

.b * a

We see that is not equal to because their directions are different. In
fact .

Example 4.2
If a and b are parallel, show that , the zero vector.

Solution
Use the definition: . What is the given that a and b are
parallel?

If a and b are parallel then the angle between them is zero. Consequently .
It follows that . Note that the result, 0, is the zero vector.

Note in particular the following important results:

a * b = 0
sin u = 0

u = 0°

angle ua * b = ƒa ƒ  ƒb ƒ  sin u eN

a * b = 0

a * b = -b * a
b * aa * b

Key point i * i = 0,  j * j = 0, k * k = 0

Example 4.3
Show that and find expressions for and .

Solution
Note that i and j are perpendicular so that the angle between them is . So the
modulus of is (1)(1) . The unit vector perpendicular to i and j in the
sense defined by the right-handed screw rule is k as shown in Figure 4.5. Therefore

as required.i * j = k

sin 90° = 1i * j
90°

k * ij * ki * j = k

4.3 Definition of the vector product 717
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14 718 Block 4 The vector product, or cross product

Similarly, by referring to Figure 4.5, you can verify that and .k * i = jj * k = i

Key point
j * i = -k, k * j = - i, i * k = - j

i * j = k, j * k = i, k * i = j

Exercises

Write down the definition of the vector
product of two vectors p and q. Illustrate the
definition with a diagram showing clearly the
direction of .

Explain why, for arbitrary vectors, is
not equal to .q * p

p * q2

p * q

1 Show that if a and b are parallel vectors then
their vector product is the zero vector.

3

4.4 Some properties of the vector product

The vector product has a number of properties that are necessary for further
development.

Non-commutativity

We have already seen that .

Distributivity

For three vectors a, b and c

This means that the vector product is distributive over addition.

a * (b + c) = a * b + a * c

a * b = -b * a

x

y

z

i

j

k

x

y

z

i

j

k

x

y

z

i

j

k

i � j � k j � k � i k � i � j
Figure 4.5
The vector k is
perpendicular to
both i and j.
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Example 4.4
Simplify .

Solution
Using the distributivity property,

which simplifies to k.

Multiplication by a scalar

For two vectors a and b, and a scalar k,

Example 4.5
Simplify .

Solution
Using this rule,

4.5 A formula for finding the vector product

We can use the properties of the vector product to develop a formula for finding the
vector product of two vectors given in cartesian form. Suppose
and ; then

Using the previous two Key points this expression simplifies to

a * b = (a2b3 - a3b2)i - (a1b3 - a3b1) j + (a1b2 - a2b1)k

 +  a3b1(k * i) + a3b2(k * j) + a3b3(k * k)

 +  a2b1( j * i) + a2b2( j * j) + a2b3( j * k)

 = a1b1(i * i) + a1b2(i * j) + a1b3(i * k)

 +  a3 
k * (b1i + b2 j + b3 

k)

 +  a2 j * (b1i + b2 j + b3 
k)

 = a1i * (b1i + b2 j + b3 
k)

 a * b = (a1i + a2 j + a3 
k) * (b1i + b2 j + b3 

k)

b = b1i + b2 j + b3k
a = a1i + a2 j + a3k

 = -5j

 = 5(- j)

 i * 5k = 5(i * k)

i * 5k

 = a * (kb)

  k (a * b) = (ka) * b

i * (i + j) = i * i + i * j

i * (i + j)

4.5 A formula for finding the vector product 719
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14 720 Block 4 The vector product, or cross product

Example 4.6
Evaluate the vector product if and .

Solution
Identifying , , , , , we find

Example 4.7
Evaluate the vector product where a and b are the vectors in Example 4.6.

Solution

Example 4.8
Use the Key point to find the vector product of and .

Solution
Note that in this example there are no k components so and are both zero.
Apply the formula:

-13kp * q =

b3a3

q = 2i - jp = 3i + 5 j

4i -  59j - 26k

b * a

 = -4i + 59j + 26k

 +  [(3)(4) -  (-2)(7)]k

 a * b = [(-2)(-8) -  (5)(4)]i -  [(3)(-8) -  (5)(7)] j

b3 = -8b2 = 4b1 = 7a3 = 5a2 = -2a1 = 3

b = 7i + 4 j - 8ka = 3i - 2 j + 5ka * b

Key point If and then 

a * b = (a2b3 - a3b2)i - (a1b3 - a3b1) j + (a1b2 - a2b1)k

b = b1i + b2 j + b3 ka = a1i + a2  
j + a3 k

Exercises

Find the vector product of and
.

(a) Find when and
.

(b) Verify that .a * b = -b * a
b = -7i + 2 j

a = 13 ja * b2

q = 4i + 7j
p = -2i - 3 j1 Find when and

.r2 = -7i + 2 j
r1 = 2i + 3 jƒ r1 * r2 ƒ3

Solutions to exercises

(a) 91k2

-2k1 253
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4.6 Using determinants to evaluate a vector product

Evaluation of a vector product using the previous formula is very cumbersome. A
more convenient and easily remembered method is to use determinants.

The vector product of two vectors and 
can be found by evaluating the determinant:

To find the i component of the vector product, imagine crossing out the row and col-
umn containing i and finding the determinant of what is left, that is

The resulting number is the i component of the vector product. The j component is
found by crossing out the row and column containing j and evaluating

and then changing the sign of the result. Finally the k component is found by cross-
ing out the row and column containing k and evaluating

` a1 a2

b1 b2
 ` = a1b2 - a2b1

` a1 a3

b1 b3
 ` = a1b3 - a3b1

` a2 a3

b2 b3
 ` = a2b3 - a3b2

a * b = 3 i j k
a1 a2 a3

b1 b2 b3

 3
b = b1i + b2 j + b3ka = a1i + a2 j + a3k

Key point If and then

 = (a2b3 - a3b2)i - (a1b3 - a3b1)j + (a1b2 - a2b1)k

 a * b = 3 i j k
a1 a2 a3

b1 b2 b3

3
b = b1i + b2 j + b3 ka = a1i + a2 j + a3 k

Example 4.9
Find the vector product of and .

Solution
The two given vectors are represented in the determinant

Evaluating this determinant we obtain

 = 4i + 12 j + 18k

 a * b = [-8 - (-12)]i - (6 - 18) j + [-18 - (-36)]k

3 i j k
3 -4 2

9 -6 2

 3

b = 9i - 6 j + 2ka = 3i - 4 j + 2k

4.6 Using determinants to evaluate a vector product 721
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14 722 Block 4 The vector product, or cross product

Example 4.10
Find the vector product of and .

Solution

Example 4.11 Mechanical Engineering – The moment of a force
Figure 4.6 shows a force F applied to an object causing the object to rotate around a
fixed axis. The force is applied at a point with position vector r. The moment of the
force about O is defined to be the vector given by

MO = r * F

MO

-8i + 16 j + 20k3 i j k 3 =

b = i + 3j - 2ka = 7i + j + 2k

O r
F

Figure 4.6
The moment of a
force is found by
evaluating a vector
product.

The magnitude of is a measure of the turning effect of the force.
(a) Calculate the moment about O of the force newtons applied

at the point with position vector .
(b) Calculate its magnitude.

Solution
(a)

(b) The magnitude of this moment is 

Example 4.12 The area of a triangle
The area of the triangle shown in Figure 4.7 is given by the formula area

. Show that an equivalent formula is

area =
1
2 ƒ AB

:
* AC

:
ƒ

1
2bc sin A

=

232
+ (-6)2

= 245 N m.

 = 3i - 6k

 MO = 3 i j k
0 3 0

2 3 1

 3

3j
F = 2i + 3 j + k

 MO
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Solution
From the definition of the vector product

since A is the angle between and . Furthermore and .
Therefore

as required.

Example 4.13
Find the area of the triangle that has vertices at the following points: ,

and .

Solution
To apply the result of Example 4.12 we need to find the vectors and .

We are given the coordinates of the vertices. Write down the position vectors of
these points.

Hence find vectors and .

Now find and apply the formula of Example 4.12.

11
2  22area =

- i - 4j - 15kAB
:

* AC
:

=

AB
:

* AC
:

AB
:

= i - 4j + k and AC
:

= -2i -  7j + 2k

AC
:

AB
:

OA
:

= 7j + k, OB
:

= i + 3j + 2k and OC
:

= -2i + 3k

AC
:

AB
:

C(-2, 0, 3)B(1, 3, 2)
A(0, 7, 1)

 =
1
2 ƒAB

:
* AC

:
ƒ

 area =
1
2 bc sin A

ƒ AC
:

ƒ = bƒ AB
:

ƒ = cAC
:

AB
:

ƒAB
:

* AC
:

ƒ = ƒAB
:

ƒ ƒAC
:

ƒsin A

c

b

aA

C

BFigure 4.7
The area of a
triangle can be
found by
evaluating a vector
product.

4.6 Using determinants to evaluate a vector product 723
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14 724 Block 4 The vector product, or cross product

Exercises

If and find 
.

If and find

If and 
find . Show that .

Points A, B and C have coordinates ,
and respectively. Find the 

vector product .

Find a vector that is perpendicular to both
of the vectors and

. Hence find a unit vector that
is perpendicular to both a and b.

Find a vector that is perpendicular to the plane
containing and .

For the vectors 
and 

evaluate and .(a * b) * ca * (b * c)
c = 3i - 3j + 4k,b = i - 2j + k

a = 4i + 2j + k,7

2i + j6i + k
6

b = i + j - 2k
a = i + 2j + 7k

5

AB
:

* AC
:

(1, 0, -1)(3, 1, 3)
(9, 1, -2)4

a * b Z b * aa * b
b = 4i + 3j + 2ka = i + 2j + 3k3

a * b.b = 7i + 3 ja = 12i + 13 j2

p * q
q = 5i - j - kp = 3i + 2 j - k1

Deduce that, in general, the vector product is
not associative.

A force of magnitude 3 units acts at the point
with coordinates . The force is applied
in the direction of the vector . Find
the moment of the force about O. What is the
moment of the force about the point with
coordinates ?

Find the area of the triangle with vertices at the
points with coordinates , 
and .

For the vectors ,
and ,

evaluate
(a)
(b)
Deduce that (a #  c)b - (b #  c)a = (a * b) * c.

(a * b) * c
(a #  c)b - (b #  c)a

c = i - 3j - kb = 2i - 2j - 5k
a = i + 2j + 3k10

(8, 1, 1)
(4, -3, 2)(1, 2, 3)

9

(1, 2, 3)

3i - j + 4k
(1, 2, 3)

8

Solutions to exercises

-11i + 9j - k, 
1

2203
 (-11i + 9j - k)5

5i - 34j + 6k4

-5i + 10j - 5k3

-55k2

-3i - 2j - 13k1

-29i - 10j + k10

1
2211069

1

226
 (33i + 15j - 21k), 08

7i - 17j + 6k, -42i - 46j - 3k7

- i + 2j + 6k6

Computer and calculator exercises

Scalar and vector products can be readily calculated
using software. For example, the Matlab instructions

a=[1 -2 3]
b=[2 -1 1]
dot(a,b)
cross(a,b)

define the vectors a = i - 2j + 3k and b = 2i - j + k
and then calculate their scalar and vector products,
yielding 7 and i + 5j + 3k, respectively. The
following Maple commands achieve the same result:
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Solutions to exercises

1

214
 (-2i - 3j + k)4

8i + 8j - 8k3

-2i - 10j + 26k2

18j1

1
224587

422i + 422 j - 1422k6

-36i + 12k, -34i - 4j + 18k5

4.6 Using determinants to evaluate a vector product 725

Solutions to exercises

(a) 2, (b) -73i - 2j + 23k.1

End of block exercises

Find the vector product of and
.

If and 
find . Show that .

Points A, B and C have coordinates ,
and respectively. Find the

vector product .

Find a unit vector that is perpendicular to the
plane containing and .2i + j + 7ki + 2k

4

AB
:

* AC
:(0, 1, -1)(4, 1, 3)

(1, 3, 2)3

a * b Z b * aa * b
b = -4i + 6j + 2ka = 3i + 2j + k2

b = i - 7k
a = 2i + 4k1 For the vectors 

and , evaluate
and .

A force of magnitude 4 units acts at the point
with coordinates . The force is applied
in the direction of the vector . Find the
moment of the force about O.

Find the area of the triangle with vertices at the
points with coordinates , 
and .(1, 1, 1)

(5, 0, 5)(4, -3, 2)
7

i - j
(4, 3, 2)

6

(a * b) * ca * (b * c)
c = 2i + j + 4kb = -3i + k

a = i - 2j + 3k, 5

> with(LinearAlgebra);
a:= Vector[row]([1,-2,3]);
b:= Vector[row]([2,-1,1]);
DotProduct(a,b);
CrossProduct(a,b);

You should consult the on-line help for more details
about these and other vector commands.

For the vectors a = i - 2j + 3k, b = 2i - j +

k and c = 7i + 2j - 5k, use the software to
which you have access to find:
(a) the scalar triple product 
(b) the vector triple product
Verify Lagrange’s formula that states

a * 1b * c2 = b1a – c2 - c1a – b2

a * 1b * c2.
a  – 1b * c2.

1
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BLOCK 5
The vector equation of a line and a plane

5.1 Introduction

Vectors are very convenient tools for analysing lines and planes in three dimensions.
In this block you will learn how to formulate the vector equation of a line and the
vector equation of a plane. Finding the equation of a plane relies heavily on an
understanding of the scalar product, which should be revised if necessary.

5.2 The vector equation of a line

You will recall that in two dimensions a straight line has an equation of the form
, such as . Values of x and y that satisfy this equation corre-

spond to points that lie on the line. Lines in three dimensions are conveniently
described using vectors. If we are given a point through which a line must pass, and
if we can find a vector in the direction of the line, then the line can be described
uniquely.

Consider the straight line APB shown in Figure 5.1.

y = 3x - 2y = mx + c

A P
B

a
r

b

O

Figure 5.1
A straight line
passing through
points A and B.

Points A and B are fixed and known points on the line, and have position vectors
a and b respectively. Point P is any other arbitrary and variable point on the line, and
has position vector r. Note that and are parallel. It is possible to express the
position vector of the arbitrary point in terms of the vectors a and b in what is called
the vector equation of the line. We shall develop this equation in stages.

Example 5.1
Refer to Figure 5.1. Using the triangle law of vector addition it is possible to write an
expression for in terms of a and b. Do this now.AB

:

AP
:

AB
:
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5.2 The vector equation of a line 727 14

Solution

Example 5.2
Refer to Figure 5.1. Given and are parallel, write down a relationship
between these vectors.

Solution

Using the triangle law of vector addition we can write

so that

This is the vector equation of the line.

r = a + k(b - a)

OP
:

= OA
:

+ AP
:

AP
:

= kAB
:

, for some scalar k

AP
:

AB
:

a + AB
:

= b so AB
:

= b - a

Key point

is the vector equation of the line passing through the points with position vectors
a and b.

r = a + k(b - a)

By varying the value of k we can move to any point on the line. For example, when

If k lies between 0 and 1, the point P lies on the line between A and B. If k is greater
than 1, the point P lies on the line beyond B. If k is less than 0, the point P lies on the
line beyond A on the opposite side.

Note that the vector is a vector in the direction of the line.

Example 5.3
Write down the vector equation of the line that passes through the points A and B
with position vectors and respectively.

Solution
Note that

The equation of the line is then

 = (3i + 2 j) + k(4i + 3j)
r = a + k(b - a)

 = 4i + 3j
b - a = (7i + 5j) - (3i + 2j)

b = 7i + 5ja = 3i + 2 j

b - a

  k = 1, r = b, point B
  k = 0, r = a, point A
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Alternatively, using column vector notation we could write the equation of the
line as

This gives the position vector of any point on the line. Note that if then

that is point A. If then

which is point B. Any other value of k will give another point on the line. For
example, if we find

which is a point beyond B.

Example 5.4
Write down the vector equation of the line that passes through the points with pos-
ition vectors and .

Solution
Using column vector notation write down .

The equation of the line is then

Example 5.5
On a diagram mark two points M and N. Sketch a straight line through the points M
and N, and show their respective position vectors m and n. On your sketch mark an
arbitrary point on the line, having position vector r. Write down the vector equation
of the line MN.

+ kP
-3

3

-7
QP

5

-2

3
Q

 

r = a + k1b - a2 =

= P
-3

3

-7
Q-  P

5

-2

3
QP

2

1

-4
Q

 

b - a

b = 2i + j - 4ka = 5i - 2j + 3k

r = a11

8
b

k = 2

 = a7

5
b

 r = a3

2
b + a4

3
b

k = 1

r = a3

2
b

k = 0

r = a3

2
b + ka4

3
b

728 Block 5 The vector equation of a line and a plane14
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5.2 The vector equation of a line 729 1414

Solution

On occasions it is useful to convert the vector form of the equation of a straight line
into cartesian form. Suppose we write

Then

Equating the individual components we find

Now, since each expression on the right is equal to k we can write

This is the cartesian form of the equation of the straight line that passes through the
points with coordinates and .(b1, b2, b3)(a1, a2, a3)

x - a1

b1 - a1
=

y - a2

b2 - a2
=

z - a3

b3 - a3

 z = a3 + k(b3 - a3), or equivalently k =

z - a3

b3 - a3

 y = a2 + k(b2 - a2), or equivalently k =

y - a2

b2 - a2

 x = a1 + k(b1 - a1), or equivalently k =

x - a1

b1 - a1

 = P
a1 + k(b1 - a1)

a2 + k(b2 - a2)

a3 + k(b3 - a3)
Q

  P
x

y

z
Q = P

a1

a2

a3
Q + kP

b1 - a1

b2 - a2

b3 - a3
Q

 r = a + k(b - a)

 a = P
a1

a2

a3
Q , b = P

b1

b2

b3
Q and r = P

x

y

z
Q

r = m + k(n - m)

m

M P
N

r
n

O
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Example 5.6
(a) Write down the cartesian form of the equation of the straight line that passes

through the two points and .
(b) State the equivalent vector equation.

Solution

(a)

that is

(b) The vector equation is

 = P
9

3

-2
Q + kJ P

4

5

-1
Q - P

9

3

-2
Q K = P

9

3

-2
Q + kP

-5

2

1
Q

 r = a + k(b - a)

x - 9

-5
=

y - 3

2
=

z + 2

1

x -  9

4 -  9
=

y -  3

5 -  3
=

z -  (-2)

-1 -  (-2)

(4, 5, -1)(9, 3, -2)

Key point

is the cartesian form of the equation of the straight line that passes through the
points with coordinates and .(b1, b2, b3)(a1, a2, a3)

x - a1

b1 - a1
=

y - a2

b2 - a2
=

z - a3

b3 - a3

Exercises

(a) Write down the vector joining the
points A and B with coordinates (3, 2, 7)
and respectively.

(b) Find the equation of the straight line
through A and B.

Write down the vector equation of the line
passing through the points with position
vectors

Find also the cartesian equation of this line.

Find the vector equation of the line passing
through (9, 1, 2) and which is parallel to the
vector (1, 1, 1).

3

 q = -3i + 2j + 2k
 p = 3i + 7j - 2k

2

(-1, 2, 3)

AB
:

1 Line I has equation

Line II has equation

Different values of k give different points on
line I. Similarly, different values of l give
different points on line II. If the two lines
intersect then at the point of intersection.
If you can find values of k and l which satisfy
this condition then the two lines intersect. Show
the lines intersect by finding these values and
hence find the point of intersection.

r1 = r2

r2 = P
-5

8

1
Q + lP

-6

7

0
Q

r1 = P
2

3

5
Q + kP

1

2

4
Q

4

730 Block 5 The vector equation of a line and a plane

M14_CROF5939_04_SE_C14.QXD  9/25/18  12:57 PM  Page 730



5.3 The vector equation of a plane 731 14

Solutions to exercises

O

A
P

n

a
r

Figure 5.2
This plane passes
through A and is
perpendicular to n.

(a) (b) 

;

cartesian form .
x - 3

-6
=

y - 7

-5
=

z + 2

4

r = £ 3

7

-2

≥ + k£ -6

-5

4

≥2

r = £3

2

7

≥ + k£ -4

0

-4

≥-4i - 4k1

and the point of intersection is
.(1, 1, 1)

k = l = -14

r = £9

1

2

≥ + k£1

1

1

≥3

5.3 The vector equation of a plane

Consider the plane shown in Figure 5.2.

Suppose that A is a known point in the plane and has position vector a. Suppose
that P is any other arbitrary point in the plane with position vector r. Clearly the vec-
tor must lie in the plane. Note that

Also shown in Figure 5.2 is a vector that is perpendicular to the plane and denoted by
n. Now, because and n are perpendicular their scalar product must equal zero,
that is

or alternatively, by removing the brackets and rearranging,

r #  n = a #  n

(r - a)  # n = 0
 AP #
:

n = 0

AP
:

AP
:

= r - a

AP
:
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This is the equation of the plane passing through the point with position vector a and
perpendicular to n.

Key point A plane passing through the point with position vector a and being perpendicular to the
vector n is given by

r # n = a # n

The previous result is valid whether or not n is a unit vector. However, if is a unit
vector then represents the perpendicular distance from the origin to the plane,
which we usually denote by d. This was shown in Block 3. Hence we can write

This is the vector equation of a plane with unit normal and which is a perpendic-
ular distance d from O.

nN

r #  nN = d

a #  nN
nN

Key point A plane with unit normal and which is a perpendicular distance d from O is given by

r #  nN = d

nN

The cartesian form of these equations is obtained by letting and
evaluating the scalar product.

Example 5.7
(a) Find the vector equation of the plane that passes through the point with position

vector and which is perpendicular to .
(b) Find the cartesian equation of this plane.

Solution
In this example, and the normal is .
(a) Using the previous results we can write down the equation

(b) Writing r as we have the cartesian form

so that

x + z = 8

(xi + yj + zk) # (i + k) = 8

xi + yj + zk

 = 8
 r #  (i + k) = (3i + 2j + 5k) # (i + k)

r #  n = a #  n

n = i + ka = 3i + 2j + 5k

i + k3i + 2j + 5k

r = x i + y j + zk

732 Block 5 The vector equation of a line and a plane
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5.4 Intersection of a line and plane 733 14

5.4 Intersection of a line and plane

Given the equations of a line and a plane we can calculate their point of intersection.
Example 5.8 illustrates the method.

Example 5.8
A line, L, passes through A(3, 3, 1) and B(4, 7, -1). A plane, , passes through 

C(3, -1, 7). The normal to the plane has direction . Find the point of intersec-
tion of L and .

Solution
Consider the line, L, first. We develop the equation of the line. The direction of the
line is

The line passes through A(3, 3, 1) and so the equation of the line, L, is

The cartesian form of this equation is

(1)
(2)
(3)

We now develop the equation of the plane. Noting the normal to the plane and the
coordinates of the point C we may write the vector equation of the plane as

In cartesian form this is
x + 2z = 17 (4)

To find the point of intersection of the line and plane we solve equations (1) to (4)
simultaneously. Substituting (1) and (3) into (4) yields

(3 + k) + 2(1 - 2k) = 17

from which k = -4. Hence x = -1, y = -13, z = 9 is the point of intersection.

£x

y

z

≥  . £1

0

2

≥  =  £ 3

-1

7

≥  . £1

0

2

≥ = 17

z = 1 - 2k
y = 3 + 4k
x = 3 + k

r = £x

y

z

≥ = £3

3

1

≥ + k£ 1

4

-2

≥

£ 4

7

-1

≥ - £3

3

1

≥ = £ 1

4

-2

≥AB
!

= b - a =

ß

£1

0

2

≥
ß
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5.5 Intersection of two planes

Two planes, which are not parallel, intersect in a line. The equations of the planes
(in cartesian form) are solved simultaneously to find the equation of the line of
intersection.

Example 5.9
The equations of two planes are given by

x - 2y - z = 0 (1)

x + 3y + 2z = 1 (2)

Find their line of intersection.

Solution
The system of equations given by (1) and (2) can be solved by Gaussian elimination
(see Chapter 13, Block 3). The augmented matrix is

The row-echelon form of this augmented matrix is

The second row states

Let y = k, that is the free variable. Then

Using the first row we find

Writing the expressions for x, y and z in the form of a vector equation gives

This is the required vector equation of the line. By varying the value of k we can
move to any point on the line. It is worth noting that we can rewrite this in a slightly
simpler form. Note that when k = -1 then the equation of the line reduces to

r = £x

y

z

≥ = £ 0

-1

2

≥

r = £x

y

z

≥ = £ 1
3

0
1
3

≥ + k£ 1
3

1

-
5
3

≥

x =

k + 1

3

z =

1 - 5k

3

y +

3

5
 z =

1

5

a1 -2 -1 0

0 1 3
5

1
5

b

a1 -2 -1 0

1 3 2 1
b

734 Block 5 The vector equation of a line and a plane14
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Hence (0, -1, 2) is a point on the line. We also note that the direction, ,

is the same direction as . So the equation of the line may be written as

5.6 Angle between a line and a plane

Figure 5.3 shows a plane with normal n. A line L intersects the plane at A. We
wish to calculate the acute angle between the line and the plane: this is denoted 
in Figure 5.3.

u

r = £x

y

z

≥ = £ 0

-1

2

≥ + k£ 1

3

-5

≥
£ 1

3

-5

≥
£ 1

3

1

-
5
3

≥
5.6 Angle between a line and a plane 735 14

θ
α

A

L

nFigure 5.3
Finding the angle
between a line, L,
and a plane.

Given the equation of the plane we can determine the normal n. Knowing the
direction of the line we can use the scalar product to determine the acute angle
between the line, L, and the normal, n. This is denoted in Figure 5.3. Observe that

. Example 5.10 illustrates the method.

Example 5.10
A plane has cartesian equation

A line has vector equation

r = £3

3

1

≥ + k£ 6

- 2

1

≥
x + 2z = 17

u = 90° - a

a
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736 Block 5 The vector equation of a line and a plane14

(a) Determine the normal to the plane.
(b) Use the scalar product to calculate the acute angle between the line and the

normal to the plane.
(c) Hence determine the angle at which the line intersects the plane.

Solution
(a) We write the equation of the plane in vector form as

From this vector form we see that the normal to the plane is .

(b) We now find the scalar product of the normal to the plane and the direction of
the line.

The modulus of is the modulus of is . Hence, again 

using the scalar product, we see

from which .
(c) The angle between the line and the plane is then given by

.u = 90° - 56° = 34°

a = 56°
25241 cos a = 8

241£ 6

-2

1

≥25;£1

0

2

≥
£1

0

2

≥  . £ 6

-2

1

≥ = 6 + 0 + 2 = 8

£1

0

2

≥
£x

y

z

≥  . £1

0

2

≥ = 17

Exercises

Find the equation of a plane that is normal to
and which is a distance 1 from

the origin.

Find the equation of a plane that passes
through and which is normal to the
vector .

A plane passes through the points A, B and C
with coordinates , and

respectively.(3, 1, 1)
(-2, 5, 0)(1, 0, 1)

3

i + 2j - 3k
(8, 1, 0)

2

8i + 9j + k
1 (a) Write down and .

(b) Find the vector product .AB
:

* AC
:

AC
:

AB
:

Key point Let be the angle between a line and the normal to a plane. Then the angle, , between
the line and plane is given by

u = 90° - a

ua

(c) Comment upon the direction of 
in relation to the plane through A, B and C.

(d) Find the vector and cartesian forms of the
equation of the plane containing A, B and C.

AB
:

* AC
:
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5.6 Angle between a line and a plane 737 14

Solutions to exercises

, or

, that is

r #  £ 1

2

-3

≥ = 10

r #  £ 1

2

-3

≥ = £8

1

0

≥  #  £ 1

2

-3

≥2

8x + 9y + z = 2146

r #  
1

2146
£8

9

1

≥ = 11
(a) , (b) 

(c) it is normal to the plane

(d) ,

x - 2y - 13z = -12

r #  £ 1

-2

-13

≥ = -12

i - 2j - 13k2i + j-3i + 5j - k3

End of block exercises

(a) Write down the vector joining the
points A and B with coordinates 
and respectively.

(b) Find the equation of the straight line
through A and B.

Write down the vector equation of the line
passing through the points with position vectors

Find the cartesian equation of this line.

Find the vector equation of the line passing
through and which is parallel to the
vector .

Find the vector equation of the line passing
through and which is parallel to the 

unit vector .

Find the equation of a plane that passes
through and which is normal to the
vector .3i - 3j - k

(2, -3, 1)
5

1

214 
 (1, 2, 3)

(2, 1, 2)
4

(1, 2, 3)
(2, 1, 2)

3

 q = 3i + 7j - k

 p = 5i + 3j - 2k

2

(5, 2, 3)
(-2, 1, 3)

AB
:

1 Find the equation of a plane that passes
through the origin and which is normal to the
vector .

What is the distance of the plane

from the origin?

(a) A plane is given by

Find the distance of this plane from the
origin.

(b) A second plane passes through the point
and is parallel to the plane .

Find its distance from the origin.
(c) Deduce the distance from the point

to the plane .

Write the plane in vector
form.

3x - 3y - z = 149

ß(3, 2, 1)

ß(3, 2, 1)

r #  £1

2

1

≥ = 6

ß8

r #  £3

2

1

≥ = 5

7

5i + j - k

6
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Solutions to exercises

(a) (b) 

same as 34

r = £2

1

2

≥ + k£1

2

3

≥3

x - 5

-2
=

y - 3

4
=

z + 2

1

r = £ 5

3

-2

≥ + k£ -2

4

1

≥ ;2

r = £ -2

1

3

≥ + k£7

1

0

≥7i + j1

(a) (b) (c) 

r #  £ 3

-3

-1

≥ = 149

2

26

8

26

6

26
8

5

214
7

r #  £ 5

1

-1

≥ = 06

r #  £ 3

-3

-1

≥ = 145

End of chapter exercises

Show on a diagram three arbitrary vectors p, q
and r. Using the triangle law of addition verify
the associativity rule

A force of 23 newtons acts at an angle of 
below the horizontal. Resolve this force into
two components, one vertical and one
horizontal.

On a diagram show the arbitrary vectors p and
q. Then show the following:
(a) (b) (c) 
(d) 4q (e) 

State the position vectors of the points with
coordinates and .

If A has coordinates and B has

coordinates find and .

Find the modulus of the vector

p = 2i - j + 5k

6

ƒ AB
:

ƒAB
:

(-2, 1, 9)

(4, 3, 0)5

(-4, 0, 4)(9, 1, -1)
4

-2q
q - pp - qp + q

3

20°2

p + (q + r) = (p + q) + r

1 If A has coordinates and B has
coordinates find the direction ratio of 

the vector . Find its direction cosines l, m
and n and verify that .

Find the angle between the vectors 
and .

Find the projection of the vector 
onto the vector .

Points A, B and C have position vectors
, and . Find

(a) the equation of the plane containing A, B
and C

(b) the area of the triangle ABC.

Find the equation of the plane with normal j
that is a distance 2 from the origin.

If and 
find
(a) (b) (c) (d) 
(e) ƒ b - a ƒ

aNƒ b ƒb - 3aa + b

b = 13i - j - ka = 3i + j - 2k12

11

(9, 0, 2)(8, 1, 1)(9, 1, 1)
10

i - j + 2k
6i + j + 5k9

2i + j + k
12i - j8

l2 + m2
+ n2

= 1
AB
:
(2, 0, 2)

(-4, 2, 1)7

738 Block 5 The vector equation of a line and a plane
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End of chapter exercises 739 14

Given that and find 
and interpret this result geometrically.

Find the work done by a force of magnitude
10 newtons acting in the direction of the vector

if it moves a particle from the
point to the point .

Given three vectors a, b and c, their triple
scalar product is defined to be . It
can be shown that the modulus of this is the
volume of the parallelepiped formed by the
three vectors. Find the volume of the
parallelepiped formed by the three vectors

, and
.

If the triple scalar product is equal
to zero, then
(i) , or , or or
(ii) two of the vectors are parallel, or
(iii) the three vectors lie in the same plane

(they are said to be coplanar).

c = 0b = 0a = 0

(a * b) # c16

c = 2i + 5j + k
b = i + 2j - 2ka = 3i + j - 2k

(a * b) # c
15

(3, 1, 2)(1, 1, 1)
3i + j + 8k

14

p # qq = 7kp = 2i + 2j13 Show that the vectors 
, , 

are coplanar.

Given three vectors a, b and c, their triple
vector product is defined to be .
For the vectors ,

and 
verify that

Find the volume of the parallelepiped whose
edges are represented by the vectors

, and .

If

show that .a #  b * c = 32

a = £3

2

1

≥ ,   b = £4

3

4

≥    and c = £8

1

0

≥
19

-2 j + k2i12i + j + k

18

(a * b) * c = (a #  c)b - (b #  c)a

c = 2i - 2 j + 3kb = 2i - j + 7k
a = 4i + 2 j + k

(a * b) * c
17

i + 2 j - 3k3i - 4j + 5k2i - j + k

Solutions to exercises

21.6 N horiz., 7.9 N vert. downwards

, 

, 11

, , , 

(a) (b) 
22

2
r #  £0

1

1

≥ = 210

15

26
9

38.8°8

1

241
-

2

241

6

241
6: -2:17

2306

-6i - 2j + 9k5

-4i + 4k9i + j - k4

2

(a) (b) (c) 

(d) (e) 

0, vectors are perpendicular

29

618

15

140

274
= 16.314

13

2105
1

214
 (3i + j - 2k)

32194i - 4 j + 5k16i - 3k12

y = 211
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Chapter 15
Differentiation

Differentiation is one of the most important processes in engineering
mathematics. It is the study of the way in which functions change.
The function may represent pressure, stress, volume or some other
physical variable. For example, the pressure of a vessel may depend
upon temperature. As the temperature of the vessel increases, then so
does the pressure. Engineers often need to know the rate at which
such a variable changes.

Block 1 explains how to calculate the rate of change of a function, y(x),
across a range of values of the input variable, x. The rate of change of
y(x) at a single point is then developed. This requires the introduction
of the idea of taking limits, which is also important in Chapter 18 on
the applications of integration.

In practice, most people use a standard table to differentiate functions,
and how this is done is explained in Block 2. The chapter closes with a
study of repeated differentiation.
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Chapter 15 contents

Block 1 Interpretation of a derivative

Block 2 Using a table of derivatives

Block 3 Higher derivatives

End of chapter exercises
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BLOCK 1
Interpretation of a derivative

1.1 Introduction

Engineers are often interested in the rate at which some variable is changing. For
example, an engineer needs to know the rate at which the pressure in a vessel is
changing, the rate at which the voltage across a capacitor is changing, or the rate at
which the temperature is changing in a chemical reaction. Rapid rates of change of a
variable may indicate that a system is not operating normally and is approaching
critical values. Alarms may be triggered.

Rates of change may be positive, negative or zero. A positive rate of change means
that the variable is increasing; a negative rate of change means that the variable is
decreasing. A zero rate of change means that the variable is not changing.

Consider Figure 1.1, which illustrates a variable, y(x).

O�1�2�3�4�5 1 2 3 4 5

y

x

Figure 1.1
The function
y(x) changes at
different rates for
different values
of x.

Between and is increasing slowly. Across this interval the rate
of change of y is small and positive. Between and , y is increas-
ing more rapidly; the rate of change of y is positive and fairly large. Between 

and , y is increasing very rapidly and so the rate of change is positive
and large. From to , y decreases rapidly; the rate of change is large
and negative. From to , y is constant and so the rate of change on this
interval is zero.

The technique for calculating rate of change is called differentiation. Often it is
not sufficient to describe a rate of change as, for example, ‘positive and large’ or
‘negative and quite small’. A precise value is needed. Use of differentiation provides
a precise value or expression for the rate of change of a function.

x = 5x = 3
x = 3x = 2

x = 2x = 1

x = 1x = -3
x = -3, yx = -5
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1.2 Average rate of change across an interval 743 15

1.2 Average rate of change across an interval

We see from Figure 1.1 that a function can have different rates of change at different
points on its graph. We begin by defining and then calculating the average rate of
change of a function across an interval. Figure 1.2 shows a function, y(x), and values

, , and .
Consider x increasing from to . The change in x is . As x increases

from to , then y increases from to . The change in y is .
Then the average rate of change of y across the interval is

From Figure 1.2 we see that , which is also the gradient of the straight
line or chord AB. Hence we see that the average rate of change across an interval is
identical to the gradient of the chord across that interval.

BC
AC = tan u

 =

BC

AC
 

change in y

change in x
=

y(x2) - y(x1)

x2 - x1

y(x2) - y(x1)y(x2)y(x1)x2x1

x2 - x1x2x1

y(x2)y(x1)x2x1

y

x
x1 x2

y(x1)

y(x2)

A

B

Cθ

y(x2) � y(x1)

y(x)

x2 � x1

Figure 1.2
Average rate
of change �

.
y(x2) - y(x1)

x2 - x1

Key point

 = gradient of chord

average rate of change of y =

change in y

change in x
 

Example 1.1
Calculate the average rate of change of across the interval
(a) to 
(b) to 

Solution
(a) Change in .

When , . When , . Hence the change in y
is . So

 = 5

  average rate of change across interval [1, 4] =
15
3

16 - 1 = 15
y = 42

= 16x = 4y = 12
= 1x = 1

x = 4 - 1 = 3

x = 0x = -2
x = 4x = 1

y = x2
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744 Block 1 Interpretation of a derivative15

This means that across the interval [1, 4], on average the y value increases by 5
for every 1 unit increase in x.

(b) Change in . We have and so the
change in y is . Hence

On average, across the interval to , y decreases by 2 units for
every 1 unit increase in x.

Example 1.2 Electrical Engineering – Voltage across a capacitor
The voltage, , across a capacitor varies with time, t, according to

Find the average rate of change of voltage as time varies
(a) from to 
(b) from to 

Solution
(a) Change in .

When , .

When , 

So

average rate of change of 

(b) Change in 

So

average rate of change of across [1, 3] 

Across the interval from to , the voltage is decreasing but at a slower
rate than across the interval from to .t = 2t = 0

t = 3t = 1

3.0996 - 3.7358

2
= -0.3181

=  n(t)

3 + 2e- 3
= 3.0996n(3) =

 = 3.7358

n(1) = 3 + 2e-1

3 - 1 = 2t =

3.2707 - 5

2
= -0.8647

n(t) =

3 + 2e- 2
= 3.2707n =t = 2

n = 3 + 2e0
= 5t = 0

t = 2 - 0 = 2

t = 3t = 1
t = 2t = 0

n(t) = 3 + 2e-t

n(t)

x = 0x = -2

 = -2

   average rate of change =

-4

2

0 - 4 = -4
y(0) = 0y(-2) = 4x = 0 - (-2) = 2

M15_CROF5939_04_SE_C15.QXD  9/26/18  8:58 AM  Page 744



1.3 Rate of change at a point 745 15

1.3 Rate of change at a point

As mentioned earlier, we often need to know the rate of change of a function at a
point, and not simply an average rate of change across an interval.

Refer again to Figure 1.2. Suppose we wish to find the rate of change of y at the
point A. The average rate of change across the interval from to is
given by the gradient of the chord AB. This provides an approximation to the rate of
change at A.

Suppose the chord AB is extended on both sides, as shown in Figure 1.3. As B is
moved closer to A, the gradient of the chord provides a better approximation to the
rate of change at A.

Ultimately B is made coincident with A and then the chord AB becomes a tangent
to the curve at A. The gradient of this tangent gives the rate of change of y at A:

x = x2x = x1

Exercises

Calculate the average rate of change of
from to .

Calculate the average rate of change of
from to .

Calculate the average rate of change of
from to .

Calculate the average rate of change of

from to .x = -2x = -3r(x) =

1

x + 1

4

t = pt = 0i(t) = 50 sin t
3

t = 2t = 0h(t) = 2t2 - 2t + 1
2

x = 4x = 1y = x2
+ 2x

1 Calculate the average rate of change of
across (a) to ,

(b) to .

The temperature, T, of a vessel varies with
time, t, according to

Calculate the average rate of change of T from
to .t = 4t = 2

T(t) = 320 +

65

t2

6

t = 0t = -1
t = 3t = 1z(t) = 4 + 2t2

5

Solutions to exercises

7

2

03

2

1

(a) 8 (b) 

-6.0946

-25

-0.54

Key point  rate of change at a point = gradient of tangent to the curve at that point

Calculating the rate of change of a function at a point by measuring the gradient of
a tangent is usually not an accurate method. Consequently we develop an exact,
algebraic way of finding rates of change.
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746 Block 1 Interpretation of a derivative15

Consider the function y(x) as shown in Figure 1.4.

y

x
x1

A

x2

B
Extended chord AB

Tangent at A

Figure 1.3
The extended
chord ultimately
becomes the
tangent at A.

y

x
x

A

x � δx

B

y(x)

δx

Figure 1.4
As B approaches
A, .dx :  0

Let A be a point on the curve with coordinates (x, y(x)). B is a point on the curve
near to A. The x coordinate of B is . The term is pronounced ‘delta x’. It
represents a small change in the x direction. The y coordinate of B is . We
calculate the gradient of the chord AB:

The change in y, that is , is also written as . So

The gradient of AB gives the average rate of change of y(x) across the small interval
from x to . To calculate the rate of change of y(x) at A we require the gradient
of the tangent at A.

x + dx

 =

dy

dx

 gradient of AB =

y(x + dx) -  y(x)

dx

dyy(x + dx) - y(x)

 =

y(x + dx) -  y(x)

dx

 =

y(x + dx) -  y(x)

x + dx -  x

gradient of AB =

change in y

change in x

y(x + dx)
dxx + dx
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1.3 Rate of change at a point 747 15

Consider A as a fixed point and let B move along the curve towards A. At each
position of B we can calculate the gradient of the chord AB. As B gets closer to A,
the chord AB approximates more closely to the tangent at A. Also, as B approaches
A, the distance decreases. To find the gradient of the tangent at A we calculate the
gradient of the chord AB and let get smaller and smaller. We say tends to zero
and write this as .

As B approaches A, the x difference between A and B gets smaller, that is ,
and likewise the y difference, also gets smaller, so . However, the gradient 

of AB, given by the ratio , approaches a definite value, called a limit. So we seek 

the limit of as . We write this as

Note that ‘limit’ has been shortened to ‘lim’.
In summary we have

lim
dx:0

  
dy

dx

dx : 0
dy

dx

dy

dx

dy : 0dy,
dx : 0

dx : 0
dxdx

dx

y

x
x

A

x � δx

B

y � x2

δx

(x � δx)2

y � x2

Figure 1.5
The gradient of the
tangent at A is
approximated by
the gradient of the
chord AB.

Key point

 = lim 
dx:0

 
dy

dx

rate of change of y = gradient of tangent

Let us see this applied to an example.

Example 1.3
Find the rate of change of .

Solution
Suppose A is the fixed point with coordinates (x, ) as shown in Figure 1.5. B is a
point on the curve near to A with coordinates . We calculate the
gradient of the chord AB.

 (x + dx, (x + dx)2)
x2

y(x) = x2

 = (x + dx)2
- x2

 Change in y = dy

Change in x = dx
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748 Block 1 Interpretation of a derivative15

This is the average rate of change of y(x) across the small interval from x to .
To obtain the gradient of the tangent at A, we let .

Hence the rate of change of is 2x.
For example, if , then A is the point (3, 9) and the rate of change of y at this

point is 6. Similarly if , A is the point ( , 1) and the rate of change of
.y is -2

-1x = -1
x = 3

x2

 = 2x

gradient of tangent at A = lim
dx:0 

(2x + dx) 

dx : 0
x + dx

 = 2x + dx

 =

2x(dx) + (dx)2

dx

gradient of chord AB =

dy

dx

 = 2x(dx) + (dx)2

 = x2
+ 2xdx + (dx)2

- x2

Exercises

Find the rate of change of .
Calculate the rate of change of y when x is
(a) 6 (b) 3 (c) (d) 0-2

y(x) = x2
+ 11 Find the rate of change of .

Calculate the rate of change of y when x is
(a) 6 (b) (c) 0-5

y(x) = x2
+ 2x2

Solutions to exercises

2x, (a) 12 (b) 6 (c) (d) 0-41 , (a) 14 (b) (c) 2-82x + 22

1.4 Terminology and notation

The process of finding the rate of change of a given function is called differentiation.
The function is said to be differentiated. If y is a function of the independent variable
x, we say that y is differentiated with respect to (w.r.t.) x. The rate of change of a func-
tion is also known as the derivative of the function.

There is a notation for writing down the derivative of a function. If the function is
y(x), we denote the derivative of y by

pronounced ‘dee y by dee x’. Hence

dy

dx
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1.4 Terminology and notation 749 15

Key point
lim
dx:0

 
dy

dx
=

dy

dx

Another notation for the derivative is simply , pronounced y dash. Similarly if the 

function is z(t) we write the derivative as or . When the independent variable is t,z¿

dz

dt

y¿

the derivative may also be denoted using the dot notation. Thus, for example, may 

be written as , pronounced ‘z dot’. Sometimes, instead of writing y, a function is
written in full: for example, to show the derivative of sin 5x we write

Example 1.4 Aeronautical Engineering – Banking of an aircraft
To make an aircraft travel on a circular horizontal path, the pilot must bank the air-
craft, as shown in Figure 1.6.

d(sin 5x)

dx
 

z
#

dz

dt

α
Horizontal

Figure 1.6
An aircraft must be
banked to 
fly in a circle.

The angle, , is a measure of the extent of the banking. Why must the aircraft be
banked to bring about a circular motion? To answer the question we firstly consider
a much simplified model – a body travelling on an anti-clockwise circular path,
radius , with constant speed .

Consider the body as it moves along the arc from P to Q. The angle, , is swept
out during this movement. Figure 1.7 illustrates this.

Then is the rate of change of , measured in radians per second. It is usually

denoted by and is termed the angular velocity,

If the body has a constant speed then likewise is constant. In 1 second the angle
swept out is and the distance travelled by the body is . From elementary mathe-
matics we know

giving

v = rv

 arc  length =  radius *  angle  at  centre  1in  radians2

vv

v

v =

du

dt
=  angular  velocity

v

u
du

dt

u

vr

a
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750 Block 1 Interpretation of a derivative15

At P the instantaneous direction of travel of the body is that of the tangent. Simi-
larly at Q, the direction is that of the tangent at Q. 

x

y

O

P
Q

δθ

δθ

Figure 1.8
Instantaneous
direction of travel
is that of the
tangent.

Suppose P and Q are very close to each other. Figure 1.8 illustrates this. Then the
angle swept out is very small, labelled in Figure 1.8. Let the small time, , be the
time of travel from P to Q. The arc length, PQ, is then where 

The component of the velocity at Q parallel to PO, that is directed towards the cen-
tre, is . So in time the velocity directed to the centre increased from 0 at P
to at Q. The (average) acceleration along the direction PO is then

v sin du

dt

v sin du
dtv sin du

vdt = rdu

vdt
dtdu

x

y

O

P

Q

rθ

v

Figure 1.7
Body moving on a
circular path with
constant speed.
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1.4 Terminology and notation 751 15

We now take the limit of this expression as and . Noting the small-
angle approximation for  (see page 969) then  may be replaced by 
and so in the limit we obtain

Thus the acceleration towards the centre is . Now and so

Using this may also be expressed as or . To effect this acceleration
there must be a force directed towards the centre.

We now return to the problem of why an aircraft needs to bank to fly in a circular
arc. When an aircraft is flying horizontally in a straight line the forces on the aircraft
are gravity, lift from the wings, , thrust from the engines and drag from air resis-
tance. Drag and thrust are in the line of travel, although opposite in direction. Grav-
ity acts vertically downwards. Lift, , acts at right angles to the wings. When the
aircraft is banked the lift force, , can be resolved into two forces at right angles. If
the angle of banking is then the component acting horizontally towards the centre
is . It is this force that maintains the aircraft on a circular path. Figure 1.9
illustrates the situation.

L sin a
a

L
L

L

v2

r
rv2v = rv

 acceleration  towards  centre = v 
du

dt
= vv

du

dt
= vv 

du

dt

v 
du

dt

dusin dusin du
dt : 0du: 0

α

α

L

Airc
raf

t

Figure 1.9
The lift force has a
component
directed to the
centre of the circle.

Note that as the aircraft banks, the vertical component, , is the force that
‘supports’ the aircraft. So as increases, the lift force, , must be increased so that

is sufficient to support the aircraft, that is

where is the mass of the aircraft.

Example 1.5 Materials Engineering – Temperature gradients 
as derivatives

Consider a section of a wall of a building, thickness , as shown in Figure 1.10.

Suppose the interior temperature is and the exterior temperature is and we

shall assume that so that the interior is hotter. Clearly, heat will be lost as it

flows through the wall, the rate of loss being affected by the quality of the insula-

tion material in the wall, particularly its thermal conductivity. Suppose is theT1x2

T1 7 T2

T2T1

h

m

L cos a = mg

L cos a
La

L cos a
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752 Block 1 Interpretation of a derivative15

Interior ExteriorT1 T2

h

x x

T1

T2

hOO

T

Figure 1.10
The temperature
gradient across a
wall.

In the accompanying graph of temperature we have shown a uniform rate of tem-

perature decrease from the interior to the exterior. The temperature gradient is then

x

T1T2

hO x

T1

T2

hO x

T1

T2

hO

(a) (b) (c)

,

T T TFigure 1.11
Several possible
temperature
profiles.

constant and equal to . Here, the temperature gradient will be negative
T2 - T1

h

profiles are shown in Figure 1.11. Whatever the profile, is the rate of change of
dT

dx
temperature. In Figure 1.11(a) the temperature is constant throughout the wall, and

temperature at any point within the wall. Then is the rate of change of temper-

ature with position , that is the temperature gradient.x

dT

dx
x

so . In Figure 1.11(b) is negative, but is not constant. The temperature
dT

dx

 dT

 dx
= 0

because the temperature falls as we move from the interior to the exterior. In other

situations the temperature gradient may not be constant; some possible temperature

does not fall at a uniform rate. Finally, in Figure 1.11(c) is positive; the tempera-

ture is rising though not at a uniform rate.

dT

dx
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1.4 Terminology and notation 753 15

Example 1.6 Materials Engineering – Fourier’s law of heat conduction
in one dimension
Fourier’s law is concerned with the rate at which heat is conducted through a medium.
It finds application in many diverse areas including the design of materials used in life-
critical situations such as nuclear power stations and spacecraft, and in chemical engi-
neering where heat transfer processes are important. It is used in the derivation of a
partial differential equation known as the heat equation (see Chapter 21), the solutions
of which determine the distribution of heat in materials.

Experience and intuition tell us that heat flows from a hot region to a cooler one,
that is in the opposite direction to a positive temperature gradient.

Consider the section of a body shown in Figure 1.12, in which there is a tempera-

x

T1 T2

Heat flow

Cross sectional area, AFigure 1.12
Heat energy 
flows from hot to
cold.

For heat to flow in the direction shown, , that is . The amount 
dT

dx
6 0T2 6 T1

of heat energy that will flow depends on several factors. If the temperature gradi-
ent is large, more energy will flow than if the gradient is small. A large cross-sec-
tional area, , will enable more energy to flow than a small one. The rate of heat
flow also depends upon a property of the material itself, the thermal conductiv-
ity, . Materials with large thermal conductivity (e.g. metals) will conduct heat
much more rapidly than, say, thermal insulators. Taken together, these factors
result in Fourier’s law of heat conduction:

Example 1.7 Materials Engineering – Heat flow through a window
A window has a cross-sectional area of 2 m2. The thermal conductivity of the window
glass is 0.3 (W/m–1/ºC–1). The internal and external temperatures are respectively 19 ºC
and 2 ºC and the window thickness is 5 mm = 0.005 m. Assume there is a uniform tem-
perature reduction throughout the width of the window.

(a) Calculate the temperature gradient.
(b) Use Fourier’s law to determine the rate of heat loss through the window.

rate of heat transfer, Q = -kA 
dT

dx

k

A

ture gradient .
dT

dx
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Exercises

If x is a function of the independent variable t,
write down two ways in which the derivative
can be written.

1 If f is a function of x, write down two ways in
which the derivative can be written.

2

Solutions to exercises

or x
#dx

dt
 1 or f ¿

df

dx
 2

End of block exercises

Calculate the average rate of change of
from

(a) to 
(b) to 
(c) to 

The pressure, P atmospheres, in a vessel varies
with temperature, T (degrees Celsius),
according to

Calculate the average rate of change of
pressure as T varies from 10 °C to 100 °C.

The current, i(t), in a circuit decays
exponentially with time, t, according to the
equation

i(t) = 5 + 2e-t

3

P(T ) = 120 - 20e-T>20

2

x = 2x = -2
x = 2x = 0
x = 3x = 1

y = x3
- 1

1 Calculate the average rate of change of current
as t varies from 0 to 3.

Explain the meaning of the expression .

(a) Calculate the rate of change of
.

(b) Calculate the rate of change of y when
.

(a) Calculate when .

(b) Calculate when .x = 0.5
dR

dx

R(x) = 2x2dR

dx
6

x = -4

y(x) = 5 - x2
5

dy

dx
 4

Solutions to exercises

(a) 13 (b) 4 (c) 4

0.13

-0.633

2

1 (a) (b) 8

(a) 4x (b) 26

-2x5

Solution
(a) The uniform temperature gradient is .
(b) The rate of heat loss is 

That is 2040 joules of energy are lost each second through the window.

Q = -kA 
dT

dx
= -0.3 * 2 * 1-34002 = 2040

dT

dx
=

2-19

0.005
= -3400
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BLOCK 2
Using a table of derivatives

2.1 Introduction

Block 1 gave a brief introduction to the meaning of a derivative. A derivative is the
rate of change of a function. Geometrically we saw that this is given by the gradient
of a tangent. If we consider a typical function, as illustrated in Figure 2.1, it is clear
that the gradient of a tangent depends upon where the tangent is drawn. For example,
tangent A, drawn where x has a value , has a different gradient from tangent B,
drawn where x has a value . In other words, the gradient of the tangent is itself a
function of x. This was seen in Example 1.3 of Block 1, where the gradient was
found to be 2x.

x2

x1

y

x
x1

A

x2

B
Tangent at B

Tangent at A

Figure 2.1
The gradient of a
tangent varies
along the curve.

Rather than calculate the derivative of a function as explained in Block 1, it is
common practice to use a table of derivatives. This block shows how to use such a
table.

2.2 Table of derivatives

Table 2.1 lists some of the common functions used in engineering and their
corresponding derivatives.

Example 2.1

Use Table 2.1 to find when y is given by

(a) 3x (b) 3 (c) (d) 4x73x2

dy

dx

M15_CROF5939_04_SE_C15.QXD  9/26/18  8:59 AM  Page 755



756 Block 2 Using a table of derivatives15

Table 2.1
Common functions and their derivatives.

Function Derivative

constant 0

x 1

kx k

k, n and are constants, and all angles are in radians.a

 k

  1 +  k 2x 2 
 tan-1 kx

 1

  1 + x 2 
 tan-1 x

 -k

  2 1 - k 2 x 2 
cos-1 kx

 -1

  2 1 - x 2 
cos-1 x

 k

  2 1 - k 2 x 2 
sin-1 kx

 1

  2 1 - x 2 
sin-1 x

k sech2 kxtanh kx

sech2 xtanh x

k sinh kxcosh kx

sinh xcosh x

k cosh kxsinh kx

cosh xsinh x

k  sec2(kx + a)tan(kx + a)

k  sec2kxtan  kx

sec2xtan  x

-k  sin(kx + a)cos(kx + a)

-k sin  kxcos kx

-  sin  xcos x

k  cos(kx + a)sin(kx + a)

k cos kxsin kx

cos  xsin x

1
x

ln kx

1
x

ln  x

kekxekx

exex

knxn-1kxn

nxn-1xn
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Solution
(a) We note that 3x is of the form kx where . Using Table 2.1 we then have

.

(b) Noting that 3 is a constant we see that .

(c) We see that is of the form , with and . The derivative,

, is then , or more simply, 6x. So if , then .

(d) We see that is of the form , with and . Hence the derivative,

, is given by .

Example 2.2

Find when y is (a) , (b) , (c) .

Solution
(a) We write as , and use the result for with . So

This may be written as .

(b) We write as . Using the result of we see that

(c) We write as . Then we see that

Example 2.3

Use Table 2.1 to find given z is (a) , (b) , (c) .

Solution
Although Table 2.1 is written using x as the independent variable, it can be used for
any variable.

(a) From Table 2.1, if , then . Hence if then .
dz

dt
= etz = etdy

dx
= exy = ex

e-5te3tetdz

dt
 

2(-1)x- 1-1
= -2x-2dy

dx
 =

2x-12
x

3(-2)x- 2-1
= -6x-3

=

dy

dx
= knxn-1

kxn3x-23

x2

1

22x

 =
1
2x-

1
2

 =
1
2x

1
2 - 1

 
dy

dx
  = nxn-1

n =
1
2xnx

1
22x

2
x

3

x22x
dy

dx

28x6dy

dx

n = 7k = 4kxn4x7

dy

dx
= 6xy = 3x26x1knxn-1

n = 2k = 3kxn3x2

dy

dx
= 0

dy

dx
= 3

k = 3
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(b) From Table 2.1 we see that when then

Hence 

(c) Using the result for in Table 2.1 we see that when ,

Example 2.4

Find the derivative, , when y is (a) , (b) , (c) .

Solution
(a) Using the result for , and taking , we see that

(b) From the result for , and taking , we see that

(c) From the result for tan kx, we see that

2 sec2 2x
dy

dx
=

-

1

2
 sin 

x

2

dy

dx
=

k =
1
2cos  kx

dy

dx
= 3  cos  3x

k = 3sin  kx

tan  2xcos 
x

2
sin 3x

dy

dx

-5e- 5tdz

dt
=

z = e-5tekx

3e3tdz

dt
=

3e3xdy

dx
=

y = e3x

Exercises

Find the derivative of the following functions:
(a) 9x (b) 4x (c) (d) (e) 

Find when z is given by

(a) (b) (c) (d) -3
2t3>25t-22t3

4

t3

dz

dt
2

 ln  3t-3x26x3
1 Find the derivative of each of the following

functions:
(a) (b) (c) (d) (e) 

Find the derivative of the following:

(a) (b) (c) (d) ex>2tan pxsin(-2x)cos 
2x

3

4

1

e3t
e2vtan 3rcos 4tsin 5x

3

Solutions to exercises

(a) 9 (b) 4 (c) (d) (e) 

(a) (b) (c) (d) -9
4t1>2-10t-33

2t1>2-12t-42

1

t
-6x18x21 (a) (b) (c) 

(d) (e) 

(a) (b) (c) 

(d) 12ex>2
p sec2

 px-2 cos(-2x)-

2

3
 sin 

2x

3
4

-3e-3t2e2v
3 sec2

 3r-4 sin  4t5 cos  5x3
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2.3 Extending the table of derivatives 759 15

2.3 Extending the table of derivatives

We introduce two simple rules that enable us to extend the range of functions that we
can differentiate.

Key point The derivative of is

df

dx
�

dg

dx

f (x) ; g(x)

This rule says that to find the derivative of the sum (difference) of two functions, we
simply calculate the sum (difference) of the derivatives of each function.

Key point The derivative of kf (x) is

k 
df

dx

This rule tells us that if a function is multiplied by a constant, k, then the derivative is
likewise multiplied by the same constant, k.

Example 2.5
Find the derivative of each of the following functions:
(a) (b) (c) 

Solution
(a) From Table 2.1, the derivative of sin 2x is 2 cos 2x. Hence the derivative of

6 sin 2x is 6(2 cos 2x), that is 12 cos 2x.

(b) The function comprises two parts: 6 . We have already differentiated
6 sin 2x in part (a), so we consider the derivative of . The derivative of is 2x
and so the derivative of is 3(2x), that is 6x. These derivatives are now summed.

(c) We differentiate each part of the function in turn.

 = 12 cos 2x + 6x - 15e3x

 
dy

dx
= 6(2 cos 2x) + 3(2x) - 5(3e3x)

 y = 6 sin 2x + 3x2
- 5e3x

y = 6 sin 2x + 3x2, 
dy

dx
= 12 cos 2x + 6x

3x2
x23x2

sin 2x and 3x2

 = 12 cos 2x

  y = 6 sin 2x, 
dy

dx
= 6(2 cos 2x)

y = 6 sin 2x + 3x2
- 5e3xy = 6 sin 2x + 3x2y = 6 sin 2x
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Example 2.6

Find where y is defined by

(a) (b) 

Solution

(a) The derivative of is . Hence the derivative of is 

The derivative of is 

Hence the derivative of is

So given

then

(b) The derivative of cos is

The derivative of 9 is zero. The derivative of is

So given

then

-2 sin 
x

2
- 27x2dy

dx
 =

y = 4 cos 
x

2
+ 9 - 9x3

27x2

9x3

-

1

2
 sin 

x

2

x

2

3x5
+ 6e- 2xdy

dx
 =

y =

x6

2
- 3e-2x

3(-2)e- 2x
= -6e- 2x

3e-2x

-2e- 2xe-2x

6x5

2
= 3x5x6

2
6x5x6

4  cos 
x

2
+ 9 - 9x3x6

2
- 3e-2x

dy

dx

Exercises

Find when y is given by

(a) (b) 

(c) (d) (e) 

Find the derivative of each of the following
functions:
(a) z (t) = 5 sin t + sin 5t

2

(2 + 3x)23 + 2x

4

9

x2
+

14

x
- 3x

-3x4
+ 2x1.54x6

+ 8x3

dy

dx
1 (b) 

(c) 

(d) 

(e) S(r) = (r2
+ 1)2

- 4e-2r

H(t) =

e3t

2
+ 2 tan 2t

m(n) = 4e2n
+

2

e2n
+

n2

2

h(v) = 3 cos 2v - 6 sin 
v

2
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2.4 Evaluating a derivative 761 15

Differentiate the following functions:
(a) 

(b) 

(c) V(r) = a1 +

1

r
b2

+ (r + 1)2

B(s) = pe2s
+

1

s
+ 2 sin ps

A(t) = (3 + et)2
3 (d) 

(e) H(t) = 4 tan 3t + 3 sin 2t - 2 cos 4t

M(u) = 6 sin 2u - 2 cos 
u

4
+ 2u2

Solutions to exercises

(a) (b) 

(c) (d) (e) 

(a) (b) 

(c) (d) 

(e) 4r3
+ 4r + 8e-2r

3e3t

2
+ 4 sec2 2t8e2n

- 4e-2n
+ n

-6 sin 2v - 3 cos 
v

2
5 cos t + 5 cos 5t2

12 + 18x1
2-  

18

x3
-

14

x2
- 3

-12x3
+ 3x0.524x5

+ 24x21 (a) (b)

(c) 

(d) 

(e) 12 sec2 3t + 6 cos 2t + 8 sin 4t

12 cos 2u +

1

2
 sin 
u

4
+ 4u

-

2

r2
-

2

r3
+ 2r + 2

2pe2s
-

1

s2
+ 2p cos ps6et

+ 2e2t3

2.4 Evaluating a derivative

Engineers may need to find the rate of change of a function at a particular point: that
is, find the derivative of a function at a specific point. We do this by finding the
derivative of the function, and then evaluating the derivative at the given value of x.
When evaluating, all angles are in radians. Consider a function, y(x). We use the 

notation (0.7) or (0.7) to denote the derivative of y evaluated at .

Example 2.7
Find the value of the derivative of where . Interpret your result.

Solution

We have and so . We now evaluate the derivative.

When , that is

The derivative is positive when and so y is increasing at this point. Thus when
, y is increasing at a rate of 24 vertical units per horizontal unit.x = 4

x = 4

dy

dx
 (4) = 24

x = 4, 
dy

dx
= 6(4) = 24

dy

dx
= 6xy = 3x2

x = 4y = 3x2

x = 0.7y¿

dy

dx
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Example 2.8 Electrical Engineering
Find the rate of change of current, i(t), given by

when seconds.

Solution
The rate of change of a function is the same as the derivative of the function, that

is .

When 

The derivative is negative and so we know that i(t) is decreasing when . Thus,
when , the current is decreasing at a rate of .1.49 A s-1t = 0.7

t = 0.7

-3e- 0.7
= -1.4898

di

dt
=

t = 0.7

-3e- tdi

dt
=

di

dt
 

t = 0.7

i(t) = 3e-t
+ 2 t Ú 0

Exercises

Calculate the derivative of when
.

Calculate the rate of change of
when (a) 

(b) .t = 0.6
t =

p

3i(t) = 4 sin 2t + 3t
2

x = 0.5
y = 3x2

+ ex1 Evaluate the rate of change of
when (a) 

(b) .t = 1.3
t = 0H(t) = 5 sin t - 3 cos 2t

3

Solutions to exercises

4.6487

(a) (b) 5.8989-12

1 (a) 5 (b) 4.43053

End of block exercises

Find when y is given by

(a) 
(b) 
(c)  e3x

+ e-3x
+ 2ex

+ 1
3 cos 4x - 6 sin 5x
7x5

+ 6x-2
+ sin 2x

dy

dx
1 (d) 

(e) 32x +

9

x
+

1

2
 sin 6x + ln x

4 tan 
x

2
+

1

2x
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Find the rate of change of the following
functions:
(a) (b) (c) 
(d) (e) 

Find when x is given by
(a)
(b)
(c) (d) 
(e) 

Find the rate of change of each function when
:

(a) (b) 
e4t

2
+ 3e-t3t2 - 2t3

t = 1.2
4

t3>2 - t2>3
e2t

- e-2t
+ t3 tan  2t - et

sin pt - 2 cos pt
2t4 - 3t + 1 + 2 ln t

x
#

3

2e-0.5v
+ v32r + 2r2

-3 cos x2 sin 3t + ln 2tet
+ e-t

2 (c) 

(d) 

(e) 

Find the derivative of the following:

(a) (b) 

(c) 

(d) 

(e) (f) 
sin x

cos x

1

ex

 sin2 2x + cos2 2x + sin 2x + cos 2x

(2t + 1)(2t - 1)

2t2 + 1

t
e2t(et

+ e- t)

5

4

t
+ 4 ln t

2 tan t - tan 2t

6 sin 
t

2
+ 3 cos 

t

2

Solutions to exercises

(a) 
(b) 
(c) 

(d) 

(e) 

(a) (b) (c) 3 sin x

(d) (e) 

(a) (b) 

(c) (d) 

(e) 
3

2
 t1>2 -

2

3
 t-1>3

2e2t
+ 2e-2t

+ 16 sec2 2t - et

p cos pt + 2p sin pt8t3 - 3 +

2

t
3

-e-0.5v
+ 3v21

2
r-1>2

+ 4r

6 cos 3t +

1

t
 et

- e-t2

3

2
x-1>2

-

9

x2
+ 3 cos 6x +

1

x

2 sec2 
x

2
-

1

2
x-3>2

3e3x
- 3e- 3x

+ 2ex
-12 sin 4x - 30 cos 5x
35x4

- 12x-3
+ 2 cos 2x1 (a) (b) 242.12 (c) 1.6290 (d) 11.5538

(e) 0.5556

(a) (b) (c) 8t

(d) (e) (f) sec2 x-e-x2 cos 2x - 2 sin 2x

2 -

1

t2
3e3t

+ et5

-1.444
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BLOCK 3
Higher derivatives

3.1 Introduction

Block 2 showed how to calculate the derivative of a function using a table of derivatives.

By differentiating the function, y(x), we obtain the derivative, .

The function, , is more correctly called the first derivative of y. By differentiating

the first derivative, we obtain the second derivative; by differentiating the second
derivative we obtain the third derivative; and so on. The second and subsequent
derivatives are known as higher derivatives.

Example 3.1
Calculate the first, second and third derivatives of .

Solution
The first derivative is .

To obtain the second derivative we differentiate the first derivative:

The third derivative is found by differentiating the second derivative:

3.2 Notation

Just as there is a notation for the first derivative so there is a similar notation for
higher derivatives.

Consider the function, y(x). We know that the first derivative is denoted by or

The second derivative is calculated by differentiating the first derivative, that is

So, the second derivative is denoted by . This is often written more concisely
as .y–

d2y

dx2

second derivative =

d

dx
ady

dx
b

y¿.
dy

dx

 third derivative = 8e2x
+ 24x

 second  derivative = 4e2x
+ 12x2

dy

dx
= 2e2x

+ 4x3

dy

dx

y = e2x
+ x4

dy

dx

dy

dx
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The third derivative is denoted by or , and so on. So, referring to
Example 3.1 we could have written

 
d3y

dx3 = 8e2x
+ 24x

 
d2y

dx2 = 4e2x
+ 12x2

 
dy

dx
= 2e2x

+ 4x3

y‡

d3y

dx3

Key point If 

 third derivative =

d3y

dx3

second derivative =

d2y

dx2

 first derivative =

dy

dx

y = y(x)

Derivatives with respect to t are often indicated using a dot notation, so can be 

written as . Similarly, a second derivative with respect to t can be written as ,
pronounced ‘ double dot’.

Example 3.2

Calculate and given .

Solution

We could have used the dot notation and written , and
.-sin t - cos ty

$ 
=

= cos t - sin ty
#

-cos t + sin t 
d3y

dt3 =

-sin t - cos t 
d2y

dt2
=

 
dy

dt
= cos t - sin t

y = sin t + cos t
d3y

dt3
d2y

dt2

x
x
$

x
#

dx

dt
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We may need to evaluate higher derivatives at specific points. We use an obvious
notation. The second derivative of y(x), evaluated at, say, , is written as 

(2), or more simply as . The third derivative evaluated at is written  

as or .

Example 3.3
Given

find (a) , (b) , (c) .

Solution
We have

(a) 

(b) 

(c) 

Maple and Matlab have built-in commands for finding derivatives of functions and
evaluating these at specific points. There are numerous ways of doing this and for
full details you should refer to the on-line help.

Example 3.4
Use software to find the first and second derivatives of the function f(t) = t2 sin 3t and
evaluate these when t = 5.

Solution

y‡(0) = -2 cos 0 = -2

-2 sin(-1) + 6 = 7.6829y–(-1) =

y¿(1) = 2 cos 1 + 6(1) = 7.0806

y¿¿¿ = -2 cos x

-2 sin x + 6y¿¿ =

y¿ = 2 cos x + 6x

y = 2 sin x + 3x2

y‡(0)y–(-1)y¿(1)

y(x) = 2 sin x + 3x2

y‡(-1)(-1)
d3 y

dx3

x = -1y–(2)
d2 y

dx2

x = 2

Maple

In Maple, the following commands define the function f(t). Calculate its first derivative
using the differentiation operator D, and evaluate this when t = 5.

> f:=t-> t^2*sin(3*t);
D(f)(t);
D(f)(5);
evalf(D(f)(5));
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Matlab

Matlab can perform calculations on symbols, but it it is necessary to define symbolic vari-
ables using the command syms. Once f(t) is defined, it can be differentiated and evaluated
at the given point. The final commands below result in decimal approximations of the
derivatives (here vpa is a Matlab command for variable precision arithmetic).

>> syms f(t)
f(t) = t^2*sin(3*t)
y = diff(f(t))
z = diff(f(t),2)
subs(y,5)
subs(z,5)
pa(subs(y,5))
vpa(subs(z,5))

which results in

f(t) = t^2*sin(3*t)
y = 2*t*sin(3*t) + 3*t^2*cos(3*t)
z = 2*sin(3*t) + 12*t*cos(3*t) - 9*t^2*sin(3*t)
ans = 75*cos(15) + 10*sin(15)
ans = 60*cos(15) - 223*sin(15)
ans = -50.4737
ans =-190.5955

Compare this output with that from Maple. Observe also how careful attention needs to
be paid to ensure that the correct syntax is used.

which results in the output

f := t t2 sin(3t)
2t sin(3t) + 3t2 cos 3t (the first derivative of f(t), i.e. f (t))

10 sin(15) + 75 cos(15) (f (5))
50.4737

The last command expresses the result in decimal form. The kth derivative of f(t) with
respect to t can be found using the command (D@@k)(f)(t). Thus

> (D@@2)(f)(t);
evalf( ( D@@2)(f)(5) );

results in

2 sin(3t) + 12t cos(3t) 9t2 sin(3t) (the second derivative of f(t), i.e. f (t))
190.5955 (f (5))¿¿

-

¿¿

-

-

¿

¿

:
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End of block exercises

Calculate where y is given by

(a) (b) (c) 

(d) (e) 

Find the fourth derivative of the following
functions:
(a) (b) constant (c) (d) ,
k constant (e) , k constant

Show that satisfies the equation

y– - y¿ - y = -2 - 2x - ex

y = ex
+ 2x3

 cos kt
 sin kt sin 2tekt,  ke3t

2

9 -

9

x
-x3

+ 3x2

2x6
- 3x7e2x

- excos 2t - sin 2t

y–1 Evaluate where y is given by

(a) (b) 

(c) (d) (e) 

The function y(x) is defined by

Calculate the values of x where .y– = 0

y(x) = x4
- 3x3

+ 3x2
+ 1

5

e2x
+ 1

ex  3 - 3t4e-x(ex
+ 1)

2 cos t + cos 2tsin 3t + t3
y‡(0)4

Solutions to exercises

(a) (b) 

(c) (d) (e) 

(a) (b) (c) 

(d) (e)
2

x3
ex

- e-x

3

8
 x-5>2

-27 cos 3x + sin x-8e2x2

2 -

1

x2
ex

+ e-x
-

1

4
 x-3>2

-9 sin 3x - cos x6 - 4e2x1 (a) 6 (b) 3.6372 (c) 34.9928 (d) 2
(e) 

(a) 6 (b) (c) 1.8184 (d)
(e) -0.0599

-6-3.32924

-0.2194
3

Exercises

Find where y(x) is defined by

(a) (b) (c) 
(d) (e) 

Find where y is given in question 1.
d3y

dx3
2

1 + x + x2
+ ln  xex

+ e-x
2xsin 3x + cos x3x2

- e2x

d2y

dx2
1 Calculate where y(t) is given by

(a) (b) (c) 

(d) (e) 

Calculate of the functions given in
question 3.

y‡(-1)4

cos 
t

2

1

t

2et
+ e2tsin(-2t)t (t2 + 1)

y–(1)3
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Solutions to exercises

(a) (b) 
(c) (d) (e) 

(a) (b) (c) (d) 
(e) k4 cos kt

k4 sin kt16 sin 2tk4ekt81e3t2

-18x-3
-6x + 660x4

- 126x5
4e2x

- ex
-4 cos 2t + 4 sin 2t1 (a) (b) 0 (c) (d) 0 (e) 0

, 11
25

-1-214

Calculate where y is given by

(a) (b) 
(c) (d) 

(e) 

Find the second derivatives of the functions in
question 1.

Find of the functions in question 1.

Find of the functions in question 1.

Find the rate of change of the following
functions:

(a) (b) ln (c) 

(d) (e) 

Find the third and fourth derivatives of y given
the second derivative of y is

(a) (b) (c) 

(d) (e) 

Differentiate . (Hint: use the
trigonometrical identities in Table 5.1 of
Chapter 9, Block 5.)

(sin x + cos x)27

cos2 x + cos x

cos x
 sin x + sin(-2x)

3 ln x21 + x

x2

2

e3x
 

6

1x(1x - 1)e3v(1 - ev)

(t + 2)(2t - 1)2x
3t3 - t2

2t

5

y–(1)4

y¿(1)3

2

5 + 5x +

5

x
+ 5 ln x

e3x
+ 2e-2x

+ 1(x + 1)2
sin 5x - 5 cos x3x4

- 2x + ln x

dy

dx
1 Verify that

and
k are constants is a solution of

The function y(x) is given by .
Find the values of x where (a) ,
(b) .

The function y(x) is given by .
Calculate the intervals on which y is
(a) increasing, (b) decreasing.

The function y(x) is given by

(a) Calculate the values of x for which .
(b) Calculate the value(s) of x for which

.
(c) State the interval(s) on which y is

increasing.
(d) State the interval(s) on which y is

decreasing.
(e) State the interval(s) on which is

increasing.
(f) State the interval(s) on which is

decreasing.
y¿

y¿

y– = 0

y¿ = 0

y(x) = 2x3
- 9x2

+ 1

11

y(x) = x3
- 3x10

y– = 0
y¿ = 0

y(x) = 1 - cos x9

y– + k2y = 0

y = A sin kx + B cos kx, where A,  B
8

End of chapter exercises
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15

Solutions to exercises

(a) (b) 

(c) (d) (e) 

(a) (b) 

(c) 2 (d) (e) 

(a) 11 (b) 5.6257 (c) 4 (d) 59.7153 (e) 5

(a) 35 (b) 26.6746 (c) 2 (d) 181.8525 (e) 5

(a) (b) (c) (d) 

(e) 1 -

1

22x

3e3v
- 4e4v4t + 3

1

2x
3t - 0.55

4

3

10

x3
-

5

x2
9e3x

+ 8e-2x

-25 sin 5x + 5 cos x36x2
-

1

x2
2

5 -

5

x2
+

5

x
3e3x

- 4e-2x2x + 2

5 cos 5x + 5 sin x12x3
- 2 +

1

x
1 (a) 

(b) 

(c) (d) 

(e) 

(a) 

(b) 

(a) and (b) 

(a) 0, 3 (b) 1.5 (c) and 
(d) (0, 3) (e) (f) (- q , 1.5)(1.5 , q )

(3 , q )(- q , 0)11

(-1, 1)(1 , q)(- q, -1)10

p

2
; np, n = 0, 1, 2, 3, Á

;np, n = 0, 1, 2, 3, Á9

2 cos 2x7

-sin x , -cos x-sin x - 4 sin(-2x)

 cos x - 2 cos(-2x),
6

x
, 

-6

x2

-2x-3
- x-1, 6x-4

+ x-2

-6e-3x, 18e-3x6

770 Block 3 Higher derivatives
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Chapter 16
Techniques and applications of
differentiation

This chapter continues the study of differentiation started in Chapter 15.
The table of derivatives in Chapter 15, although useful, is limited.
In this chapter several techniques for expanding the range of functions
we can differentiate are introduced.

Methods for differentiating products and quotients of functions are
explained in Block 1. Some functions can be differentiated when the
function is written in terms of a new variable. This gives rise to the
chain rule in Block 2.

Although we have focused on differentiating a function of x, say y(x),
it is not always possible to express y explicitly in terms of x. For
example, it is impossible to rearrange the equation ex � ey � x2 � y3

to obtain y by itself on the left-hand side. However, by using implicit
differentiation as explained in Block 3 it is still possible to find an

expression for the derivative, .

If a function is expressed parametrically the derivative is found by
differentiating parametrically. This is covered in Block 4. The final
technique, logarithmic differentiation, is useful for finding the
derivative of products of functions involving many factors, and this is
covered in Block 5.

Blocks 6 and 7 turn to some applications of differentiation. The
calculation of equations of tangents and normals is treated in Block 6.
Finally, the important topic of maximum and minimum values of a
function closes the chapter.

dy
dx
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Chapter 16 contents

Block 1 The product rule and the quotient rule

Block 2 The chain rule

Block 3 Implicit differentiation

Block 4 Parametric differentiation

Block 5 Logarithmic differentiation

Block 6 Tangents and normals

Block 7 Maximum and minimum values of a function

End of chapter exercises
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BLOCK 1
The product rule and the quotient rule

1.1 Introduction

Chapter 15 introduced the concept of differentiation and the use of a table of deriva-
tives. Clearly every possible function cannot be listed in a table. We need a set of rules,
used in conjunction with the table of derivatives, to extend the range of functions that
we can differentiate. The product rule and the quotient rule are two such rules.

1.2 The product rule

As its name tells us, the product rule helps us to differentiate a product of functions.
Consider the function y(x), where y(x) is the product of two functions, u(x) and v(x),
that is

For example, if then and . The product rule
states:

v(x) = sin xu(x) = x2y(x) = x2
 sin x

y(x) = u(x)v(x)

Key point If

then

 = u¿v + uv¿

 
dy

dx
=

du

dx
 v + u 

dv

dx
 

y(x) = u(x)v(x)

Example 1.1

Find where .

Solution
We have

y = x2 sin x = uv

y = x2
 sin x

dy

dx
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774 Block 1 The product rule and the quotient rule16

and so and . Hence

Applying the product rule we have

Example 1.2
Find where .

Solution
We have

So

,

and hence

,

Applying the product rule yields

Example 1.3

Find where .

Solution
We have

so

u = x2, v = ln x

y = x2 ln x = uv

y = x2
 ln x

d2y

dx2

= ex(cos x - sin x)

ex(-sin x)    = ex cos x +

dy

dx
=

du

dx
 v + u 

dv

dx
 

ex, -sin x    
dv

dx
=    

du

dx
=

ex, cos x    v =    u =

y = ex cos x = uv

y = ex
  cos xy¿

 = x(2 sin x + x cos x)

 = 2x(sin x) + x2(cos x)

 
dy

dx
=

du

dx
 v + u 

dv

dx
 

du

dx
= 2x, 

dv

dx
= cos x

v = sin xu = x2
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1.2 The product rule 775 16

Then

Applying the product rule, we have

To obtain we differentiate . Hence we need to find . The 

derivative of x is simply 1 so let us examine .

To find we use the product rule, with . Then

and so

Finally

2 ln x + 3    =

 
d2y

dx2 =

d

dx
 (2x ln x + x)

 = 2 ln x + 2

 = 2 ln x + 2x a1
x
b

 
d

dx
 (2x ln x) =

du

dx
 v + u 

dv

dx

du

dx
= 2, 

dv

dx
=

1
x

u = 2x, v = ln x
d

dx
 (2x ln x)

d

dx
 (2x ln x)

d

dx
 (2x ln x + x)

dy

dx

d2y

dx2

2x ln x + x     =

 
dy

dx
=

du

dx
 v + u 

dv

dx
 

1
x    

du

dx
= 2x, 

dv

dx
=

Exercises

Find where y is given by

(a) (b) (c) (d) 
(e) 

Calculate where y is given by
(a) (b) (3t + 7)e-2t(t2

+ 1) sin 4t
y¿2

x4
 sin  2x

x3e2xsin x  cos 2xxexx cos x

dy

dx
1 (c) (d) 

(e)

Find the second derivative of the functions in
question 1.

3

t2
+ 1

et
 

2xex(ex
+ e-2x)(3x2

- 2x)
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776 Block 1 The product rule and the quotient rule16

Key point If

then

 =

vu¿ - uv¿

v2

dy

dx
=

v 
du

dx
- u 

dv

dx

v2

y (x) =

u(x)

v(x)

Example 1.4

Find given 

Solution
We have

so

u = sin x, v = x

y =

sin x
x

=

u

v

y =

sin x
x

.y¿

Solutions to exercises

(a) (b) 
(c) 
(d) (e) 

(a) 
(b) 
(c) 

, which may be written 
as ex(3x2

+ 4x - 2) - e-2x(6x2
- 10x + 2)

+ (ex
+ e-2x)(6x - 2)

(ex
- 2e-2x)(3x2

- 2x)
-e-2t(6t + 11)
2t sin 4t + 4(t2 + 1)(cos  4t)2

4x3
 sin 2x + 2x4

 cos 2xx2e2x(3 + 2x)
 cos x  cos 2x - 2 sin x  sin 2x

ex(1 + x) cos x - x  sin x1 (d) 

(e) 

(a) (b) 
(c) 
(d) 
(e) 16x3

 cos 2x - 4x2(x2
- 3) sin 2x

2xe2x(2x2
+ 6x + 3)

-5 sin x cos 2x - 4 cos x sin 2x
ex(x + 2)-x cos x - 2 sin x3

-e-t(t2 - 2t + 1)

exa x-1>2
2

+ x1>2b

1.3 The quotient rule

The quotient rule shows us how to differentiate a quotient of functions, for example

The quotient rule may be stated thus:

sin x
x

, 
t2

- 1

t2
+ 1

, 
ez

+ z

cos z
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1.3 The quotient rule 777 16

and so

Applying the quotient rule gives

Example 1.5

Find given .

Solution
We have

and so

Applying the quotient rule gives

which can be simplified to

t2(2t + 3)

(t + 1)2    

dy

dt
=

(t + 1)3t2 -  t3(1)

(t + 1)2    
=

 
dy

dt
=

vu¿ -  uv¿

v2

u = t3,  v = t + 1,  u¿ = 3t2,  v¿ = 1

y =

t3

t + 1
=

u

v

y =

t3

t + 1
y¿

 =

x cos x - sin x

x2  

 =

x cos x - sin x (1)

x2  

 
dy

dx
=

vu¿ - uv¿

v2

du

dx
 = cos x, 

dv

dx
= 1

Exercises

Find where y is given by

(a) (b) (c) (d) 

(e) 
ln x

x2
 

1 -  x

1 + x

cos x

sin x
 

x

ex
+ 1

 
ex

x
 

dy

dx
 1 Find when y is given by

(a) (b) (c) 

(d) (e) 
1 + x + x2

1 + x3

z + sin z

z + cos z
 

sin 3t

cos t + t
 

e2t
+ t

et
- 1

t2
- 1

t2
+ 1

y¿2
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778 Block 1 The product rule and the quotient rule16

Solutions to exercises

(a) (b)

(c) (d) (e) 

(a)

(b) 
(et

- 1)(2e2t
+ 1) - (e2t

+ t)et

(et
- 1)2

 

4t

(t2 + 1)2
2

1 -  2 ln x

x3
 

-2

(1 + x)2
-  cosec2 x

ex
+ 1 - xex

(ex
+ 1)2

 
ex(x - 1)

x2
 1 (c) 

(d) 

(e) - a x4
+ 2x3

+ 3x2
- 2x - 1

(x3
+ 1)2

b

(z + 1) cos z + (z - 1) sin z + 1

(cos z + z)2
 

3(cos t + t) cos 3t - sin 3t (-sin t + 1)

(cos t + t)2
 

End of block exercises

Find the derivative of each of the following:

(a) (b) (c) 

(d) (e)

Differentiate the following:

(a) (b) (c) 

(d) (e) (r + 1)(r + sin r)
e3r

e2r
 

3 cos x

sin 2x
 3 sin 2x cos x

t3
- t2

t2
+ 1

2

e-2x
 sin 3xe2x

 sin 3x

x - 1

sin 2x
 

sin 2x

x - 1
 (x - 1) sin 2x

1 Find given

Find given

R =

e2t sin t

t2
 

dR

dt
4

H = e2tt2 sin t

dH

dt
3

Solutions to exercises

(a) 

(b) 

(c)

(d) 

(e) 

(a) 

(b) 6 cos x cos 2x - 3 sin x sin 2x

t(t3 + 3t - 2)

(t2 + 1)2
2

e-2x(3 cos 3x - 2 sin 3x)

e2x(3 cos 3x + 2 sin 3x)

sin 2x - 2(x - 1) cos 2x

sin2 2x
 

2(x - 1) cos 2x - sin 2x

(x - 1)2
 

2(x - 1)  cos 2x + sin 2x1 (c) 

(d) (e) 

e2t[2t sin t + t cos t - 2 sin t]

t3
 4

e2t3t2 cos t + 2t(t + 1) sin t43

(r + 1) cos r + sin r + 2r + 1er

-3a sin 2x sin x + 2 cos x cos 2x

sin2 2x
b
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BLOCK 2
The chain rule

2.1 Introduction

In Block 1 we saw how to differentiate products and quotients of functions. This
block introduces the chain rule, which allows us to differentiate an additional class
of functions.

2.2 The chain rule

Suppose y is a function of z, that is , and that z is a function of x, that is
. So

Hence y may be considered to be a function of x. For example, if 
and then

Since y can be considered as a function of x, then may be found. The chain rule

helps us to find . The chain rule states
dy

dx

dy

dx

y = 2(cos 2x)2
+ 3(cos 2x)

z =  cos 2x
y(z) = 2z2

+ 3z

y = y(z) = y(z(x))

z = z(x)
y = y(z)

Key point If and , then

dy

dx
=

dy

dz
*

dz

dx
 

z = z(x)y = y(z)

Example 2.1

Given and , find .

Solution
We have

and we seek . Now

y = z4, z = 3x + 6

dy

dx

y = z4
= (3x + 6)4

dy

dx
z = 3x + 6y = z4
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780 Block 2 The chain rule16

and so

Using the chain rule we have

Sometimes care must be taken to recognise the independent and dependent variables.
Example 2.2 uses the chain rule, but it may look unfamiliar.

Example 2.2

Given and find .

Solution
We have

and

The chain rule has the form

Example 2.3

Given , find .

Solution
We let and so

Then and . Applying the chain rule gives

 = 7(3x2
+ 1)(x3

+ x)6

 = (7z6)(3x2
+ 1)

 
dy

dx
=

dy

dz
  

dz

dx
 

dz

dx
= 3x2

+ 1
dy

dz
= 7z6

y = (x3
+ x)7

= z7

z = x3
+ x

dy

dx
y = (x3

+ x)7

 = 3(2x2
- x)2 (4x - 1)

 = 3y2(4x - 1)

 
dz

dx
=

dz

dy
  

dy

dx
 

y(x) = 2x2
- x so 

dy

dx
= 4x - 1

z(y) = y3 so 
dz

dy
= 3y2

dz

dx
y(x) = 2x2

- xz(y) = y3

 = 12(3x + 6)3

 = 12z3

 = 4z3(3)

 
dy

dx
=

dy

dz
 

dz

dx

dy

dz
= 4z3, 

dz

dx
= 3
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2.2 The chain rule 781 16

Example 2.4

Given find .

Solution
Let and then 

Then

,

and applying the chain rule gives

Example 2.5

Find given .

Solution

Let so that

Then

,

So

 =

2x + 1

x2
+ x + 1

 
2x + 1

z    
=

 
dy

dx
=

dy

dz
  

dz

dx
 

1
z
, 2x + 1

    
dz

dx
=

    
dy

dz
=

ln z    y = ln(x2
+ x + 1) =

z = x2
+ x + 1

y =  ln(x2
+ x + 1)

dy

dx

x

2x2
+ 1    

 =

 =

x

1z

1

2
 z-1>2 (2x)

    
 =

 
dy

dx
=

dy

dz
  

dz

dx
 

1

2
 z-1>2, 2x

    
dz

dx
=

    
dy

dz
=

2z    y = 2x2
+ 1 =

z = x2
+ 1

dy

dx
y = 2x2

+ 1
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782 Block 2 The chain rule16

We note that, in the final solution, the numerator is the derivative of the denominator.
In general:

Key point If then

dy

dx
=

f ¿

f
 

y = ln  f(x)

Example 2.6

Given find .

Solution
Here and . So

which may be simplified to

Example 2.7

Given find .

Solution
Here and so . Hence

Example 2.8

Given find .

Solution
We have

So

f ¿

f
=

ex
+ cos x

ex
+ sin x

 
    

dy

dx
=

 = ln f (x) where f (x) = ex
+ sin x

  y = ln(ex
+ sin x)

dy

dx
y = ln(ex

+  sin x)

 =

10

2t - 1

 
dy

dt
= 5a 2

2t - 1
b

f ¿(t) = 2f (t) = 2t - 1

dy

dt
y = 5  ln (2t - 1)

dy

dx
=

1

x - 1

dy

dx
=

-1

1 - x

f ¿(x) = -1f (x) = 1 - x

dy

dx
y = ln(1 - x)
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2.2 The chain rule 783 16

Exercises

Differentiate each of the following functions:

(a) (b) (c) 

(d) (e) 

Find where y is given by

(a) (b) (c) (d) 

(e) 2esin t

e2 sin tesin 2t3et2e(3t2)

dy

dt
2

ln(x + 1)(cos  2x)5

(ex
+ 1)71sin x (x3

+ 2)6

1 Find the rate of change of y at the specified
point:
(a)

(b)

(c)

(d)

(e) , t =

p

2
y = 4ecos t

y = (t3 - 1)2>3, t = 2

y = cos(t3 + 1), t = 1

y = sin(t2), t = 2

y = ln(3t2 + 5), t = 1

3

Solutions to exercises

(a) (b) 

(c) 

(d) (e) 
1

x + 1
-10 sin 2x cos4 2x

7ex(ex
+ 1)6

cos x

22sin x
18x2(x3

+ 2)51 (a) (b) (c) 

(d) (e) 

(a) 0.75 (b) (c) 

(d) 4.1821 (e) -4

-2.7279-2.61463

2 cos tesin t2 cos te2 sin t

2 cos 2tesin 2t6tet26te3t22

End of block exercises

Use the chain rule to differentiate each of the
following functions:
(a) (b) 

(c) (d) 
(e)

Find the derivative of each function:
(a) (b) 

(c)

(d) (e)

Evaluate at the specified value of x.

(a) , 

(b)

(c) , x = 1y = e2  x

y = sin (x2
+ 1), x = 0.5

x = 1y = 1x + sin x

dy

dx
3

Q(s) =

1

ln s
 x(t) = -3 cosa1

t
b

H(r) = 5 sin(pr2
+ 1)

m(p) = 3 ln(p4
+ 2)Y(t) = 5esin 2t

2

R = cos(1r)
i = sin(y3)v = 29 - 2t

h = (t4 - 1)1>3y = (6x3
- x)4

1 (d) , 

(e) , 

Differentiate the following functions where a,
b and n are constants:
(a) (b) 
(c)
(d) (e) y = ln(at + b)y = cos(at + b)

y = sin(at + b)
y = eat + by = (at + b)n

4

x = 0.5y =

1

(3x2
+ 1)4

x = 1y = 2 cosa1

x
b
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784 Block 2 The chain rule16

Solutions to exercises

(a) 

(b) 

(c) (d) 

(e)

(a) (b) 

(c) 10pr cos(pr2
+ 1)

12 p3

p4
+ 2

10 cos 2tesin 2t2

-

1

2
 r-1>2 sin1r

3y2  cos(y3)-(9 -  2t)-1>2

4t3(t4 - 1)-2>3
3

4(18x2
- 1)(6x3

- x)31 (d) (e) 

(a) 0.5675 (b) 0.3153
(c) 1.3591 (d) 1.6829
(e)

(a) (b) 

(c) (d) 

(e)
a

at + b

-a sin(at + b)a cos(at + b)

aeat + ban(at + b)n-14

-0.7311

3

-1

s(ln s)2
 -

3

t2
 sina1

t
b
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BLOCK 3
Implicit differentiation

3.1 Introduction

So far we have met many functions of the form , for example ,
and . Whenever y is equated to an expression involving

only x terms we say that y is expressed explicitly in terms of x.
Sometimes we have an equation connecting x and y but it is impossible to write it

in the form . Examples of this include ,
. In these cases we say that y is expressed

implicitly in terms of x.
sin (x + y) + ex

+ e-y
= x3

+ y3
x2

- y3
+ sin x - cos y = 1y = f (x)

y = e3x
- 2xy = sin 2x

y = x2
+ 3y = f(x)

Whether y is expressed explicitly or implicitly in terms of x we can still differenti-

ate to find the derivative . If y is expressed explicitly in terms of x then will also 

be expressed explicitly in terms of x. If y is expressed implicitly in terms of x then 
will be expressed in terms of x and y.

3.2 Differentiating f (y) with respect to x

If y is expressed implicitly in terms of x and we wish to find , then we frequently

need to differentiate a function of y with respect to x: that is, find . To do this
we use the chain rule. The examples illustrate the technique.

Example 3.1

Find .

Solution
We use the chain rule. Let so that we wish to find . Using the chain rule
(see Example 2.2 in Block 2)

Now

Hence

dz

dx
= 3y2 

dy

dx
 

z = y3  and so  
dz

dy
= 3y2

dz

dx
=

dz

dy
  

dy

dx
 

dz

dx
z = y3

d

dx
 (y3)

d

dx
 (f(y))

dy

dx

dy

dx

dy

dx

dy

dx
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786 Block 3 Implicit differentiation16

Hence

The result of Example 3.1 can easily be extended to

d

dx
 (y3) = 3y2 

dy

dx
 

Key point d

dx
 (yn) = nyn - 1 

dy

dx
 

Example 3.2

Find .

Solution
Let so that we wish to find . We know from the chain rule that

We have so

and

Generalising the result of Example 3.2 we have

cos y 
dy

dx    
d

dx
 (sin y) =

cos y    
dz

dy
=

z = sin  y

dz

dx
=

dz

dy
  

dy

dx
 

dz

dx
z = sin  y

d

dx
 (sin  y)

Key point d

dx
 ( f (y)) =

df

dy
 

dy

dx
 

Example 3.3

Find .

Solution
We use the previous result with . Then

 =

1
y

 
dy

dt
 

 =

df

dy
 

dy

dt
 

 
d

dt
 (ln y) =

df

dt

f (y) = ln  y

d

dt
 (ln  y)
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3.3 Finding implicitly

We illustrate the technique.

Example 3.4

Find given .

Solution
We differentiate each term w.r.t. x.

So

Rearrangement yields

Note that is given in terms of x and y.
dy

dx

dy

dx
=

3x2
- 1

2y - 3

2y 
dy

dx
+ 1 = 3x2

+ 3 
dy

dx
 

d

dx
 (y2) = 2y 

dy

dx
 , 

d

dx
 (x) = 1, 

d

dx
 (x3) = 3x2, 

d

dx
 (3y) = 3 

dy

dx
 

y2
+ x = x3

+ 3y
dy

dx

Exercises

Differentiate the following functions of y with
respect to x:
(a) (b) (c) (d) 

(e) 

Differentiate the following functions of y with
respect to x:
(a) (b) (c) 
(d) (e) sin2y2 cos 3y

e2y3 cos y - y sin  2y

2

2y

1

y
2y2

- 3y + 13y4y2

1 Differentiate the following functions of y with
respect to x:
(a) (b) (y2

+ 3)4(y + 3)4

3

Solutions to exercises

(a) (b) (c) 

(d) (e) 

(a) (b) -3(sin y) 
dy

dx
-

dy

dx
2(cos 2y) 

dy

dx
2

1

22y
 
dy

dx
-

1

y2
 
dy

dx

4y 
dy

dx
- 3 

dy

dx
12y3 

dy

dx
2y 

dy

dx
1 (c) (d) 

(e) 

(a) (b) 8y(y2
+ 3)3 

dy

dx
4(y + 3)3 

dy

dx
3

2 sin y cos y  
dy

dx

-6(sin 3y) 
dy

dx
2e2y 

dy

dx

M16_CROF5939_04_SE_C16.QXD  9/26/18  10:50 AM  Page 787

dy
dx

7873.3 Finding implicitly
dy
dx



788 Block 3 Implicit differentiation16

Example 3.5
Find given

Solution
We differentiate each term w.r.t. x.

To differentiate we use the product rule.

To differentiate we again use the product rule.

Finally we differentiate .

Hence

Rearrangement yields

Example 3.6

Find if .

Solution
First, we calculate . Differentiating each term of the equation w.r.t. x we find

Now means so we must differentiate with respect to x, that is

. Here we are differentiating a function of y w.r.t. x. Using the result

d

dx
 (f(y)) =

df

dy
  

dy

dx
 

d

dx
 a- 5

6y
b

-

5

6y

d

dx
ady

dx
bd2y

dx2

 so 
dy

dx
= -  

5

6y

 5 + 6y 
dy

dx
= 0

dy

dx

5x + 3y2
= 7

d2y

dx2

dy

dx
=

3y3
- 2xy

x2
- 9xy2

- 2y

2xy + x2 
dy

dx
- 3y3

- 9xy2 
dy

dx
= 2y 

dy

dx
 

2y 

dy

dx
 

    
d

dx
 (y2

+ 7) =

y2
+ 7

3y3
+ 9xy2 

dy

dx
 

    
d

dx
 (3xy3) =

3xy3

d

dx
 (x2y) = 2xy + x2 

dy

dx
 

x2y

x2y - 3xy3
= y2

+ 7

y¿
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we have

 =

5

6y2 a- 5

6y
b =

-25

36 y3

 =

5

6y2 
dy

dx
 

 
d

dx
 a- 5

6y
b =

d

dy
 a- 5

6y
b  

dy

dx
 

Exercises

Find given

(a) (b) 

(c)

(d) (e) 

Find given

(a) (b)

(c) (d) 

(e)  tan  2t - x2
= sin 2x

4   sin t - cos  3x = cos  ttan x =

1

t

3  cos  2x - t2 = 204 + sin x = t

dx

dt
2

1x + 1y = 10x3
- y3

= x + y

x2
+ 2y2

+ 3x - 7y = 9

3x - y3
= 10x2

+ y2
= 1

dy

dx
1 Find given

(a) (b) 

(c) (d) 

(e)

Find given

Find given

sin x + cos y = 1

y–5

x2
+ y2

= 1

d2y

dx2
4

2ey-x
= 3ex

+ y2

e2x + 3y
+ 2x3

- y5
= 0exey

= x2y3

e2x
- e3y

= x + 2y2ex
+ 3ey

= 10y

dy

dx
3

Solutions to exercises

(a) (b) (c) 

(d) (e) 

(a) (b) (c) 

(d) (e) 

(a) (b) 

(c) 
2xy3

- exey

exey
- 3x2y2

2e2x
- 1

3e3y
+ 2

2ex

10 - 3ey3

sec2 2t

x + cos 2x

-4 cos t - sin t

3 sin 3x

-

cos2 x

t2
-

t

3 sin 2x

1

cos x
2

-A
y

x

3x2
- 1

3y2
+ 1

2x + 3

7 - 4y

1

y2
-

x

y
1 (d) (e) 

-

sin2 y sin x + cos2 x cos y

sin3 y
5

-

1

y3
4

3ex
+ 2ey - x

2ey - x
- 2y

6x2
+ 2e2x + 3y

5y4
- 3e2x + 3y
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End of block exercises

In which of the following equations is y
expressed implicitly in terms of x?

(a) (b) 

(c) (d) 

(e) 

Find given

(a) 

(b) 

(c) 

(d) 

(e) 

A circle, centre the origin, radius 5, has
equation

Find the equation of the tangent to the circle
that passes through the point (3, 4).

x2
+ y2

= 25

3

x3
- y3

+ 3x2
- y = 0

2x2
+ y2

+ 3x + 2y + 7 = 0

x3
- 2y4

= x

2x2
- 3y2

+ 2x - 7y = 0

x3
- y4

= 1

dy

dx
2

x - y

x + y
= ex

x2y + y2x = 1yx2
- y = 10

sin y +

y

x
= 3sin x +

x

y
= 3

1 Find given

(a) (b) 
(c) 

(d) 

(e) 

Find :

(a) (b) 

(c) (d) 

(e) 

Differentiate the following expressions w.r.t. x:
(a) (b) (c) (x2

+ y2)n(x2
+ y)n(x + y)n

6

sin 2x cos 3y - 2 sin y cos x = 0

(x + 2y)e-y
= x2yxey

- 2yex
= xy

x sin y = y cos xex
+ ey

= x3
+ y4

dy

dx
5

x + t

x - 2t
-

3x

t2
= 0

x2

t3
-

t2

x2
+ x + t = 1

4(x + t) (x - t) - 3xt = 0
x2t2 - 3x2t = t32xt + x2

- xt2 = 0

dx

dt
4

Solutions to exercises

(b) and (d)

(a) (b) (c) 

(d) (e) 

(a) (b) 

(c) (d) 

(e) 
2xt + 3t2 + 6x

6x - t2 - 6t

3x5
+ 2xt5 - x3t4

2x4t + 2t6 + x3t4
3x + 8t

8x - 3t

3t2 + 3x2
- 2x2t

2xt2 - 6xt

2x(t - 1)

2t + 2x - t2
4

y =

-3x + 25

4
3

3x2
+ 6x

3y2
+ 1

-

4x + 3

2y + 2

3x2
- 1

8y3

4x + 2

6y + 7

3x2

4y3
2

1 (a) (b) 

(c) (d) 

(e)

(a)

(b)

(c) n(x2
+ y2)n - 1 a2x + 2y 

dy

dx
b

n(x2
+ y)n - 1 a2x +

dy

dx
b

n(x + y)n - 1 a1 +

dy

dx
 b6

2 cos 2x cos 3y + 2 sin y sin x

3 sin 2x sin 3y + 2 cos y cos x

2xyey
- 1

2 - x - 2y - x2ey

y - ey
+ 2yex 

xey
- 2ex

- x

y sin x + sin y

cos x - x cos y

3x2
- ex

ey
- 4y3

5
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BLOCK 4
Parametric differentiation

4.1 Introduction

In some circumstances both x and y depend upon a third variable, usually denoted by
t. This third variable is referred to as a parameter. By eliminating t, y can be deter-
mined in terms of x. For example, if and , then by eliminating t
we have

Hence we can consider y as a function of x and so the derivative can be found.

In some cases, elimination of t is difficult or even impossible. As an example consider
. Here it is impossible to obtain y in terms of x, but  

the derivative can still be found using the chain rule.
dy

dx

y = et
+ sin t,  x = t3 + ln t

dy

dx

 = a3 +

x

2
b2

  y = (3 + t)2

x = 2ty = (3 + t)2

Key point

 =

dy>dt

dx>dt
 

 
dy

dx
=

dy

dt
 
dt

dx

Finding by this method is known as parametric differentiation.

4.2 Some examples of parametric differentiation

Example 4.1

Given and find .
dy

dx
x = 2ty = (3 + t)2

dy

dx
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792 Block 4 Parametric differentiation16

Solution
We could eliminate t thus:

and then differentiate to obtain

Alternatively, using parametric differentiation we have

and so

Example 4.2

Find given .

Solution
In this case elimination of t is impossible. To find we must use parametric
differentiation.

and so

No further simplification is possible.

 =

cos t + 2t

et
+ 1

 

 
dy

dx
=

dy>dt

dx>dt
 

 
dy

dt
= cos t + 2t, 

dx

dt
= et

+ 1

dy

dx

y = sin t + t2,  x = et
+ t

dy

dx

 = 3 +

x

2

 = 3 + t

 =

2(3 + t)

2

 
dy

dx
=

dy>dt

dx>dt
 

dy

dt
= 2(3 + t),  

dx

dt
= 2

dy

dx
= 3 +

x

2

 = 9 + 3x +

x2

4

 = a3 +

x

2
b2

  y = (3 + t)2

M16_CROF5939_04_SE_C16.QXD  9/26/18  10:50 AM  Page 792



4.2 Some examples of parametric differentiation 793 16

Example 4.3

(a) Find given .

(b) Evaluate .

Solution

(a) , 

(b)

 = 2

 
dy

dx
 (t = 0) =

2 - 3(0)2

cos 0 + sin 0
 

 =

2 - 3t2

cos t + sin t
 

 
dy

dx
=

dy>dt

dx>dt
 

2 - 3t2, cos t + sin t

    
dx

dt
=    

dy

dt
=

dy

dx
 (t = 0)

y = 2t - t3, x = sin t - cos t
dy

dx

Exercises

Use parametric differentiation to find given

(a)

(b) (c) 
(d)
(e) x = 1t, y = 1 + ln t

x = et, y = et
+ t

x = t2, y = t3x = sin t, y = cos t

x = 1 + t, y = 2 + 3t + t2

dy

dx
1 Find given

(a)

(b)
(c)

(d)
(e) x = ln(1 + 3t), y = 1 + 2t

x = esin t, y = 1 - t2
x = 2 cos t, y = cos 2t
x = (1 + 2t)4,  y = (3 - 5t)7

x = sin(t2), y = t3 + 1

dy

dx
2

Solutions to exercises

(a) (b) (c) (d) 

(e)
2

1t

1 + e-t3t

2
-  tan t3 + 2t1 (a) (b) (c) 

(d) (e) 
2(1 + 3t)

3

-2t

cos tesin t

sin 2t

sin t

-35(3 - 5t)6

8(1 + 2t)3

3t

2 cos(t2)
2

End of block exercises

Find given

(a)

(b) x = 1 +

1

t
, y = t +

1

t

x = 3 + 2t - t2, y = 1 + 5t - t3
y¿1 (c)

(d)

(e) x = tan 2t, y = e2t

x = e2t, y = e-t
+ cos t

x = 3 sin t, y = sin t + 3t
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Find given

(a)

(b)

(c) constantx = r sin t, y = r cos(t2), r

x = sin(t2 + 1), y = cos(2t - 3)

x = 11 + 2t, y = (t2 + 1)4

dy

dx
2 (d)

(e) x = et sin t, y = e-t cos t

x =

1

1 + 2t
, y =

t

1 + t

Solutions to exercises

(a) (b) (c) 

(d) (e) e2t cos2 2t
-(e-t

+ sin t)

2e2t
 

cos t + 3

3 cos t
 1 - t2

5 - 3t2

2 - 2t
1 (a) (b) 

(c) (d) (e) -e-2t
-

(1 + 2t)2

2 (1 + t)2
-

2t sin(t2)

cos t
 

-sin(2t - 3)

t cos(t2 + 1)
 8t11 + 2t (t2 + 1)32
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BLOCK 5
Logarithmic differentiation

5.1 Introduction

The technique of logarithmic differentiation is useful when we need to differenti-
ate a cumbersome product. The method involves taking the natural logarithm of the
function to be differentiated.

5.2 Logarithmic differentiation

We gather together some important results that are commonly used in logarithmic
differentiation.

1.

2.

3.
4.
5.

6.

7.

The method of logarithmic differentiation is illustrated in the following examples.

Example 5.1

Given find .

Solution
We could use the product rule to find . However, we shall use logarithmic differ-

entiation to illustrate the technique. Taking the natural logarithm of both sides of the
given equation and applying the laws of logarithms yields

 = 2 ln t + 3 ln(1 + t)

 = ln t2 + ln(1 + t)3

 ln y = ln(t2 (1 + t)3)

dy

dt

dy

dt
y = t2(1 + t)3

ln An
= n ln A

ln 
A

B
= ln A - ln B

ln AB =  ln A +  ln B
ln(ef (x)) = f (x)
ln(ex) = x

d

dx
 (ln f (x)) =

1

f
 
df

dx

d

dx
 (ln y) =

1
y

 
dy

 dx
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Now, both sides are differentiated w.r.t. t.

Example 5.2
Given that

find .

Solution
Taking the natural logarithm of both sides and applying the laws of logarithms yields

We now differentiate both sides w.r.t. t.

Example 5.3

Find given .

Solution
Taking the natural logarithm of both sides and applying the laws of logarithms gives

Differentiating w.r.t. x gives

2 +

3
x

-

4

1 -  x    
1
y

 
dy

dx
=

2x, 3 ln x, 4 ln(1 - x)    +    +    =

 = ln e2x
+ ln x3

+ ln(1 - x)4

  ln y = ln(e2xx3(1 - x)4)

y = e2xx3(1 - x)4dy

dx

 
dy

dt
= (t + 1)7 (2t + 3)4 (2t - 1)5 a 7

t + 1
+

8

2t + 3
+

10

2t - 1
b

 
dy

dt
= y a 7

t + 1
+

8

2t + 3
+

10

2t - 1
b

 
1
y

 
dy

dt
=

7

t + 1
+

8

2t + 3
+

10

2t - 1

 
d

dt
 (ln y) =

d

dt
 (7 ln(t + 1)) +

d

dt
 (4 ln(2t + 3)) +

d

dt
 (5 ln(2t - 1))

 = 7 ln(t + 1) + 4 ln(2t + 3) + 5 ln(2t - 1)

 = ln(t + 1)7
+ ln(2t + 3)4

+ ln(2t - 1)5

 ln y = ln((t + 1)7 (2t + 3)4 (2t - 1)5)

dy

dt

y = (t + 1)7 (2t + 3)4 (2t - 1)5

 = t2 (1 + t)3 a2

t
+

3

1 + t
b

 
dy

dt
= y a2

t
+

3

1 + t
b

 
1
y

 
dy

dt
= 2a1

t
b + 3a 1

1 + t
b

 
d

dt
 (ln y) =

d

dt
 (2 ln t) +

d

dt
 (3 ln(1 + t))
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and so

Example 5.4

Find given .

Solution
Taking the natural logarithm of both sides gives

Differentiating both sides w.r.t. t gives

So

 = 21 + t2 cos4 t a t

1 + t2
- 4 tan tb

 
dz

dt
= za t

1 + t2
-

4 sin t

cos t
b

t

1 + t2
-

4 sin t

cos t
 

    
1
z
 
dz

dt
=

4 ln cos t+ 
1

2
 ln(1 + t2)    +

    
=

 = ln21 + t2 + ln cos4 t

 ln z = ln(21 + t2 cos4 t)

z(t) = 21 + t2 cos4 t
dz

dt

 
dy

dx
= e2xx3 (1 - x)4 a2 +

3
x

-

4

1 - x
b

 
dy

dx
= y a2 +

3
x

-

4

1 - x
b

Exercises

Find where y is given by

(a) (b) 
(c)

(d)

(e)

Find the derivative of each of the following
functions:

(a)

(b)

(c)

(d)

(e) y(x) =

(7 - x)3

(3x2
+ 1)2

P(r) = 6(1 + r2)6 23 + r2

M(p) = -p4 sin5 p

h(t) = 3e-6tt7(t + 6)3

z(t) = e3t(2t - 5)3 (3t + 1)4

2

(5 + 2x)4 (5x + 2)3

(1 - 3x)4 (2 - 7x)6

(3x + 2)4 (9x - 5)7
x8(5x - 1)6x5(3x + 7)9

dy

dx
1 Find the rate of change of

when .

Find the derivative of the following functions
using logarithmic differentiation:

(a)

(b)

(c)

(d)

(e) x(t) =

6

(2 + t)3 (1 - t)4 cos3 t
 

N(y) =

(1 + 1y)4 (6 + 7y)3

11 + y

K(p) = 6p 2sin p (cos 2p)1>3
b(r) = e-r sin5 2r  cos4 3r

a(t) = (1 + t2)3(1 - t2)4 sin3 t

4

t = 1

q(t) = 2e-t>2 cos 2t

3
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Solutions to exercises

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)
3(x - 7)2 (x2

- 28x - 1)

(3x2
+ 1)3

6r(r2
+ 1)5 (13r2

+ 37)

2r2
+ 3

-5p4 sin4 p cos p - 4p3 sin5 p

-6t6e-6t(t + 6)2 (3t2 + 13t - 21)

3e3t(2t - 5)2 (3t + 1)3 (6t2 + t - 23)2

7(2x + 5)3 (5x + 2)2 (10x + 13)

6(1 - 3x)3 (2 - 7x)5 (35x - 11)

33(3x + 2)3 (9x - 5)6 (9x + 2)

2x7(5x - 1)5 (35x - 4)

7x4(3x + 7)8 (6x + 5)1

(a)

(b)

(c)

(d)

(e) x a -3

2 + t
+

4

1 - t
+ 3 tan tb

NP 2

1y + y
+

21

6 + 7y
-

1

2(1 + y)Q

K a1

p
+

1

2
 cot p -

2

3
 tan 2pb

b(-1 + 10 cot 2r - 12 tan 3r)

a a 6t

1 + t2
-

8t

1 - t2
+ 3 cot t b4

-1.95373

End of block exercises

Find where y is given by

(a)

(b)

(c) (d) 

(e)
3

e2x 1sin x (9 + x2)
 

4e-3x cos 3x

(2 - x)3
 

e2x sin3 x

x4
 

1x (x2
+ 1)3 (x3

+ 1)2

x3(3x - 2)4 (5x - 1)6

dy

dx
1 Find the derivative of each of the following

functions:

(a)

(b)

(c)

(d)

(e) c(q) = eqA 
q2

- 2

3q2
+ 1

x(t) =

2(t + e2t)42t2 - 2t3

sin2 t
 

m(p) =

(1p + 2)2 e- p2

 (1 + p2)2
 

h(r) =

(3r2
+ 2)3

14 - r (9 + r2)

y(x) = 3e(x2)x2 sin x

2

Solutions to exercises

(a)

(b)

(c)

(d)

(e) ya -2 -

1

2
 cot x -

2x

9 + x2
b

ya -3 - 3 tan 3x +

3

2 - x
b

ya2 + 3 cot x -

4

x
b

ya 1

2x
+

6x

x2
+ 1

+

6x2

x3
+ 1
b

ya3

x
+

12

3x - 2
+

30

5x - 1
b1 (a)

(b)

(c)

(d)

(e) ca1 +

q

q2
- 2

-

3q

3q2
+ 1
b

x c4a1 + 2e2t

t + e2t
 b + a 1 - 3t

t - 2t2
b - 2 cot t d

ma 1

p + 21p
- 2p -

4p

1 + p2
b

ha 18r

3r2
+ 2

+

1

2(4 - r)
-

2r

9 + r2
b

ya2x +

2

x
+ cot xb2
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BLOCK 6
Tangents and normals

6.1 Introduction

The derivative gives the rate at which the function is changing. An alternative, but
equally valid, interpretation of the derivative is that it represents the gradient of a tan-
gent to the curve. We use this fact when calculating the equation of a tangent to a
curve.

A normal is a line that is perpendicular to a tangent through the point of contact.
Figure 6.1 illustrates a typical tangent and normal to .y(x)

y

x

Normal

Point of contactTangent

O

Figure 6.1
A tangent and
normal to a curve,
y(x).

6.2 Calculating the equation of a tangent

Recall that a tangent is a straight line that touches a curve in one point only. This
point is referred to as the point of contact. The derivative of a function can be inter-
preted as the gradient of a tangent to a curve.

When calculating the equation of a tangent we require its gradient and the coordi-
nates of one point. Usually the coordinates of the point of contact are used.

Example 6.1
Find the equation of the tangent to at the point (2, 4).

Solution
Figure 6.2 illustrates the situation. The point of contact is (2, 4). To calculate the 

gradient of the tangent we find the derivative, .

y = x2 so 
dy

dx
= 2x

dy

dx

y = x2
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y

x

Point of
contact Tangent

O

y � x2

2

Figure 6.2
A tangent to
y � x2 at (2, 4).

When , . Hence the gradient of the tangent is 4. We are now ready to 

calculate the equation of the tangent. The tangent is a straight line and so has an
equation of the form

The gradient, m, is 4 and so

The point of contact, (2, 4), lies on the tangent, that is when , .

Hence the equation of the tangent is .

Example 6.2
Find the equation of the tangent to where .

Solution
When , 

Thus the point of contact is (1.5, 5.5884).
The gradient of the tangent is now found.

When 

and so the gradient of the tangent is 2.2134. The equation of the tangent can now be
found. The equation has the form and using the gradient found we have

Applying the point of contact given yields

2.2134(1.5) + c 5.5884 =

y = 2.2134x + c

y = mx + c

2e1.5
- 3(1.5)2

= 2.2134 
dy

dx
=

x = 1.5

2ex
- 3x2 

dy

dx
=

5.5884 y =x = 1.5

x = 1.5y = 2ex
- x3

y = 4x - 4

  c = -4

  4 = 4(2) + c

y = 4x = 2

y = 4x + c

y = mx + c

dy

dx
= 4x = 2

M16_CROF5939_04_SE_C16.QXD  9/26/18  10:50 AM  Page 800



6.3 The Newton–Raphson method 801 16

from which

So the equation of the tangent is .y = 2.2134x + 2.2683

2.2683 c =

Exercises

Calculate the equation of the tangent to
where .

Calculate the equation of the tangent to 

where .

The gradient of a tangent to is 1.
Calculate the equation of the tangent.

y = x3
+ x3

x =

p

4
y = sin x

2

x = 2y = 3x2
- x + 9

1 (a) Calculate the equation of the tangent to
where .

(b) Calculate where the tangent cuts the x axis.
(c) Calculate where the tangent cuts the y axis.

Calculate the equation of the tangents to
at the points where y crosses the 

x axis.
y = 9 - x2

5

x = 1.4y = e-x
4

Solutions to exercises

y = x3

y =

1

12
ax + 1 -

p

4
b = 0.7071x + 0.15172

y = 11x - 31 (a)
(b) (2.4, 0)
(c) (0, 0.5918)

y = 6x + 18, y = -6x + 185

y = -0.2466x + 0.59184

6.3 The Newton–Raphson method

The Newton–Raphson method is a technique for generating a sequence of approxi-
mations to a solution, or root, of an equation . The method uses differenti-
ation because it relies upon knowledge of the equations of tangents to the graph of

. It is known as a numerical method because it produces a numerical
sequence of values that, under certain conditions, get closer and closer to the root.
We say that this sequence of values converges. A more detailed discussion of conver-
gence of sequences is given in Chapter 19.

Suppose we are interested in solving an equation that can be written in the form
. For example, we may wish to solve equations such as

This problem is equivalent to finding values of x for which the graph of 
intersects the horizontal axis, as illustrated in Figure 6.3. When x has the particular

y = f (x)

x4
- 3x - 2 = 0 or e-x

- sin x = 0

f (x) = 0

y = f (x)

f (x) = 0
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Figure 6.3
Solutions of

can be
located by finding
values of x where
the graph of

intersects
the x axis.
y = f (x)

f (x) = 0

Figure 6.4
The tangent drawn
at 
intersects the
x axis at .x1

P(x0, f (x0))

values , or then y has the value of 0. In other words, , and
, and so the roots of are , and .x = x3x = x2x = x1f (x) = 0f (x3) = 0

f (x2) = 0f (x1) = 0x3x2x1

y = f(x)

a
x0x1

y

x

P

y = f(x)

f(x)  =  0

x

y

x1 x2 x3

Suppose a root exists at some unknown value as shown in Figure 6.4. Sup-
pose we know or make an estimate of the root, say. We can draw a tangent to
the curve at the point , and use the value of x at the point where
the tangent cuts the x axis, x1 say, as a better estimate of the root.

First we obtain the equation of the tangent to at . It will 
take the form . From Section 6.2 we know that its gradient, m, will 

equal evaluated at , which, in the context of the Newton–Raphson method, 

we write as . So the equation becomes . We now find the con-
stant c. The tangent passes through the point , and so ,
from which . Since is a known value we can calculate

, and so c can be evaluated. Finally, the equation of the tangent is

From Figure 6.4 we see that this tangent will cut the horizontal axis when and
, that is when

0 = f ¿(x0)x1 + f(x0) - f ¿(x0)x0

x = x1

y = 0

y = f ¿(x0)x + f(x0) - f ¿(x0) x0

f(x0) - f ¿(x0)x0

x0c = f(x0) - f ¿(x0)x0

f (x0) = f ¿(x0)x0 + c(x0, f (x0))
y = f ¿(x0)x + cf ¿(x0)

x0
dy

dx

y = mx + c
P(x0, f (x0))y = f (x)

P(x0, f (x0))y = f (x)
x = x0

x = a
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If is an approximate root of , then, under certain conditions, an
improved estimate is given by

xn + 1 = xn -

f (xn)

f ¿(xn)
 

f (x) = 0x = xnKey point

6.3 The Newton–Raphson method 803 16

Rearranging this formula to make the subject gives

Recall that is our first approximation to the root. This formula enables us to calcu-
late a better estimate of the root, denoted by .

Example 6.3
Use the Newton–Raphson formula to find an improved estimate of a solution to the
equation given that a first estimate is .

Solution
Here and so, differentiating,

Then with a first estimate the Newton–Raphson formula is

Substitution of yields our new estimate :

So 1.636905 is an improved estimate of the root.

In practice the formula is used repeatedly with each new estimate used to generate a
further improvement. This leads to the following general formula.

1.5 -

1.54
- 3(1.5) - 2

4(1.5)3
- 3

= 1.636905

 x1 =

x1x0 = 1.5

x0 -

x0
4 -  3x0 -  2

4x3
0 -  3

 x1 =

x0

4x3
- 3 f ¿(x) =

f(x) = x4
- 3x - 2

x0 = 1.5x4
- 3x - 2 = 0

x1

x0

x1 = x0 -

f (x0)

f ¿(x0)

x1

Unfortunately the sequence of values produced does not always converge. For fur-
ther details concerning the conditions for convergence and the rate of convergence
consult a textbook on numerical methods for engineers.

The Newton–Raphson formula is easy to program in a loop structure. Exit from
the loop is usually conditional upon being smaller than some prescribed
very small value. This condition shows that successive approximate roots are very
close to each other.

ƒ xn + 1 - xn ƒ
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Example 6.4
Apply two more iterations of the Newton–Raphson method to the equation of
Example 6.3.

Solution
With we find

With we find

We see that the numbers generated by this method appear to be getting closer to
1.618. In this example the method has performed well when we note that the true
solution is 1.618034 (6 d.p.).

1.618425 -

1.6184254
- 3(1.618425) - 2

4(1.618425)3
- 3

= 1.618034

 x3 =

x2 = 1.618425

1.636905 -

1.6369054
- 3(1.636905) - 2

4(1.636905)3
- 3

= 1.618425

 x2 =

x1 = 1.636905

Exercises

Use the Newton–Raphson technique to find the
value of a root of the following equations
correct to two decimal places. An approximate
root is given in each case.x0

1 (a) , 
(b) , 
(c) , 
(d) , x0 = -1.5ex

=  sin 2x
x0 = 0.82x3

= e-x
x0 = -0.93x3

- 5x2
+ 7 = 0

x0 = 0.8x2
-  cos x = 0

Solutions to exercises

(a) 0.82 (b) (c) 0.77 (d) -1.67-0.951

Computer and calculator exercise

Use a graphical calculator or computer package to
plot a graph of . Use
your graph to estimate roots of the equation

f (x) = x3
- 8x2

+ 11x - 2
and use your estimates

together with the Newton–Raphson method to find
improved estimates.

x3
- 8x2

+ 11x - 2 = 0
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Key point If two lines are perpendicular, the product of their gradients is .-1

6.4 Equation of a normal to a curve 805 16

6.4 Equation of a normal to a curve

A normal is a line that is perpendicular to a tangent and passes through the point of
contact. (See Figure 6.1.)

It is useful to state an important result:

Solution to exercise

, 1.48, 0.21x = 6.31

Hence, if a tangent has gradient and the normal has gradient , then

Example 6.5
Find the equation of the normal to at the point (2, 4).

Solution
We have found from Example 6.1 that the gradient of the tangent at (2, 4) is 4. Hence

Let the equation of the normal be . The gradient, m, has been found to

be and so

The point of contact, (2, 4), is on the normal so

Hence the equation of the normal is

Example 6.6
Find the equation of the normal to at (1, ).-1y = 2x4

- 3

y = -

x

4
+

9

2

  c =

9

2

  4 = -

2

4
+ c

y = -

x

4
+ c

-
1
4

y = mx + c

 = -

1

4

 gradient of normal at (2, 4) =

1

-4

y = x2

m1m2 = -1.
m2m1
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Solution

We find .

The tangent through (1, ) has gradient

Hence the normal through (1, ) has gradient

The equation of the normal is

The normal passes through (1, ) and so

Hence the equation of the normal is

y = -

x

8
-  

7

8

-

7

8
 c =

-1

 = -

x

8
+ c

 y = mx + c

-

1

8 

-1

8 

-1

8x3 
dy

dx
=

dy

dx

Exercises

Calculate the equation of the normal to
(a) through (2, 10)
(b) through (9, 3)

(c) through (0.5, 2)

(d) through (1, 9)

(e) through a1, 
1

3
by =

x

2
-

x3

6

y = 10 - x4

y =

1

x

y = 1x
y = 3x2

- x
1 Calculate the equation of the normal to

(a) where 
(b) where 
(c) ln x where 
(d) where 

(e) where x = 1y =

ex
+ 1

x
 

x = 0y = (2x + 1)6
x = 1y = 2

x = py = 2 sin 3x
x = 1y = xex

2

Solutions to exercises

(a)

(b) y = -6x + 57

y = -

x

11
+

112

11
1 (c)

(d)

(e) x = 1

y =

x + 35

4

y =

x

4
+

15

8
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6.4 Equation of a normal to a curve 807 16

(a)

(b)

(c) y =

1 - x

2

y =

x - p

6

y =

-x + 2e2
+ 1

2e
 2 (d)

(e) y = x + e

y = -

x

12
+ 1

Solutions to exercises

(a) (b) (c)
(d) (e) y = 6x - 4y = 3x + 3

y = 7x - 5y = 10y = 2x + 11 (a) (b) y =

x

6
-

7

2
y = -

x

2
- 12

End of block exercises

Calculate the equation of the tangent to
(a) at (1, 3)
(b) at (0, 10)
(c) at (2, 9)
(d) at 
(e) at (1, 2)

Calculate the equation of the normal to
(a) at (0, )
(b) at (3, )
(c) at (1, 12)
(d) at (2, )
(e) at (0, 1)

Calculate the equation of the tangent to
(a) where 
(b) ln x where 
(c) where 
(d) where 

Calculate the equation of the normal to
(a) where 
(b) where 
(c) ln x where 
(d) where 
(e) ln where 

Calculate the equation of the tangent to
(a) where 
(b) where x = 0y = sin(2x + p)

x = 3y = 1x + 1 
5

x = 0.5x +  cos 2xy = 3
x = py = 4 cos x + sin x

x = 1y = 3x + 2
x = 1y = 3e-x

+ ex
x = 0y = 2 sin x + x

4

x = 0y = x2
+ e-2x

x = 0y = 3ex
+ e-x

x = ey = 2
x = py = 3 sin x - cos x

3

y = 2x3
- 3x + 1

-2y = 3x - x3
y = 3x2

- 2x + 11
-3y = 6 - x2

-1y = x2
+ 2x - 1

2

y = x3
+ x2

+ x - 1
(-1, 0)y = x3

+ 1
y = 2x2

- x + 3
y = 10 - 2x2
y = x2

+ 2
1 (c) where 

(d) where 

(e) where 

Calculate the equation of the normal to

(a) where 

(b) ln x where 
(c) where 

(d) where 

(e) where 

Use the Newton–Raphson technique to find the
value of a root of the following equations
correct to two decimal places. An approximate
root x0 is given in each case.

(a) , 
(b) , 

Apply the Newton–Raphson method to the
solution of . Show that with an
initial estimate of the sequence of
values generated by the method fails to
converge, but with an initial estimate 

the method converges to the root
(2 d.p.).x = 4.49

x0 = 4.6

x0 = 4
x - tan x = 0

8

x0 = 6.22 sin x = sin 2x
x0 = -1.5x5

- x3
+ 2 = 0

7

x = 0.5y = sin(x2)

x = -1y =

ex

x
 

x = 2y = 2x2
+ 1

x = 1y = x3

x =

p

2
y = cos(x - p)

6

x = 1y =

x

x2
+ 1

x = 2y =

2x + 1

x + 2

x = 1y = x2e-x
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(c) (d)

(e)

(a) (b)

(c) (d)

(e)

(a) (b)

(c) (d)

(e) y = -0.2316x - 1.4233

y = x - 4 - py =

-x + 16

5

y = -0.6193x + 4.4412y = -

x

3
4

y = -6x +

3p

2
+ 1

y = -2x + 1y = 2x + 4

y =

2

e
 xy = -3x + 3p + 13

y =

x

3
+ 1

y =

x - 20

9
y =

49 - x

4
(a) (b)

(c) (d)

(e)

(a) (b)

(c)

(d)
(e)

(a) (b) x = 6.28x = -1.357

y = -1.0321x + 0.7634
y = 1.3591x + 0.9913

y =

- 15

2
 x + 215

y = -  x + 1y = -  x +

p

2
6

y = 0.5

y =

3x

16
+

7

8
y =

x

e
 

y = -2xy =

x + 5

4
5
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BLOCK 7
Maximum and minimum values of a function

7.1 Introduction

The maximum and minimum values of a function are often very important. For
example, an engineer may need to know the value of the maximum power trans-
ferred from a voltage source to a load resistor. Maximum and minimum points
are located by examining the derivative of a function, rather than the function
itself.

Two tests are described that distinguish between maximum and minimum points.
Finally, we explain what is meant by a point of inflexion and how such a point is
located.

7.2 Maximum and minimum points

Consider Figures 7.1(a) and (b). The point A is a local maximum; the point B is a
local minimum. Note that A is not the highest point on the graph. However, in
the locality of A, A is the highest point. Use of the word ‘local’ stresses that A is a
maximum only in its locality. Similarly B is a minimum in its locality but is not the
lowest point on the entire graph.

Figure 7.1
(a), (b) A is a local
maximum, B is a
local minimum.

y

x

A

B

y

x

A

B

When moving away from A along the function, both to the left and to the right, the
value of y decreases; when moving away from B along the function, the value of y
increases.

It is useful to be able to locate points such as A and B. This is done by referring to
the gradient of the function, rather than the function itself.

(a) (b)
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Key point
At maximum and minimum points, or does not exist.

dy

dx
 

dy

dx
= 0

Key point • The first-derivative test distinguishes between maximum and minimum points.

• To the left of a maximum point, is positive; to the right is negative.

• To the left of a minimum point, is negative; to the right is positive.
dy

dx

dy

dx

dy

dx

dy

dx

810 Block 7 Maximum and minimum values of a function16

7.3 Locating maximum and minimum points

Consider Figure 7.2, which shows the curve y(x), together with some tangents. The

tangents at A and B are parallel to the x axis, that is at these points.
dy

dx
= 0

y

x

A

B

Figure 7.2

At A and B, 

.
dy

dx
 = 0

We now consider Figure 7.1(b) again. At A and B it is impossible to draw tan-

gents: that is, they do not exist. Hence at these points does not exist. In summary
we have

dy

dx
 

So, maximum and minimum points are located by looking for points where 

or does not exist.

7.4 The first-derivative test

When given any function, y(x), we can limit our search for maximum and minimum

points to those points where or does not exist. We also need to distinguish

between a maximum point and a minimum point. To do this we consider on either
side of the point.

Immediately to the left of a maximum point, such as A in Figure 7.1, , that
is y is increasing. Immediately to the right of a maximum point, , that is y is
decreasing. Thus, in passing from left to right through a maximum point, changes
from positive to negative.

Now consider a minimum point, such as B in Figure 7.1. Immediately to the left of
such a point, , that is y is decreasing. Immediately to the right, , that is
y is increasing. So, in passing from left to right through a minimum point, changes
from negative to positive.

This information is contained in the first-derivative test.

y¿

y¿ 7 0y¿ 6 0

y¿

y¿ 6 0
y¿ 7 0

y¿

dy

dx

dy

dx
= 0

dy

dx

dy

dx
= 0
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7.4 The first-derivative test 811 16

Example 7.1
Determine the position of any maximum and minimum points of the function

.

Solution

By differentiation, . The function 2x exists for all values of x. So, we need 

only look for maximum and minimum points by solving . So

so

At this stage, we know that the only place a maximum or a minimum point can be
found is where . We now apply the first-derivative test.

To the left of , x is negative. So 2x is negative and hence is negative. To
the right of , x is positive and so is positive. Since changes from negative
to positive, there must be a minimum point at .

When , so (0, 1) is a minimum point. Figure 7.3 illustrates this.y = 1x = 0
x = 0

y¿y¿x = 0
y¿x = 0

x = 0

x = 0

  2x = 0
 y¿ = 0

y¿ = 0

dy

dx
= 2x

y = x2
+ 1

y

x

(0, 1)

y � x2 � 1

Figure 7.3
There is a
minimum point
at (0, 1).

Example 7.2
Determine the position of any maximum and minimum points of the function

.

Solution

We see that , which exists for all x. We look for maximum and minimum

points by solving .

so

Thus we examine the point where .x = 1

x = 1

  2 = 2x
  2 - 2x = 0

 
dy

dx
=  0

dy

dx
= 0

dy

dx
= 2 - 2x

y = 2x - x2
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We examine the sign of to the left and to the right of . To determine the 

sign of to the left and to the right of we can use one of two techniques.
We can sketch a graph of and note the sign on both sides of . Another
method is to evaluate just to the left of , say , and then evalu-
ate just to the right of , say at . When , the value of

is 0.2; when the value of is . Since changes from
positive to negative there must be a maximum at .

When , and so (1, 1) is a maximum point. Figure 7.4 illustrates this.y = 1x = 1
x = 1

y¿-0.22 - 2xx = 1.12 - 2x
x = 0.9x = 1.1x = 12 - 2x

x = 0.9x = 12 - 2x
x = 12 - 2x

x = 12 - 2x

x = 1
dy

dx

y � 2x � x 
2

y

x1 2

1

Maximum pointFigure 7.4
There is a
maximum point
at (1, 1).

Example 7.3
Determine the position of any maximum and minimum points of the function 

.

Solution
We have

Clearly, exists for all values of t. Solving yields

We need to investigate the two points where and .

Consider a value just to the left of , say Here

So, at , is positive.

Just to the right of , say at ,

 = -0.29

 
dy

dt
= (-0.9)2

- (-0.9) - 2

t = -0.9t = -1

dy

dt
t = -1.1

 = 0.31

 
dy

dt
= (-1.1)2

- (-1.1) - 2

t = -1.1.t = -1
t = -1

t = 2t = -1

  t = -1, 2
  (t - 2)(t + 1) = 0

  t2 - t - 2 = 0

dy

dt
= 0

dy

dt

dy

dt
= t2 - t - 2

y =

t3

3
-

t2

2
- 2t + 3
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Example 7.4
Determine the position of any maximum and minimum points of the function .

Solution
Recall that

A graph of the modulus function is shown in Figure 8.7 of Chapter 6. Note that there is a cor-

ner at . Hence the derivative, , does not exist at and so this is a possible location

of a maximum or minimum point. To the left of , is negative; to the right of

, is positive and so there is a minimum at .

Example 7.5
Locate the maximum and minimum points of each of the following functions:
(a) 
(b) 
(c) 

Solution
(a) Given 

Solving yields

3    x =

dy

dx
= 0

2x - 6    
dy

dx
 =

y = x2
- 6x + 5

y = x1>3y = x3
- 3x

y = x2
- 6x + 5

t = 0
dy

dt
 t = 0

dy

dt
 t = 0

t = 0
dy

dt
t = 0

y = ƒ t ƒ = b - t t 6 0

t t Ú 0
 

y = |t|

7.4 The first-derivative test 813 16

So, is negative. Since the derivative has changed from positive to negative there

must be a maximum point at .
When , and so is a maximum point.

By considering values just to the left and right of we see that immediately to 

the left of , is negative; immediately to the right, is positive. Hence at

there is a minimum point.
When , so is a minimum point. Figure 7.5 illustrates a

graph of the function.
12, -  132y = -

1
3t = 2

t = 2

dy

dt

dy

dt
t = 2

t = 2
t = -2

1-1, 25
6 2y =

25
6t = -  1

t = -  1

dy

dt

1

2

3

4

O 1 2 3–1

–1

–2–3

(−1,25
6 )

( −2, 3 )1

y= t3

3 − t2

2 −2t+ 3

t

yFigure 7.5
There is a
maximum point at

and a
minimum point at

.12, -1
32

1-1, 25
6 2
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814 Block 7 Maximum and minimum values of a function16

Immediately to the left of ,

is 

Immediately to the right of ,

is 

Hence at , there is a 

When ,

Hence (3, ) is a minimum point.

(b) Given , here

Solving yields

Consider .

Immediately to the left of ,

is 

Immediately to the right of ,

Hence at there is a 

When ,

So ( , 2) is a maximum point.

We now consider .

Immediately to the left of ,

Immediately to the right of ,

Hence at there is a 
When ,

So (1, ) is a minimum point.

(c) Given then by differentiation we have

x-2/3

3
=

1

3x2/3    
dy

dx
=

y = x1>3
-2

-2    y =

x = 1
minimum    x = 1

positive    y¿ is

x = 1

negative    y¿ is

x = 1

x = 1

-1

2    y =

x = -1

maximum    x = -1

negative    y¿ is

x = -1

positive    y¿

x = -1

x = -1

-1, 1    x =

y¿ = 0

3x2
- 3    y¿ =

y = x3
- 3x

-4

-4    y =

x = 3

minimum    x = 3

positive    
dy

dx

x = 3

negative    
dy

dx

x = 3
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7.4 The first-derivative test 815 16

Note that at the function does not exist so there is no derivative at

.

To the left of ,

To the right of ,

Since does not change sign we conclude there is neither a maximum nor a
minimum at .

Example 7.6 Electrical Engineering – Maximum power transfer
Consider the circuit of Figure 7.6 in which a non-ideal voltage source is connected to
a variable load resistor with resistance . The source voltage is V and its internal
resistance is . Calculate the value of that results in the maximum power being
transferred from the voltage source to the load resistor.

RLRS

RL

x = 0
y¿

positive    y¿ is

x = 0

positive    y¿ is

x = 0

x = 0

1

3x2>3x = 0

Non-ideal
voltage
source

RS

RL

V
�

�

iFigure 7.6
Maximum power
transfer occurs
when .RL = RS

Solution
Let i be the current flowing in the circuit. Using Kirchhoff’s voltage law and Ohm’s
law gives

Let P be the power developed in the load resistor. Then

Clearly P depends on the value of . Differentiating we obtain

Equating to zero gives

V 2 
RS - RL 

(RS + RL)3 = 0

dP

dRL

 = V 2 
RS - RL 

(RS + RL)3

 
dP

dRL
= V 2 

1(RS + RL)2
- RL2(RS + RL)

(RS + RL)4

RL

 =

V 2 RL 

(RS + RL)2

  P = i2 RL 

V = i(RS + RL)
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816 Block 7 Maximum and minimum values of a function16

that is

We need to check whether this is a maximum point.

When has a value just to the left of , the derivative is positive. When has a
value just to the right of , the derivative is negative. Hence there is a maximum
when . Therefore maximum power transfer occurs when the load resistance
equals the source resistance.

RL = RS

RS

RLRSRL

dP

dRL
= V 2 

RS - RL 

(RS + RL)3

RL = RS 

Exercises

Determine the location of all maximum and
minimum points of the following functions:
(a) 
(b) 
(c) 

(d) 

(e) y = x3
- 27x

y =

x3

3
-

x2

2
+ 1

y = 10 + 3x - x2
y = x2

- 5x + 4
y = x2

- 4x

1 Determine the location of all maximum and
minimum points of the following functions:
(a) 

(b) 

(c) 

(d) 

(e) y = (1 - ln x)x

y =

x4

4
+ x + 1

y =

x5

5
-

x3

3

y =

1

1 + x2

y = xex

2

Solutions to exercises

(a) (2, ) minimum
(b) minimum

(c) maximum

(d) (0, 1) maximum, minimum

(e) ( , 54) maximum, (3, ) minimum-54-3

11, 562
132, 49

4 2
152, -9

42
-41 (a) ( , ) minimum

(b) (0, 1) maximum

(c) maximum, minimum

(d) minimum

(e) (1, 1) maximum

1-1, 142
11,- 2

1521-1, 2
152

-0.3679-12

7.5 The second-derivative test

This is a test to distinguish between maximum and minimum points. Rather than
examine the sign of on both sides of the points where we can instead
consider the sign of the second derivative, , at these points.

On passing left to right through a maximum point, changes from positive to
zero to negative. Hence, is decreasing and so the derivative of is negative, thaty¿y¿

y¿

y–

y¿ = 0y¿
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7.5 The second-derivative test 817 16

is . Similarly, on passing left to right through a minimum point, changes
from negative to zero to positive and so is increasing. Hence is positive. The
second-derivative test summarises this:

y–y¿

y¿y– 6 0

Key point • If and at a point, then the point is a maximum point.
• If and at a point, then the point is a minimum point.
• If and the second-derivative test fails and we must return to the first-

derivative test.
y– = 0y¿ = 0
y– 7 0y¿ = 0
y– 6 0y¿ = 0

Example 7.7
Use the second-derivative test to find all maximum and minimum points of

Solution
We see that

Solving yields , 3. Now

The sign of is calculated at both and .
When , . Since then by the second-derivative test there is

a maximum point at .
When , . Here and so there is a minimum point at .
When , . When , . So is a maximum point;

is a minimum point.

Example 7.8
Determine the positions of all maximum and minimum points of .

Solution
We have . Solving yields . Also we see

To apply the second-derivative test we evaluate at . At , . Since
the second-derivative test fails. We return to the first-derivative test and

examine the sign of to the left and to the right of .
Immediately to the left of , is negative. Immediately to the right of 
is positive. Hence there is a minimum point at .
When , and so (0, 0) is a minimum point.y = 0x = 0

x = 0y¿

x = 0,y¿x = 0
x = 0y¿

y– = 0
y– = 0x = 0x = 0y–

y– = 12x2

x = 0y¿ = 0y¿ = 4x3

y = x4

13, -  
23
2 2

1-2, 28
3 2y = -

23
2x = 3y =

28
3x = -2

x = 3y– 7 0y– = 5x = 3
x = -2

y– 6 0y– = -5x = -2
x = 3x = -2y–

y– = 2x - 1

x = -2y¿ = 0

 = (x + 2)(x - 3)

  y¿ = x2
- x - 6

y =

x3

3
-

x2

2
- 6x + 2
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818 Block 7 Maximum and minimum values of a function16

Example 7.9
Determine all maximum and minimum points of

Solution
We have

Solving yields

In order to use the second-derivative test we calculate .

The sign of is calculated at each value of x.
When ,

is 

and so there is a point at  

When ,

and so there is a point at   .
When ,

When ,

So is a maximum point; (0, 1) is a minimum point.1-1, 13
102

1y =

x = 0

13

10
y =

x = -1
minimumx = 0

positivey– is

x = 0

maximumx = -1.

negativey–

x = -1
y–

 4x3
+ 1y– =

y–

0, -1x =

y¿ = 0

x4
+ xy¿ =

y =

x5

5
+

x2

2
+ 1

Exercises

Determine the position of all maximum and
minimum points of the following using the
second-derivative test.

(a) 

(b) y = 6 + 2x -

3x2

2

y =

x2

2
- x + 1

1 (c)

(d) y =

x4

4
-

x2

2

y =

x3

3
+

3x2

2
- 1

Solutions to exercises

(a) , minimum

(b) , maximum

(c) (0, ), minimum; , maximum1-3,  722-1

123, 20
3 2

11, 1221 (d) (0, 0), maximum; , minimum;

, minimum1-1, -1
42

11, -1
42
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7.6 Points of inflexion 819 16

7.6 Points of inflexion

Figure 7.7 shows two curves. In both cases the gradient is increasing as we move
along the curve from left to right, that is is increasing.y¿

y

x

y

x

Figure 7.7
The gradient of
both curves is
increasing; the
curves are concave
up.

When is increasing, then is positive, and the curve is described as concave
up. Figure 7.8 shows two curves the gradients of which are decreasing as we move
along the curve from left to right, that is is decreasing. When is decreasing, 
is negative and the curve is said to be concave down.

y–y¿y¿

y–y¿

y

x

y

x

Figure 7.8
The gradient of
both curves is
decreasing; the
curves are concave
down.

A point at which the concavity changes from concave up to concave down, or vice
versa, is called a point of inflexion. At such a point either or does not
exist. Figure 7.9 illustrates some points of inflexion.

y–y– = 0

y

x

A

Figure 7.9
(a) There is a point
of inflexion at A;
(b) there are points
of inflexion at A
and B; (c) there is
a point of inflexion
at O.

y

x

A B

y

x
O

(a) (b) (c)

M16_CROF5939_04_SE_C16.QXD  9/26/18  10:51 AM  Page 819



820 Block 7 Maximum and minimum values of a function16

Note that not all points where or where does not exist are points of inflexion.
However, when searching for points of inflexion, we can limit our search to points
where or where does not exist.

Example 7.10
Locate any points of inflexion of .

Solution
We have

A point of inflexion can occur only where either or does not exist. Clearly
exists for all values of x but when .
We examine the concavity to the left and right of . To the left of , 6x is

negative and so : that is, the function is concave down. To the right of ,
6x is positive, and so : that is, the function is concave up. Hence the concav-
ity changes at and so there is a point of inflexion at .

When , and so (0, 0) is a point of inflexion. Figure 7.10 illustrates
.y = x3

y = 0x = 0
x = 0x = 0

y– 7 0
x = 0y– 6 0

x = 0x = 0
x = 0y– = 0y–

y–y– = 0

y¿ = 3x2, y– = 6x

y = x3

y–y– = 0

y–y– = 0

Key point A curve is concave up when , and concave down when . There is a
point of inflexion where the concavity changes.

y– 6 0y– 7 0

y

x

y � x3

y" � 0

y" � 0

O

Figure 7.10
Since changes
sign at ,
there is a point of
inflexion there.

x = 0
y–

Example 7.11
Determine all maximum points, minimum points and points of inflexion of

Solution
We have

To locate maximum and minimum points we solve . This yields

 
x2

2
- x = 0

y¿ = 0

y¿ =

x2

2
- x,  y– = x - 1

y =

x3

6
-

x2

2
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7.6 Points of inflexion 821 16

To distinguish between maximum and minimum points we use the second-derivative
test at and at .

and so there is a maximum point at .
and so there is a minimum point at .

When , then . When , . So (0, 0) is a maximum point;
is a minimum point.

We now consider points of inflexion. We know that points of inflexion can occur
only where or where does not exist. Clearly exists for all values of x but

at . To check whether there is a point of inflexion at we check
the concavity to the left and right of .

Immediately to the left of , say at , . Immediately to the right
of , say at 1.1, and so the concavity changes at : that is, there is a x = 1y– 7 0x = 1

y– 6 0x = 0.9x = 1
x = 1

x = 1x = 1y– = 0
y–y–y– = 0

A2, -2
3 B

y = -
2
3x = 2y = 0x = 0

x = 2y–(2) 7 0
x = 0y–(0) 6 0

x = 2x = 0

  x = 0, 2

  x a x

2
- 1b = 0

point of inflexion at . When , , so is a point of inflexion.A1, -1
3 By = -

1
3x = 1x = 1

In summary we have: (0, 0) maximum point; minimum point; 
point of inflexion.

Example 7.12
Find all maximum points, minimum points and points of inflexion of

Solution
We calculate y¿ and y–.

Solving yields

We apply the second-derivative test to each value of x.

Hence there is a  point at  . 

There is a point at x � 2. 

When , . When , .
We seek points of inflexion by considering y–. Solving yields .

Immediately to the left of , say at 0.4,

Immediately to the right of , say at 0.6,x = 0.5

positive y– is

x = 0.5
x = 0.5y– = 0

y = 21x = 2y = -  6x = -  1

maximum 

minimumx = -1 

-18 y–(2) =

18 y–(-1) =

-1, 2 x =

y¿ = 0

6 - 12x y– =

12 + 6x - 6x2 y¿ =

y = 1 + 12x + 3x2
- 2x3

A1, -1
3 BA2, -2

3 B
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822 Block 7 Maximum and minimum values of a function16

Hence the concavity changes and so there is a point of inflexion at .
When ,

In summary we have: , minimum point; (2, 21) maximum point; (0.5, 7.5),
point of inflexion.

(-1,-6)

7.5 y =

x = 0.5
x = 0.5

negative y– is

Exercises

Determine the position of all points of
inflexion of the following functions:

(a)

(b)

(c)

(d)

(e) y = x4

y =

x4

12
-

x2

2
- x + 1

y =

x4

24
-

x3

6
+ x + 1

y = 1 + 2x2
-

x3

6

y =

x3

6
- x2

1 Locate all maximum points, minimum points
and points of inflexion of the following
functions:

(a)

(b)
(c) y = x1>3

y = -x5

y =

x3

3
- 3x2

+ 5x + 1

2

Solutions to exercises

(a) (b) (c) (0, 1), 

(d)
(e) no inflexion points
A -1, 19

12 B , A1, - 5
12 B

A2, 73 BA4, 67
3 BA2, -8

3 B1 (a) maximum; minimum;
inflexion

(b) (0, 0) inflexion
(c) (0, 0) inflexion

(3, -2)
A5, -22

3 BA1, 10
3 B2

End of block exercises

State when each of the following functions are
concave up and when they are concave down:
(a)
(b)

(c)

(d)

Find all maximum points, minimum points and
points of inflexion of the following functions:

2

y =

x2

2
+

x3

6

y =

x3

6
- x2

y = x3
y = x2

1 (a)

(b)

(c)

(d)

(e) y =

x4

4
-

x2

2
+ 2

y = 1 + 4x -

3x2

2
-

x3

3

y =

2x3

3
-

x2

2
- x + 6

y =

x3

3
+ x2

- 3x + 7

y = 1 + 4x -

3x2

2
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End of chapter exercises 823 16

Solutions to exercises

(a) always concave up
(b) concave up on ; concave down on

(c) concave down on ; concave up on

(d) concave down on ; concave up
on 

(a) maximum

(b) minimum, maximum, 

inflexionA -1, 32
3 B

(-3, 16)A1, 16
3 B

A43, 11
3 B2

(-1, q )
(- q , -1)

(2, q )
(- q , 2)

(- q , 0)
(0, q )

1 (c) minimum, maximum, 

inflexion

(d) minimum, maximum, 

inflexion

(e) minimum, minimum, (0, 2) 

maximum, inflexion, 
inflexion

A13, 67
36 BA - 1

23
, 

67
36 B
A -1, 74 BA1, 74 B

A -3
2, -29

4 B
A1, 19

6 BA -4, -53
3 B

A14, 275
48 B

A -1
2, 151

24 BA1, 31
6 B

End of chapter exercises

Find where y is given by

(a) (b)
(c)
(d) (e)

Find y¿ where y is given by

(a) (b) (c)

(d) (e)

Find when where y is defined by

(a) (b) (c)

(d) (e)

Find the derivative of the following functions:
(a)
(b)
(c)

(d)

(e)

Use logarithmic differentiation to differentiate

y = xx

5

M(b) = ln b + ln(b + 1)

V(r) =

1

ln r
 

H = ln(t2 + 3t - 9)
y = (x + sin x)7
y = e2xx3 sin 3x cos 2x

4

4 tan x

ex sin x
 

1

x sin x
 

sin x cos 2x

x2
 

x2
+ 1

xex  
x cos x

sin x
 

x = 1
dy

dx
3

1x

x + 1

v + sin v

1 + ev  

r3

3e2r
 

cos 2t

sin 3t
 

x2
+ 1

2x + 3

2

x tan 3x sin x  sin 2x  sin 3x
(x2

+ 1)e-x
-3 sin 2x cos 5xx3e2x

dy

dx
1 Find given

(a)
(b) constant

(c)

(d)

(e)

Find given

(a)
(b)

(c)

(d)
(e)

Find given

Find given 

Find given .

Find the equation of the tangent to
where .x = 1y = 3x3

- x
11

y = e(x2)d2y

dx2
10

(x2
- y3)6

= exy.y¿9

ln(x + y) = k, k constant.
dy

dx
8

x sin y + y2 cos 2x = y
ln(xy) - 2x = 2y

xy2
+

y

x
= ex

2x2
- y2

+ 3xy - 7x - 10y = 0
x2

+ x3
+ y2

- y3
= 1

dy

dx
7

x(t) = 2t, y(t) = 22t + 1

x(t) = 2et, y(t) = tet

x(t) =

1

t
, y(t) = sin t

x(t) = t2, y(t) = t3 + k, k
x(t) = t2 + 3, y(t) = 2t2 + t + 1

dy

dx
6
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Find the equation of the normal to 
where .

Find the equation of the tangent to 
where .

Find the equation of the tangent to 
where .

State the range of values of x for which each
of the following functions is (i) concave up
(ii) concave down:

(a)

(b) y = 3 + x +

x2

2
-

x4

12

y =

x3

6
-

5x2

2
+ 3x - 9

15

x = -1
y =

1

x2
14

x = 1
y = xex13

x = 2
y = ln x12 (c)

(d)

(e)

Locate all maximum points, minimum points
and points of inflexion of

Locate all maximum points, minimum points
and points of inflexion of

y = x2ex

17

y =

2x3

3
-

5x2

2
+ 1

16

y =

x2

2
 ln x -

x2

4

y = (x - 1)4
y = ex

- 100x - 100

Solutions to exercises

(a)
(b)
(c)
(d)

(e)

(a)

(b)

(c)

(d)

(e)

(a) (b) (c)
(d) (e) 1.5181

(a)

(b) 7(x + sin x)6(1 + cos x)

3x cos 3x cos 2x - 2x sin 3x sin 2x)
x2e2x (2x sin 3x cos 2x + 3 sin 3x cos 2x +4

-1.9515
-1.0548-0.7358-0.77023

1

2(x + 1)2
 a1 - x

2x
b

(1 + ev)(1 + cos v) - (v + sin v)ev

(1 + ev)2
 

r2

3
 a 3 - 2r

e2r
b

-  
(2 sin 2t sin 3t + 3 cos 2t cos 3t)

sin2 3t
 

2x2
+ 6x - 2

(2x + 3)2
2

tan 3x + 3x sec 2 3x
3 sin x sin 2x cos 3x
cos x sin 2x sin 3x + 2 sin x cos 2x sin 3x +
-e-x(x - 1)2
15 sin 2x sin 5x - 6 cos 2x cos 5x
x2e2x(3 + 2x)1 (c)

(d) (e)

(a) (b) (c)

(d) (e)

(a) (b)

(c) (d)

(e)

12x(x2
- y3)5

- yexy

18y2(x2
- y3)5

+ xexy
 9

-18

2y2 sin 2x - sin y

x cos y + 2y cos 2x - 1
 

y(2x - 2)

x(2 - 2y)

x2ex
+ y - x2y2

x(2x2y + 1)
 

4x + 3y - 7

2y - 3x + 10

2x + 3x2

3y2
- 2y

7

2A
t

2t + 1

1 + t

2

- t2 cos t
3t

2

4t + 1

2t
6

xx(ln  x + 1)5

1

b
+

1

b + 1
-

1

r (ln r)2
 

2t + 3

t2 + 3t - 9

824 Block 7 Maximum and minimum values of a function
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End of chapter exercises 825 16

(a) concave up on concave down on
x 6 5

x 7 5;15

y = 2x + 314

y = e(2x - 1)13

y = -2x + 4.693112

y = 8x - 611

(1 + 2x2)2e(x2)10 (b) concave up on concave
down on and 

(c) concave up for all values of x
(d) concave up for all values of x except 
(e) concave up on concave down on 

(0, 1) maximum; minimum; 

point of inflexion

(0, 0) minimum; maximum;
and 

points of inflexion
(-0.5858, 0.1910)(-3.4142, 0.3835)

(-2, 0.5413)17

A54, -77
48 B

A52, -101
24 B16

x 6 e-1
x 7 e-1;

x = 1

x 6 -1x 7 1
-1 6 x 6 1;
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Chapter 17
Integration

When a function, f(x), is known, we can differentiate it to obtain the

derivative, The reverse process is to obtain f(x) from knowledge of

its derivative. This process is called integration.

However, integration is much more than simply differentiation in
reverse. It can be applied to finding areas bounded by curves. Such
areas can have various physical interpretations. For example, the area
underneath a graph of the velocity of an object against time represents
the distance travelled by the object. The area under a graph of current
flow into a capacitor against time represents the total charge stored by
the capacitor. Clearly, there are many applications where it is required
to calculate quantities like these, and this is why a knowledge of
integration is important for the engineer.

It is also necessary to regard integration as a process of adding up, or
summation. Often a physical quantity can be obtained by summing
lots of small contributions or elements. For example, the position of
the centre of mass of a solid body can be found by adding the
contributions from all the small parts of which the body is composed.
You will see how this is done using integration in Chapter 18.

In this chapter we lay the foundations, and explain a wide variety of
techniques that are necessary to integrate the range of functions
commonly met in engineering applications.

Modern software packages enable the easy integration of complicated
functions. This is illustrated in Block 4.

.
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BLOCK 1
Integration as differentiation in reverse

1.1 Introduction

The topic of integration can be approached in several different ways. Perhaps the
simplest way of introducing it is to think of it as differentiation in reverse. In some
applications we shall know the derivative of a function, but not the function from
which it was derived. This is why we need knowledge of integration.

In this block we give a look-up table that you can use to integrate a wide range of
functions, and we provide lots of opportunities for you to practise using it. Then
rules are given that allow you to integrate a wider range of functions. In particular
you will be able to integrate sums, differences and constant multiples of functions.

1.2 Differentiation in reverse

Suppose we differentiate the function . We obtain Integration

reverses this process, and we say that the integral of 2x is . Pictorially we can regard
this as shown in Figure 1.1.

x2

dy

dx
= 2x.y = x2

Differentiate

Integrate

2xx2

Figure 1.1
Integration can be
thought of as
differentiation in
reverse.

The situation is just a little more complicated because there are lots of functions
we can differentiate to give 2x. Here are some of them:

Example 1.1
Write down some more functions that have derivative 2x.

Solution

e.g. x2
- 7, x2

+ 0.1

x2
+ 4, x2

- 15, x2
+ 0.5
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1.2 Differentiation in reverse 829 17

All these functions have the same derivative, 2x, because when we differentiate the
constant term we obtain zero. Consequently, when we reverse the process, we have
no idea what the original constant term might have been. Because of this we include in
our answer an unknown constant, c say, called the constant of integration. We state
that the integral of 2x is . There is nothing special about the letter c. We might
use K for example, but we avoid using letters from the end of the alphabet like x, y
and z, which are used for variables.

The symbol for integration is , known as an integral sign. Formally we write 1

x2
+ c

�2x dx � x2 � c

integral
sign this term is

called the
integrand

there must always be a
term of the form dx

constant of integration

}
Note that along with the integral sign there is a term of the form dx, which must
always be written, and which indicates the name of the variable involved, in this case
x. The term dx must not be interpreted as a product of d and x. Rather it is a notation
and as such you should think of dx as a single quantity.

We say that 2x is integrated with respect to x to give . The function being
integrated is called the integrand. Technically, integrals of this sort are called
indefinite integrals, to distinguish them from definite integrals, which are dealt with
subsequently. When you find an indefinite integral your answer should always con-
tain a constant of integration.

x2
+ c

Exercises

(a) Write down the derivatives of each of

(b) Deduce that 

Explain what is meant by the term
‘integrand’.

2

13x2 
dx = x3

+ c.

 x3, x3
+ 17, x3

- 21

1 Explain why, when finding indefinite integrals,
a constant of integration is needed. 

3

Solutions to exercises

(a) All have derivative .3x21
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830 Block 1 Integration as differentiation in reverse17

1.3 A table of integrals

We could use a table of derivatives to find integrals, but the more common ones are
usually found in a ‘table of integrals’ such as that shown in Table 1.1. You could
check many of the entries in this table using your knowledge of differentiation. Try
checking some of these for yourself.

When dealing with the trigonometrical functions the variable x must always be
measured in radians and not degrees. Note that the fourth entry for integrating a
power of x is valid whether n is positive, negative or fractional, but not when .
If use the fifth entry in the table. Various other conditions are detailed in the
third column.

Example 1.2
(a) Use the table of integrals to find .
(b) Check the result by differentiating the answer.

Solution
(a) From the table note that

In words, this states that to integrate a power of x, increase the power by one,
and divide the result by the new power. You will find it helpful to remember
this rule. With we find

(b) The answer can be differentiated as a check.

The answer has been verified.

Example 1.3

Find .

Solution
From the table note that

With we find

Check this result for yourself by differentiating it.

�cos 5x dx =

sin 5x

5
+ c

k = 5

�cos kx dx =

sin kx

k
+ c

1cos 5x dx

 = x7

 =

1

8
* 8x7

 
d

dx
a x8

8
+ cb =

1

8
 

d

dx
 x8

�x7 dx =

x8

8
+ c

n = 7

�xn dx =

xn + 1

n + 1
+ c

1x7 dx

n = -1
n = -1

M17_CROF5939_04_SE_C17.QXD  9/27/18  8:35 AM  Page 830



1.3 A table of integrals 831 17

Table 1.1
Table of integrals. Function f(x) Indefinite integral

constant, k

x

ln

sin x

cos x

sin kx

cos kx

tan kx

sec kx

cosh kx

sinh kx

-a … x … asin-1a  x
a
b  +  c

1

2a2
- x2

ln(x + 2x2
+ k) + c

1

2x2
+ k

x Ú a 7 0cosh-1 a  x
a
b  +  c

1

2x2
- a2

a 7 0sinh-1 a x

a
b  +  c

1

2x2
+ a2 

|x| 6 a
1

2a
 ln 

a + x

a - x
+ c

1

a2
- x2

|x| 7 a 7 0
1

2a
 ln 

x - a

x + a
+ c

1

x 2
- a2

a 7 0
 1
a

 tan-1 
 x
a

+ c
1

x 2
+ a2

1

k
 cosh kx + c

1

k
 sinh kx + c

ekx

k
+ cekx

-e-x
+ ce-x

ex
+ cex

1

k
 ln ƒsec kx + tan kx ƒ + c

1

k
 ln ƒsec kx ƒ + c

sin kx

k
+ c

-cos kx

k
+ c

 sin x + c

-cos x + c

|x| + cx -1
=

1
x

 

n Z -1
x n + 1

n + 1
+ cxn

x 3

3
+ cx2

x 2

2
+ c

kx + c

1f(x) dx

In the table the independent variable is always given as x. However, with a little
imagination you will be able to use it when other independent variables are
involved.
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Example 1.4

Find .

Solution
We integrated cos 5x in the previous example. Now the independent variable is t, so
simply use the table and read every x as a t. With we find

It follows immediately that, for example,

and so on.

Example 1.5

Find 

Solution

Note that is equivalent to . Use the table of integrals with .

Example 1.6

Find where T is a constant.

Solution
With respect to which variable is the integration being carried out?

The quantity is a constant. Perform the integration:

= -

cos 

2pt

T

2p

T

 + c = -

T

2p
 cos 

2pt

T
+ c

�sin 
2pt

T
 dt =

2p

T

t

�sin 
2pt

T
 dt

= -

cos 

x

2
1
2

+ c = -2 cos 
x

2
+ c�sin 

x

2
 dx =

k =
1
2

1
2 x

x

2

�sin 
x

2
 dx.

�cos 5v dv =

sin 5v

5
+ c, �cos 5u du =

sin 5u

5
+ c

�cos 5t dt =

sin 5t

5
+ c

k = 5

1cos 5t dt

832 Block 1 Integration as differentiation in reverse17
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1.3 A table of integrals 833 17

Example 1.7
Find .

Solution
In this example we are integrating a constant, 12. Using the table we find

Note that would be and so on. This shows the importance of includ-
ing the term dx or dt in the integral.

Example 1.8
Find .

Solution
This example looks a little different from the earlier ones. But if we think of dx as
1 dx then we are integrating a constant, 1. Using the table we find

Note that would be .

Example 1.9
Find .

Solution
Use the appropriate entry in the table with :

Example 1.10
Look for an entry in the table of integrals that will enable you to calculate

Solution
Write down the appropriate entry.

Select an appropriate value for the constant a and hence find the integral.

Take a = 3, so that a2
= 9. �  

1

29 - t2 
 dt = sin-1a t

3
b + c

�  
1

2a2
- x2

 dx = sin- 1a x

a
b + c

� 1

29 - t2 
 dt

�e-3x dx =

e-3x

-3
+ c = -

1

3
 e-3x

+ c

k = -3

1e-3x dx

t + c1dt

�1 dx = 1x + c or simply x + c

1dx

12t + c112 dt

�12 dx = 12x + c

112 dx

M17_CROF5939_04_SE_C17.QXD  9/27/18  8:35 AM  Page 833



834 Block 1 Integration as differentiation in reverse17

Exercises

Integrate each of the following functions with
respect to x:
(a) (b) (c) (d) (e) 4 (f)

(g) (h) (i)

Find

(a) (b) (c)

(d) (e) (f)

Find .

Find

(a) (b)

Find
(a)

(b)

(c)

(d) 1tan 
x

3
 dx

1tan 13  
x dx

1cos 3t dt
1sin v dv

5

�  
1

2t2 - 4
 dt�  

1

x2
+ 25

 dx

4

1et dt3

�  
dz

z
 �cos 

2pt

T
 dt1e7t dt

1sin 3t dt16 dt1t2 dt

2

 cos pxcos 
x

2
e4x

1x
1

x4
x-3x1>2x9

1 (e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

Find

(a) (b) 1
5 �sin 

npt

5
 dt1

5 �cos 
npt

5
 dt

6

� 1

2x2
+ 8

 dx

� 1

264 - x2 
  dx

� 1

64 - x2
 dx

1e-0.7t dt
1

52t  dt
1x1>4 dx

� 1

23 x
 dx

1x7>2 dx
1cosh 0.01t dt
1cos 0.01px dx
1sinh 0.3x dx

Solutions to exercises

(a) (b) (c) 

(d) (e) (f) same as (b)

(g) (h) (i) 

(a) (b) (c) 

(d) (e) (f) 

(a) (b) cosh-1 a t

2
b + c

1

5
 tan-1 a x

5
b + c4

et
+ c3

ln ƒ z ƒ + c
T

2p
 sin 

2pt

T
+ c

e7t

7
 + c

-

cos 3t

3
 + c6t + c

t3

3
+ c2

sin px
p

 + c2 sin 
x

2
+ c

e4x

4
 + c

4x + c-

1

3
 x-3

+ c

-

1

2
 x-2

+ c
2x3>2

3
+ c

x10

10
+ c1 (a) (b) 

(c) (d) 

(e) (f) 

(g) 100 sinh (h) 

(i) (j) (k)

(l) (m)

(n) (o)

(a) (b) -

1

np
 cos 

npt

5
+ c

1

np
 sin 

npt

5
+ c6

ln(x + 2x2
+ 8) + csin-1 

x

8
+ c

1

16
 ln 

8 + x

8 - x
+ c-1.429e-0.7t

+ c

5

6
 t6>5 + c

4

5
 x5>4

+ c
3

2
 x2>3

+ c

2

9
 x9>2

+ c0.01t + c

100
p

 sin 0.01px + c
10

3
 cosh 0.3x + c

3 ln ƒ sec 
x

3
 ƒ + c3 ln ƒ sec 

x

3
 ƒ + c

1

3
 sin 3t + c-  cos v + c5
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1.4 Some rules of integration 835 17

1.4 Some rules of integration

To enable us to find integrals of a wider range of functions than those normally given
in a table of integrals we can make use of the following rules.

The integral of k f (x) where k is a constant

A constant factor in an integral can be moved outside the integral sign as follows:

Key point The integral of a constant multiple of a function

�k f (x) dx = k� f (x) dx

Example 1.11

Find .

Solution

where K is a constant.

Example 1.12

Find .

Solution

where K is a constant.

Example 1.13

Find .

Solution
Use the result in the previous Key point to extract the constant factor 14. Then use
the table to complete the solution.

14� 1

1 + s2  ds = 14 tan- 1
 s + c� 14

1 + s2 ds =

� 14

1 + s2 ds

 = -5 sin x + K

 = -5(sin x + c)

 � -5 cos x dx = -5�cos x dx

1 -5 cos x dx

 =

11x3

3
+ K

 = 11 a x3

3
+ cb

 �11x2 dx = 11�x2 dx

111x2 dx
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836 Block 1 Integration as differentiation in reverse17

Example 1.14
Find .

Solution
In this example, integration is with respect to which variable?

The 2, and m are all constant factors and can be written in front of the integral sign.
Thus

The integral of 

When we wish to integrate the sum or difference of two functions, we integrate each
term separately as follows:

 =

pmr4

2
+ c

 = 2pm a r4

4
b + c

�2pmr3
 dr = 2pm�r3

 dr

p

r

12pmr3 dr

Key point The integral of a sum or difference of two functions

�[ f (x) ; g(x)] dx = � f (x) dx ; �g(x) dx

Example 1.15

Find .

Solution

Note that only a single constant of integration is needed.

Example 1.16

Find .

Solution
You will need to use both of the rules to deal with this integral.

3t5

5
+

2t3>2
3

+ c

13t4 + 1t dt

 =

x4

4
- cos x + c

 �(x3
+ sin x) dx = �  x3 dx + �  sin x dx

1(x3
+ sin x) dx
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1.4 Some rules of integration 837 17

Example 1.17
The hyperbolic sine and cosine functions, sinh x and cosh x, are defined as follows:

Note that they are simply combinations of the exponential functions and . Find
and .

Solution

We would normally simply use Table 1.1 to integrate hyperbolic functions.

Example 1.18 Structural Engineering – Bending moment in a beam
In Example 8.4 in Chapter 6 we considered a simply supported beam of length L car-
rying a uniform load w per unit length, and introduced the bending moment, M,
which is a measure of the internal stress caused when the beam is loaded. M varies
with position x along the beam. It can be shown that the bending moment, M, is

related to the shear force, V , by the equation In Example 7.9 on page 182 we 
dM

dx
= V.

 = sinh x + c =

 �  cosh x dx = �  a ex
+ e-x

2
b  dx

=

1

2
 (ex

+ e-x) + c = cosh x + c=

�  sinh x dx = � a ex
- e-x

2
 b  dx

1cosh x dx1sinh x dx
e-xex

sinh x =

ex
- e-x

2
   cosh x =

ex
+ e-x

2

have already seen that and hence

from which

Evaluate the integral to find an expression for the bending moment.

Solution
Here w is a constant. Performing the integration we find

(where c is a constan =

w

2
 (Lx - x2) + c

 =

w

2 �(L - 2x) dx

 M (x) = �w

2
 (L - 2x) dx

 M (x) = �w

2
 (L - 2x) dx

dM

dx
=

w

2
 (L - 2x)

V =  
w

2
 (L - 2x)
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838 Block 1 Integration as differentiation in reverse17

Solutions to exercises

3

2
 ln ƒ sec 2x ƒ -

2

3
 cos 3x + c6

x3

3
+ 3x2

+ 9x + c5

-

7

x
+ c4

x2

6
+

sin 2x

6
+ c3

3e2x

2
 + c2

x2
- ex

+ c1

-cos x + sin x

2
 + c11

-

T

4p
 cos 

2pt

T
+ c10

-

0.5

np
 cos npx + c9

3

np
 sin npx + c8

2 tan-1 a x

4
b + c7

Exercises

Find .

Find .

Find .

Find .

Find (be careful!).

Find .13 tan 2x + 2 sin 3x dx6

1(x + 3)2 dx5

17x-2 dx4

�  
x + cos 2x

3
 dx3

13e2x dx2

12x - ex dx1 Find .

Find .

Find .

Find .

Find .�  
sin x + cos x

2
 dx11

�  
1

2
 sin 

2pt

T
 dt10

10.5 sin npx dx9

13 cos npx dx8

�  
8

x2
+ 16

 dx7

For a simply supported beam it can be shown that M(0) � 0 and consequently c � 0.
Therefore the bending moment at any point is given by

Further rules for finding more complicated integrals are dealt with in subsequent
blocks. However, it is important that you are aware at this stage that the integral of a
product of two functions is not the product of two separate integrals:

You will learn how to integrate products in Block 5 on integration by parts.

�  f 1x2 * g1x2 dx Z �  f 1x2 dx * �g1x2 dx

M(x) =

w

2
 (Lx - x2)
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1.4 Some rules of integration 839 17

End of block exercises

Integrate each of the following functions with
respect to x:

(a) (b) (c) 6 (d) sin 4x (e)

Integrate each of the following functions with
respect to t:

(a) (b) 7 (c) (d) (e)

Find the following integrals:

(a) (b) (c)

(d)

Find the following integrals:

(a) (b)

(c)

Find .

Find where s is a number.

Find .�  
1

s2
+ 0.5

 ds7

1e-st dt6

�1t +

1

t2
 dt5

16x2
- x + 2 dx

12x2
- 4x + 7 dx1x2

+ 4x + 8 dx

4

1t + t2 dt
12t4 dt13t2 dt13t dt

3

1

t
e-te-3tt3

2

e8xx17x2

1 Find .

Find .

Find .

Find .

Find .

Find .

Find (a) (b) ,

(c) .112 du

�  4 cos 
u

2
 du�  

1

2
 u du,14

1mbx2 dx13

1cos(m + n)t dt12

1sin 100pt + cos 100pt dt11

�  tan 
x

5
 dx10

�  
1

225 - x2 
 dx9

�  
1

24 + t2 
 dt8

Solutions to exercises

(a) (b) (c)

(d) (e)

(a) (b) (c)

(d) (e) ln 

(a) (b)

(c) (d) 

(a)

(b)

(c)

2t3>2
3

-

1

t
+ c5

2x3
-

x2

2
+ 2x + c

2x3

3
- 2x2

+ 7x + c

x3

3
+ 2x2

+ 8x + c4

t2

2
+

t3

3
+ c

2t5

5
+ c

t3 + c
3t2

2
+ c3

| t | + c-e-t
+ c

-

e-3t

3
 + c7t + c

t4

4
+ c2

e8x

8
+ c-

cos 4x

4
+ c

6x + c
x18

18
+ c

x3

3
+ c1

(a) (b) (c) 22u + c8 sin 
u

2
+ c

u2

4
+ c14

mbx3

3
+ c13

sin(m + n)t

(m + n)
 + c12

-

cos 100pt

100p
 +

sin 100pt

100p
 + c11

5 ln ƒsec 
x

5
 ƒ + c10

sin-1 a x

5
b + c9

sinh-1 a t

2
b + c8

12 tan- 1(s12) + c7

-

e-st

s
 + c6
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BLOCK 2
Definite integrals

2.1 Introduction

When integration was introduced as the reverse of differentiation in Block 1,
the integrals you dealt with were indefinite integrals. The result of finding an
indefinite integral is usually a function plus a constant of integration. In this block
we introduce definite integrals, so called because the result will be a definite
answer, usually a number, with no constant of integration. Definite integrals
have many applications, for example in finding areas bounded by curves, and
finding volumes of solids. Applications such as these will be described in later
blocks.

2.2 Evaluating definite integrals

Definite integrals can be recognised by numbers written to the upper and lower
right of the integral sign. The quantity

is called the definite integral of f(x) from a to b. The numbers a and b are known as
the lower and upper limits of the integral. This integral is commonly written as

When you evaluate a definite integral the result will usually be a number. To see how
to evaluate a definite integral consider the following example.

Example 2.1

Find .

Solution
First of all the integration of is performed in the normal way. However, to show we
are dealing with a definite integral, the result is usually enclosed in square brackets
and the limits of integration are written on the right bracket:

�  x2 dx =

x3

3
+ c  so that  �

4

1
 x2 dx = c x3

3
+ c d

1

4

x2

1
4

1  x2 dx

�
b

a
 f 1x2 dx

�
x = b

x = a
 f 1x2 dx

M17_CROF5939_04_SE_C17.QXD  9/27/18  8:35 AM  Page 840



2.2 Evaluating definite integrals 841 17

You should always use this convention. Then, the quantity in the square brackets
is evaluated, first by letting x equal the value at the upper limit, then by letting x
equal the value at the lower limit, and the difference between the resulting values is
found:

Note that the constants, c, cancel out. This will always happen, and so in future
we can ignore them when we are evaluating definite integrals. So, the value of the
definite integral is 21.

Example 2.2

Find .

Solution
Since then

Always remember that if you use a calculator to evaluate any trigonometrical func-
tions, you must work in radian mode.

Example 2.3

Find .

Solution
First perform the integration:

c x3

3
+ x d2

1

1
2

1 (x2
+ 1) dx

 = 1

 = 1 - 0

 = sin ap
2
b - sin 0

 �
p>2

0
cos x dx = 3sin x40p>2

1cos x dx = sin x + c

1
p>2

0  cos x dx

1
4

1  x2 dx

 = 21

 =

63

3

 =

64

3
-

1

3

 = a43

3
+ cb - a13

3
+ cb

 - (evaluate when x equals lower limit)

 c x3

3
+ c d4

1
 = (evaluate when x equals upper limit)
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Now insert the limits of integration, the upper limit first, and hence find the value of
the integral.

Example 2.4
This exercise is very similar to the previous one. Note that the limits of integration
have been interchanged.

Find .

Solution

Note from these two exercises that interchanging the limits of integration changes
the sign of the answer.

-

10

3

1
1

2  (x2
+ 1) dx

a8

3
+ 2b - a1

3
+ 1b =

10

3
 or 3.333 (3 d.p.)

842 Block 2 Definite integrals17

Key point If you interchange the limits, you must introduce a minus sign.

�
b

a
 f 1x2 dx = - �

a

b
 f 1x2 dx

Example 2.5 The average value of a function
If a function f(t) is defined on the interval then the average value of the
function over the interval is defined to be

The average value of a function is found by evaluating a definite integral.
Find the average value of the function across the interval .

Solution
Apply the formula for finding the average value:

Complete the integration to find this average value.

1

3
 c t 

3

3
d5

2
= 13

1
5

2  t 
2 dt

5 - 2
average value =

2 … t … 5f (t) = t2

average value =

1
b

a  f 1t2 dt

b - a
 

a … t … b
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2.2 Evaluating definite integrals 843 17

Example 2.6 Civil Engineering – The force on the wall of a tank
Civil engineers are frequently faced with problems involving the pressure and forces
on the walls of a tank containing water. Such problems will arise during the design
and construction of dams and other underwater structures where it is essential that
the structure has sufficient strength to withstand such forces.

Consider the tank of water in Figure 2.1 in the shape of a cuboid with dimensions
as shown.

x

z

y

L
W

D

The pressure, p, at a depth h was shown by Pascal in the seventeenth century to be
equivalent to rgh where r is the density of the water and g is the constant accelera-
tion  due to gravity, nominally 9.8 m s–2. With a knowledge of hydrostatics it can be
shown that the force exerted on the wall of the tank (hatched in Figure 2.1) is given
by the definite integral

(a)  Evaluate this integral.
(b)  Show that the force on the wall is the same as the product of the average pressure

and the area of the wall.

Solution
(a)

(b)  Given that the pressure at depth h is rgh, the pressure at the surface is zero and
the pressure at the base of the tank is rgD. Since p varies linearly between 

these two values, the average pressure is rgD. The area of the wall is DW. The

force on the wall has been shown in part (a) to be which can be written

rgD � DW as required.1
2

rgW D2

2

1
2

=  
rgW D

2

2

=  rgW aD2
-

D2

2
b

=  rgW cDz -

z2

2
dD

0

�
D

0
rgW (D - z) dz = rgW  �

D

0
(D - z) dz  since r, g, W are constants

 �
D

0
 rgW (D - z)dz

Figure 2.1
Integration can be
used to find the
force on the wall
of a tank or
reservoir.
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844 Block 2 Definite integrals17

Solutions to exercises

(a) (b)

2.667

2

198

609

8

7

23

4
= 0.43306

5

e2
- e1

= 4.6714

1
6

1
33

0.1

0.365

mpa4

2
16

15

2
p

14

-

1

np
 (cos np - 1)13

12

k5

10
11

Exercises

Explain why a constant of integration is not
needed when evaluating definite integrals.

Explain what happens to the value of a definite
integral when the upper and lower limits are
interchanged.

Evaluate

(a) (b)

Evaluate .

Evaluate .

Find .

Find .

Find .1
3

1  e2t dt8

1
p

0  sin x dx7

1
p>3

0  cos 2x dx6

1
1

-1 (1 + t2) dt5

1
2

1  ex dx4

�
3

2

1

x2
 dx1

1
0  x2 dx

3

2

1 Evaluate . Show that

Show that .

Find .

Find .

Find .

Find the average value of the function
across the interval .

Find .

Find .1
a

0  2pmr3 dr16

�
1

 

0
 

1

29 - 4t2
 dt15

0 … t …
p

2f(t) = sin t
14

1001
0.01

0  sin (100 npt) dt13

1
0.001

0  100 dt12

1
k

0  2(kv3
- v4) dv11

1
b

a  sin x dx = 1
b

a   sin t dt10

1
4

2  x3 dx = -1
2

4  x3 dx.

1
4

2  x3 dx9
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2.3 Some integrals with infinite limits of integration 845 17

2.3 Some integrals with infinite limits of integration

On occasions, and notably when dealing with Laplace and Fourier transforms, you
will come across integrals in which one of the limits is infinite. We avoid a rigorous
treatment of such cases here and instead give some commonly occurring examples.

Example 2.7

Find .

Solution
The integral is found in the normal way:

There is no difficulty in evaluating the square bracket at the lower limit. We obtain
simply . At the upper limit we must examine the behaviour of as x
gets infinitely large. This is where it is important that you are familiar with the graph
of the exponential function. If you refer to the graph you will recognise that as x
tends to infinity tends to zero. Consequently the contribution to the integral from
the upper limit is zero. So

The value of is 1.
Another way of achieving this result is as follows.
We change the infinite limit to a finite limit, b, say, and then examine the behaviour

of the integral as b tends to infinity, written

So

Then as b tends to infinity tends to zero, and the resulting integral has the
value 1, as before.

Many integrals having infinite limits cannot be evaluated in a simple way like this,
and many cannot be evaluated at all. Fortunately, most of the integrals you will meet
will exhibit the sort of behaviour seen in the last example.

-e-b

 = -e-b
+ 1

 = 1-e-b2 - 1-e-02
 �

b

 

0
 e-x dx = C -e-x D 0b

�
q

 

0
e-x dx = lim

b: q

 �
b

 

0
 e-x dx

1
q

0 e-x dx

 = 1

 = 102 - 1-e-02
 �

q

 

0
e-x dx = C -e-x D 0q

e-x

-e-x
-e-0

= -1

�
q

 

0
e-x dx = C -e-x D

0

q

1
q

0  e-x dx
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846 Block 2 Definite integrals17

Solutions to exercises

(a) (b) (c) 0.293 (d) 0.909

(a) 34.5 (b)

17.367

0.030

9.5567

6

ln b - ln a = ln ab

a
b4

3

22
32

40
3

10
31

2

(a) (b) (c)
p12

2
422p211

b4 m

12
10

9

cos v1 - cos v28

Solutions to exercises

1

2
2

e-1 or  0 .3681

1

7
4

e-6

3
 = 0.0008 (4 d.p.)3

End of block exercises

Find the value of the following integrals:

(a) (b)

(c) (d)

Find the value of the following integrals:

(a)

(b)

Find .

Find .

Show that .1
b

a  x3 dx = 1
b

a  t3 dt5

�
b

a
 
1

r
 dr4

1
3

1  et dt3

1
1

-1 2x2
+ x + 3 dx

1
3

0  x2
+ 7x - 2 dx

2

1
1

-1 cos 2x dx1
p>4

0  sin x dx

1
4

3  x2
+ 1 dx1

2
1  x2

+ 1 dx

1 Find .

Find .

Find .

Find .

Find .

Find (a) , (b)

(c) 1
p>2

0  22 du.

�
p>2

0
 4 cos 

u

2
 du,�

2p

0
 
u

2
 du11

1
b>2

-b>2 mbx2 dx10

1
p

 �
p

 

-p

 1 + t dt9

1
v2

v1
 sin v dv8

1
0

-1 e
-2x

+ e-3x dx7

1
0.1

0  3 tan 2x dx6

Exercises

Find .

Find .1
q

0 e-2x dx2

1
q

1 e-x dx1 Find .

Find .1
0

- q
e7x dx4

1
q

2 e-3x dx3
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BLOCK 3
The area bounded by a curve

3.1 Introduction

One of the important applications of integration is to find the area bounded by a
curve. Often such an area can have a physical significance, such as the work done by
a motor, or the distance travelled by a vehicle. In this block we explain how such an
area is calculated.

3.2 The area bounded by a curve lying above the x axis

Consider the graph of the function y(x) shown in Figure 3.1. Suppose we are inter-
ested in calculating the area underneath the graph and above the x axis, between the
points where and . When such an area lies entirely above the x axis, as
is clearly the case in Figure 3.1, this area is given by the definite integral

�
b

a
y(x) dx

x = bx = a

Area required

y

x

y(x)

a b

Figure 3.1
The area bounded
by a graph is found
by evaluating an
integral.

Key point The area under the curve y(x), between and , is given by

when the curve lies entirely above the x axis between a and b.

area = �
b

a
 y(x) dx

x = bx = a
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848 Block 3 The area bounded by a curve17

Example 3.1
Calculate the area bounded by the curve and the x axis, between and

Solution
The graph of , for x greater than 0, is shown in Figure 3.2. The area required is

shaded. This area lies entirely above the x axis.

y =

1
x

x = 4.
x = 1y =

1
x

y

x

y � 

Area required

O

1

1 2 3 4 5

2 1
x

Figure 3.2
The required area
lies entirely above
the x axis.

The area is calculated as

Example 3.2
Find the area bounded by the curve and the x axis between and

.

Solution
The required area is shown in Figure 3.3. Note that it lies entirely above the x axis.
Calculate the area

Example 3.3
Find the area under from to given that the exponential func-
tion is always positive.

Solution
Because is positive, the area will lie above the x axis:

�
3

1
e2x dx = c e

2x

2
d3

1
= 198area =

e2x

e2x
x = 3x = 1f (x) = e2x

�
p

0
 sin x dx = C -cos x D 0p = 2

x = p

x = 0y = sin x

 = 1.386 (3 d.p.)
 = ln 4 since ln 1 = 0
 = ln 4 - ln 1

 = C ln ƒx ƒ D41
 area = �

4

1
 
1
x

 dx
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3.2 The area bounded by a curve lying above the x axis 849 17

y

x

y � sin x

Area required

O π

1

Figure 3.3
The area found in
Example 3.2.

Example 3.4
Figure 3.4 shows the graphs of and for . The
two graphs intersect at the point where . Find the area that is shaded in
Figure 3.4.

x =
p

4

0 … x …
p

2y = cos  xy = sin  x

y

x

y � cos x
y � sin x

Area required

1

π
2

Figure 3.4
The required area
is enclosed
between two
curves.

Solution
To find the shaded area we could calculate the area under the graph of for
x between 0 and , and subtract this from the area under the graph of 
between the same limits. Alternatively the two processes can be combined into one
and we can write

 = asin 
p

4
+ cos 

p

4
b - (sin 0 + cos 0)

 = [sin x + cos x]
0

p>4
 shaded area = �

p>4

0
  cos x - sin x dx

y = cos xp

4

y = sin x
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17

If you are aware of the standard triangles you will know that sin ,

in which case the value of the integral is . Alternatively you can

use your calculator to obtain this result directly.

Example 3.5 The area under a velocity–time graph
Figure 3.5 shows a graph of the velocity, v, of an object plotted against time t. It can
be shown that the area under such a graph between and represents the
distance, s, travelled by the object between these times.

Suppose the velocity of an object is given by the formula .
(a) State the velocity when s.
(b) State the velocity when s.
(c) Find the distance travelled between these times.

t = 2
t = 1

v(t) = 3t2 + 5(m s-1)

t = bt = a

2

12
- 1 = 0.414

p

4 = cos p4  =

1

12

v(t)

t
a b

Figure 3.5
The area under a
velocity–time
graph represents
distance travelled.

Solution
(a) When 

(b) When 

(c) The distance travelled is given by the area under the velocity–time graph.
Write down the required integral:

Finally, evaluate this integral to obtain the distance travelled.

[t3 + 5t]1
2

= 18 - 6 = 12 m

�
2

1
 (3t2 + 5) dt

17 m s- 1t = 2, v =

8 m s- 1t = 1, v =

850 Block 3 The area bounded by a curve

M17_CROF5939_04_SE_C17.QXD  9/27/18  8:35 AM  Page 850



3.2 The area bounded by a curve lying above the x axis 851 17

We saw in Example 3.5 that the area under a velocity–time graph is interpreted as
‘distance travelled’. Example 3.6 illustrates another interpretation of the area under
a graph.

When the volume of a gas expands then work is done by the gas. If denotes pres-
sure, denotes volume and denotes work done then

where is the initial volume and is the final volume. Note that the integral 
is the area under a graph of against , as illustrated in Figure 3.6.VP

1
b

a  P dVba

W = �
b

a
 P dV

WV
P

P

Va b

Figure 3.6
Shaded area is
given by 
which is the work
done by the gas in
expanding from
volume to
volume .b

a

1
b

a  P dV

Example 3.6 Thermodynamics – Work done in expansion of a gas
Suppose that the volume, , and pressure, , of a gas are related by the equation

where is a constant. Calculate the work done in expanding from an initial volume
of 3 cubic units to a final volume of 10 cubic units.

Solution

From then and so

 = 0.727K

 =

-K

0.3
310-0.3

- 3-0.34

 = K cV -0.3

-0.3
d10

3

 W = �
10

3
KV -1.3 dV

P = KV -1.3PV1.3
= K

W = �
10

3
 P dV

K

PV1.3
= K

PV
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852 Block 3 The area bounded by a curve17

4

54

0.93

2

1

Exercises

In each question the required area lies entirely above
the horizontal axis, although you should verify this
fact for yourself independently.

Find the area bounded by the curve 
between and .

Find the area bounded by the curve 
between and .

Find the area under between and

.

Mechanical Engineering – Area under a
velocity–time graph. The velocity 
of an object varies with time, t, according to

v(t) = t3 + 1

(m s-1)v
4

x = 10

x = 1y =

1

x2
3

t = 3t = -3
y = 3t22

x = 2x = 0
y = x31 (a) Find the distance travelled by the object

between and .
(b) Find the average velocity between 

and 

Thermodynamics – Expansion of a gas.
The pressure, , and volume, , of a gas are
related by 

Calculate the work done when the gas expands
from cubic units to cubic units.V = 9V = 5

PV2
= 10

VP
5

t = 2.
t = 0

t = 2 st = 0 s

Solutions to exercises

(a) 6 m (b) 3 

8
95

m s- 14

3.3 The area bounded by a curve, parts of which lie below the x axis

Figure 3.7 shows a graph of The shaded area is bounded by the x axis
and the curve, but lies entirely below the x axis.

y = -x2
+ 1.

y

x
�2 �1 1 2 3

y � �x2 � 1

Area required

Figure 3.7
Areas lying below
the x axis need
special care.
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3.3 The area bounded by a curve, parts of which lie below the x axis 853 17

Let us evaluate the integral .

The evaluation of the area yields a negative quantity. There is no such thing as a neg-
ative area. The area is actually , and the negative sign is an indication that the area
lies below the x axis.

If an area contains parts both above and below the horizontal axis, care must be
taken when trying to calculate this area. It is necessary to determine which parts of the
graph lie above the horizontal axis and which lie below. Separate integrals need to be
calculated for each ‘piece’ of the graph. This idea is illustrated in the next example.

Example 3.7
Find the total area enclosed by the curve and the x axis between

and .

Solution
We need to determine which parts of the graph, if any, lie above and which lie below
the x axis. To do this it is helpful to consider where the graph cuts the x axis. So we
consider the function and look for its zeros.

So the graph cuts the x axis when , and . Also, when x is large and
positive, y is large and positive since the term involving dominates. When x is large
and negative, y is large and negative for the same reason. With this information we
can sketch a graph showing the required area. If you have access to a graphics calcu-
lator or computer package this is a trivial matter. The graph is shown in Figure 3.8.

x3
x = 4x = 1x = 0

 = x(x - 1)(x - 4)
  x3

- 5x2
+ 4x = x(x2

- 5x + 4)

x3
- 5x2

+ 4x

x = 3x = 0
y = x3

- 5x2
+ 4x

4
3

 = -

4

3

 = -

7

3
+ 1

 = a -

23

3
+ 2b - a -

13

3
+ 1b

 �
2

1
 -x2

+ 1 dx = c - x3

3
+ x d

2

1

1
2

1 -x2
+ 1 dx

y

x

y � x3 � 5x2 � 4x

Area required

1 2 3 4 5

Figure 3.8
This area must be
calculated in two
parts.
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854 Block 3 The area bounded by a curve17

From the graph we see that the required area lies partly above the x axis (when
) and partly below (when ). So we evaluate the integral in two

parts.
Firstly,

This is the part of the required area that lies above the x axis.
Secondly,

This represents the part of the required area that lies below the x axis. The actual area
is .

Combining the results of the two separate calculations we can find the total area
bounded by the curve:

Example 3.8
(a) Sketch the graph of for 

(b) Find the total area bounded by the curve and the x axis between and

.x =

3p

4

x =

p

3

0 … x … p.y = sin 2x

 =

95

12

 area =

7

12
+

22

3

22
3

 = -

22

3

 = -

88

12

 = -

81

12
-

7

12

 = a81

4
-

135

3
+ 18b - a1

4
-

5

3
+ 2b

 �
3

1
  x3

- 5x2
+ 4x dx = c x4

4
-

5x3

3
+

4x2

2
d

3

1

 =

7

12

 = a1

4
-

5

3
+ 2b - (0)

 �
1

0
x3

- 5x2
+ 4x dx = c x4

4
-

5x3

3
+

4x2

2
d

1

0

1 … x … 30 … x … 1
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3.3 The area bounded by a curve, parts of which lie below the x axis 855 17

Solution
Sketch the graph and indicate the required area noting where the graph crosses the
x axis.

Perform the integration in two parts to obtain the required area.
For the area above the x axis evaluate the appropriate integral.

Now evaluate the integral for finding the area below the x axis.

Finally write down the total area required.

1

4
+

1

2
=

3

4

�
3p>4

p>2
  sin 2x dx = -

1

2

�
p>2

p>3  
sin 2x dx = c - cos 2x

2
d
p>2

p>3 
=

1

4

Exercises

Find the total area enclosed between the x axis
and the curve between and

.

Find the area under from to
.

Find the area enclosed by and the
x axis from (a) to , (b) to

, (c) to .

Calculate the area enclosed by the curve
and the line .y = xy = x3

4

x = 3x = 1x = 1
x = -2x = 2x = 0

y = 4 - x23

t = 0.5
t = 0y = cos  2t2

x = 1
x = -1y = x3

1 Find the area bounded by , the y axis,
the x axis and the line .

Find the area enclosed between
and the x axis.

Find the area enclosed by the graph of

between and t = 1.t = 0y =

1

29 - 4t2 

7

y = x(x - 1)(x - 2)
6

x = 2
y = ex5

y

x

y � sin 2x

π

Area required
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856 Block 3 The area bounded by a curve17

0.5

0.4207

(a) (b) 9 (c) 4

0.54

16
33

2

1

Solutions to exercises

0.3657

1
26

e2
- 15

End of block exercises

Solutions to exercises

Find the area enclosed by and the
t axis between and .

Find the area enclosed between the curves
and .y = 4 - x2y = x2

- 2x
2

t = 2t = 1
y = 4t - t21 Find the area enclosed by the curve

and the x axis.

Find the total area enclosed by the graph of the
function and the x axis.y = x3

- 4x
4

y = -x2
+ 6x - 5

3

92

32
31 10.667

84

3
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BLOCK 4
Computational approaches to integration

4.1 Introduction

Computer software packages are readily available that can integrate. The results that
they produce fall into two categories, symbolic and numerical.

For many indefinite integrals, , it is possible for the computer to obtain a
symbolic answer in terms of common functions such as exponential, trigonometrical
or polynomial functions. Furthermore, the computer can evaluate exactly many defi-
nite integrals, , often by leaving an answer in the form of a fraction, or in
surd form, or using common mathematical constants such as and e. We shall illus-
trate such use of computer software.

For some integrals it is impossible to obtain a symbolic answer. However, there
are techniques for approximating definite integrals. Such techniques are called
numerical methods, and two of these, the trapezium rule and Simpson’s rule, are
explained here. Because such methods require substantial calculation they are very
laborious to perform by hand. So, they are best implemented using a computer. We
shall be content to illustrate the principles involved on simple examples, and then use
software to tackle more substantial problems.

4.2 Use of symbolic algebra packages to find integrals exactly

Computer software designed for tackling mathematical problems invariably has the
facility to integrate. This is certainly true of Matlab and Maple. You should work
through the following examples using the package to which you have access. You
may need to refer to local documentation. Some of the packages may require you to
call, or load, an additional piece of software (e.g. a symbolic toolkit). You will note
from the examples below that the particular commands and syntax required by the
different packages vary, but often only slightly. Most packages provide extensive 
on-line help and examples to which you should refer for further details as required.

Example 4.1 Finding indefinite integrals exactly

Find .1x cos2 x dx

p
1

b
a  f (x) dx

1f (x) dx
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Solution

Maple
In Maple the command to perform this integration is

int(x*cos(x)^2,x);

and Maple outputs

Note that Maple can supply a symbolic answer, but gives no constant of integration – it is
assumed that the user will remember to add this.

x a1

2
 cos(x) sin(x) +

1

2
 xb +

1

4
 cos(x)2

-

1

4
 x2

Matlab
In Matlab, to perform this calculation it is necessary first to declare that x is a symbol
using the command

syms x

Then the command to integrate is

int(x*cos(x)^2,x)

and Matlab outputs

ans=
x*(1�2*cos(x)*sin(x)+1�2*x)+1/4*cos(x)^2-1�4*x^2

This is equivalent to the answer produced by Maple although it is not set out in as
friendly a form.

x  cos2
 x

Example 4.2 Finding definite integrals exactly

Find .

Solution

�
2

1
  

1

t
 dt

Maple
In Maple the command to perform this integration is

int(1�t,t=1..2);

and Maple outputs

Note that, when possible, the output from the symbolic algebra package is an exact
result, that is ln 2, as opposed to a decimal approximation.

ln(2)
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174.2 Use of symbolic algebra packages to find integrals exactly 859

Example 4.3

Find .

Solution

1
3

0  1x dx

Maple
The command to perform this integration is

int(sqrt(x), x=0..3);

and Maple outputs

Once again, note the exact result produced by the package, rather than a decimal approxi-
mation. There is the facility in all packages to produce a decimal approximation if this is
required.

223

Matlab
syms x
int(sqrt(x),0,3)

and the output is

ans = 2*3^(1/2)

Matlab
In Matlab, the symbol t must be declared before integrating:

syms t
int(1/t,1,2)

and Matlab outputs

ans = log(2)

Again, this answer is equivalent to that produced by Maple although given in a different
form.
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17 860 Block 4 Computational approaches to integration

Computer packages can find indefinite integrals when one or both limits is infinity.
Consider the following example.

Example 4.4 Finding definite integrals with infinite limits of
integration

Find .

Solution

1
q

- q
 e-x2

 dx

Maple
The Maple command to evaluate this integral is

int(exp(-x^2),x = -infinity..infinity);

and Maple outputs the exact solution

1p

Matlab
syms x
int(exp(-x^2),-inf,inf)

with output

ans = pi^(1/2)

Although symbolic algebra packages are extremely powerful, there are nevertheless
some integrals that are beyond their scope. In such cases you will either be warned
that an explicit solution could not be found, or the expression you input may be
returned to you unevaluated. For example, try to use a package to find 1xx dx.

Computer and calculator exercises

Computer algebra packages are sophisticated products. Because they are designed for professionals their
scope extends way beyond an introductory textbook like this one. Some of the computer output may well be
given in terms of functions with which you are not familiar. This is normal, and when necessary you will need
to explore these functions further.
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4.3 The trapezium rule and Simpson’s rule 861

Use a symbolic algebra package to find the
following integrals exactly:

1te-st dt3

1x sin2 x dx2

�
3

2
 

1

1x
 dx1

where j is the complex number with

.j2 = -1
1

1
-1 e

-jvt dt5

�
1

0
 
sin x

x
 dx4

Solutions to exercises

-ste-st
- e-st

s2
 + c3

-  
1

4
 cos(x)2

-

1

4
 x2

+ c

x a -

1

2
 cos(x) sin(x) +

1

2
 xb2

213 - 2121 Si(1). This result may be given in terms of a
function you will probably not be familiar
with, known as the sine integral. See if you can
use the computer to evaluate a decimal
approximation to this as 0.946 (3 d.p.).

or the alternative form 
2 sin v

v
.

j(e-jv
- e jv)

v
5

4

4.3 The trapezium rule and Simpson’s rule

We have seen the power of computer packages for performing some definite and
indefinite integrals. We have also seen that not all functions can be integrated,
and so not all integrals can be found exactly. However, techniques do exist for
finding approximations to definite integrals. These techniques are called numeri-
cal methods.

Trapezium rule

We have seen in Block 3 that the definite integral can be thought of as
the area lying under the graph of f(x) for . This observation leads us to
the following method for approximating the integral. We estimate the area lying
under the graph and use this as an estimate of the integral. In the trapezium rule, the
area under f(x) between and is divided into several vertical strips, and
the area of each strip is estimated by assuming that it has the shape of a trapezium.
Consider Figure 4.1. Suppose that we divide the area under from to

into n strips. We denote the width of each strip by h. Note that since the 

distance from to is , then the width of each strip is .
The lengths of the sides of the strips are denoted by .y0, y1, . . . , yn

b - a

n
b - ax = bx = a

x = b
x = ay = f(x)

x = bx = a

a …  x …  b
1

b
a  f(x) dx

17
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x = a x = b

n strips
y0 yn

y = f(x)

h

y

x

h

yi yi+1

Figure 4.1
The area under f(x)
is divided into n
strips, each of
width h. The area
of the typical strip
shown is

.
h

2
 (yi + yi + 1)

Now the area of the first trapezium of width h, which has sides of heights 

and , is . Similarly the area of the second strip is . We

continue in this way until the areas of all the strips have been found. The area of the 

final strip is .

Consequently we can estimate the total area as

which can be simplified to

area L

h

2
 (y0 + 2y1 + 2y2 + . . . + 2yn - 1 + yn)

area L

h

2
 (y0 + y1) +

h

2
 (y1 + y2) +

h

2
 (y2 + y3) + . . . +

h

2
 (yn - 1 + yn)

h

2
 (yn - 1 + yn)

h

2
 (y1 + y2)

h

2
 (y0 + y1)y1

y0

Key point
Trapezium rule: with n strips, and ,

�
b

a
 f (x) dx L

h

2
 (y0 + 2y1 + 2y2 + . . . + 2yn - 1 + yn)

h =

b - a

n

Example 4.5

Use the trapezium rule with eight strips to estimate . Work throughout to six

decimal places and quote your final result to four decimal places.

Solution

In this example , and . We are dividing the area under the graph

of from to into eight strips, and so the width of each strip will be

. We must calculate the lengths of the sides of each of the strips,

. These are simply the respective y values calculated from . It is 

helpful, and conventional, to set these out as in Table 4.1. The table has been laid out
in the way shown because all y values other than the first and last will be multiplied
by 2.

y =

1
x

y0,  y1, . . . , y8

h =

2 - 1

8
= 0.125

x = 2x = 1y =

1
x

n = 8b = 2a = 1

�
2

1
  

1
x

 dx

862 Block 4 Computational approaches to integration
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174.3 The trapezium rule and Simpson’s rule 863

Using the data in the table we can apply the trapezium rule formula:

So, to four decimal places we estimate the integral to be 0.6941. Compare this with
the exact value ln (4 d.p.).

Simpson’s rule

Simpson’s rule is a more sophisticated technique, which results in a more accurate
estimate of the definite integral. It can be applied only when there is an even number
of strips.

We state and use Simpson’s rule without deriving it. For specific details refer to a
textbook on numerical methods for engineers.

2 = 0.6931

�
2

1
  

1
x

 dx L

0.125

2
 (1.5000000 + 2(4.802976)) = 0.694122

x

1
1.125
1.25
1.375
1.5
1.625
1.75
1.875
2

1.500000
4.802976y1 + y2 + . . . + yn - 1

y0 + yn

y8 = 0.500000
y7 = 0 .533333
y6 = 0 .571429
y5 = 0 .615385
y4 = 0.666667
y3 = 0.727273
y2 = 0.800000
y1 = 0.888889

y0 = 1.000000

y = 1>x

Key point
Simpson’s rule: with n (even) strips, and ,

It can be helpful to remember this formula as

(first + last + 4(odd-numbered terms) + 2(even-numbered terms))�
b

a
f (x) dx L

h

3

�
b

a
 f (x) dx L

h

3
 (y0 + 4y1 + 2y2 + 4y3 + . . . + 2yn - 2 + 4yn - 1 + yn)

h =

b - a

n

Example 4.6

Use Simpson’s rule with eight strips to estimate .

As in the previous example it is helpful to set out the data as in Table 4.2. It has been
laid out in this way because , , etc., will be multiplied by 4, whereas , , etc.,
will be multiplied by 2.

y4y2y3y1

�
2

1
  

1
x

 dx

Table 4.1
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Solution
Using the data in the table we can apply Simpson’s rule:

So, to four decimal places we can estimate the integral to be 0.6932. This compares
well with the exact answer ln 2, which is 0.6931 to 4 d.p.

Computer algebra packages have the facility to carry out numerical integration,
which means that the user can avoid lengthy and tedious arithmetical calculations.

Example 4.7 Using a computer package for numerical integration

Use a computer package to evaluate .

Solution
We have seen previously that no symbolic expression exists for . However,
computer packages can apply methods such as Simpson’s rule.

1xx dx

1
4

1  xx dx

�
2

1
  

1
x

 dx L

0.125

3
 (1.500000 + 4(2.764880) + 2(2.038096)) = 0.693155

x

1
1.125
1.25
1.375
1.5
1.625
1.75
1.875
2

1.500000
2.764880

2.038096sum of even terms, y2 + y4 + . . . + y6

sum of odd terms, y1 + y3 + . . . + y7

first + last, y0 + y8

y8 = 0.500000
y7 = 0 .533333

y6 = 0.571429
y5 = 0 .615385

y4 = 0.666667
y3 = 0.727273

y2 = 0.800000
y1 = 0 .888889

y0 
= 1.000000

y = 1>x

Maple
The command to perform the required numerical evaluation is

evalf(int(x^x,x = 1..4));

and Maple outputs the result 113.3356 (4 d.p.).

Table 4.2

864 Block 4 Computational approaches to integration
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174.3 The trapezium rule and Simpson’s rule 865

Matlab
We need a command quad, which stands for quadrature, the technical name for numeri-
cal integration.

Q = quad('x.^x',1,4)

and Matlab calculates the value of the integral

ans = 113.3356

Use the trapezium rule with the number of
strips specified to approximate the following
definite integrals:

(a) , 4 strips 

(b) 3 strips�
1.6

1
 
e2x

x2
 dx,

1
1

0  tan2 x dx

1

Exercises

Use Simpson’s rule with the number of strips
specified to approximate the following definite
integrals:

(a) , 8 strips 

(b) , 10 strips1
2

1  21 + x3 dx

1
0.8

0  tan2 x dx

2

(a) 0.611069 (6 d.p.) (b) 4.906229 (6 d.p.)1

Solutions to exercises

(a) 0.229685 (6 d.p.) (b) 2.129862 (6 d.p.)2

Use software to evaluate

(a) (b) 1  sin3 x dx1(ln x)2 dx

1

(c) (d) �
0.1

0
 
x3

+ x

cos x
 dx1

1
0  sin z3 dz

Computer and calculator exercises

Solutions to exercises

(a)

(b) -

1

3
 sin2 x cos x -

2

3
 cos x + c

x (ln x)2
- 2x ln x + 2x + c1 (c) 0.23385 (5 d.p.) (d) 0.00504 (5 d.p.)
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866 Block 4 Computational approaches to integration17

Solutions to exercises

2025

3
1

End of block exercises

Use a package to find an exact expression for
the area bounded by and lying
above the x axis.

y = 5 - x2
1
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BLOCK 5
Integration by parts

5.1 Introduction

The technique known as integration by parts is used to integrate a product of two
functions, for example

Note that in the first example the integrand is the product of the functions and
sin 3x, and in the second example the integrand is the product of the functions 
and . Note also that we can change the order of the terms in the product if we
wish and write

It is often possible to find integrals involving products using a method known as
integration by parts – you can think of this as a product rule for integrals. This
technique is described in the block.

5.2 The integration by parts formula

The integration by parts formula states

�sin 3x e2x dx and �
1

0
e- 2xx3 dx

e-2x
x3

e2x

�e2x sin 3x dx and �
1

0
x3e- 2x dx

Key point For indefinite integrals:

For definite integrals:

�
b

a
uadv

dx
b  dx = [uv]a 

b
- �

b

a
vadu

dx
b  dx

�uadv

dx
b  dx = uv - �vadu

dx
b  dx

Study the formula carefully and note the following observations:

• The formula replaces one integral, the one on the left, with a different integral,
that on the right. The intention is that the latter is simpler to evaluate.
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17 868 Block 5 Integration by parts

• The integrand on the left-hand side is the product of the terms u and . To apply

the formula to a particular example we must let one function in the product equal u.

We must be able to differentiate this function to find . We let the other function in

the product equal . We must be able to integrate this function, to find v.

Consider the following example.

Example 5.1

Find .

Solution
Compare the required integral with the formula for integration by parts: we see that
it makes sense to choose

It follows that

(When integrating to find v there is no need to worry about a constant of

integration. When you become confident with the method, you may like to think
about why this is the case.) Applying the formula we obtain

Example 5.2

Find .

Solution

Let and . Now calculate and v.

Substitute these results into the formula for integration by parts:

(5x + 1) sin 2x

2
- � sin 2x

2
  5 dx

du

dx
= 5 and v = �cos 2x dx =

sin 2x

2

du

dx
 

dv

dx
 = cos 2xu = 5x + 1

1(5x + 1) cos 2x dx

 = -x cos x + sin x + c

 = -x cos x + �cos x dx

 = x(-cos x ) - �(-cos x) # 1 dx

 �x sin x dx = uv - �v adu

dx
b  dx

dv

dx

du

dx
 = 1 and v = �sin x dx = -cos x

u = x and 
dv

dx
= sin x

1x sin x dx

dv

dx

du

dx

dv

dx
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175.2 The integration by parts formula 869

Finish the problem by finding the final integral:

Example 5.3

Find .

Solution

We let and . Then and . Using the formula for integra-

tion by parts we obtain

Sometimes it is necessary to apply the formula more than once, as the next example
shows.

Example 5.4

Find .

Solution
We let

Then

Using the formula for integration by parts we find

The remaining integral must be integrated by parts also, but we have just done this in
the previous example. So

 = 12.778 (3 d.p.)
 = 2e2

- 2

 �
2

0
x2ex dx = 4e2

- 2[e2
+ 1]

 = 4e2
- 2�

2

0
xex dx

 �
2

0
x2ex

 dx = [x2ex]2
0 - �

2

0
2xex dx

du

dx
 = 2x and v = ex

u = x2 and 
dv

dx
= ex

1
2

0  x2ex dx

 = e2
+ 1 (or 8.389 to 3 d.p.)

 = 2e2
- [e2

- 1]

 = 2e2
- [ex]2

0

 �
2

0
xex dx = [xex]2

0 - �
2

0
ex # 1 dx

v = exdu

dx
= 1

dv

dx
= exu = x

1
2

0  xex dx

(5x + 1) sin 2x

2
 +

5

4
 cos 2x + c
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17 870 Block 5 Integration by parts

Example 5.5

Find .

Solution

Take and . State .

State v.

Now apply the formula.

Perform the final integral and apply the limits:

Evaluate this result:

Example 5.6
Let I stand for the integral

Calculate this integral.

Solution
In this example you will find that it does not matter which term in the product is dif-
ferentiated and which is integrated. Verify this for yourself later.

Take and .

State .

du

dx
= -e-x

du

dx

dv

dx
 = sin xu = e-x

�e-x sin x dx

0.716

[(4 - 3x)(-cos x)]0 
p>4

- 3[sin x]0 
p>4

 [(4 - 3x)(-cos x)]p0
>4

- 3�
p>4

0
cos x dx

 �
p>4

0
 (4 - 3x) sin x dx =

v = -cos x

du

dx
 = -3

du

dx
 

dv

dx
 = sin xu = 4 - 3x

1
p>4

0  (4 - 3x) sin x dx
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State v.

Apply the integration by parts formula.

This simplifies to . This integral must now be 

evaluated by parts. Still with , and taking , perform the integration.

At this stage it looks as though we have gone round in a circle because the integral
remaining is the same as the one we started with. However, writing this as I we find

so that

from which

We conclude that

I =

-e-x cos x - e-x sin x

2
 + c

I =

-e-x cos x - e-x sin x

2
 

2I = -e-x cos x - e-x sin x

I = -e-x cos x - e-x sin x - I

I = -e-x cos x - ce-x sin x + �e-x sin x dx d

dv

dx
= cos xu = e-x

I = -e-x cos x - 1e-x cos x dx

e-x(-cos x) - �(-cos x)(-e-x) dx

I = �e-x sin x dx =

v = -cos x

Exercises

In some questions it may be necessary to apply the
formula more than once.

Find (a) (b) 
(c) .

Find .

By writing ln x as find .1ln x dx1 * ln x3

1(x + 3) sin x dx2

1x cos x dx
1te3t

 dt,1x sin(2x) dx,1

Find (a) (b) 

(c) (d) .

Find (a) (b) 
where k is a constant.

Find where s is a constant.

Find where s is a constant.1t2e-st dt7

1te-st dt6

1z2 cos kz dz,1x cos kx dx, 5

1(x + 1)ex dx15x2e3x dx,
1 -7x cos 3x dx,1tan-1 x dx,4
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17 872 Block 5 Integration by parts

Evaluate the following definite integrals:

(a) (b) 

(c) 

Find .

Find .�
1

0
(x2

- 3x + 1)ex dx10

�
2

1
(x + 2) sin x dx9

1
1

-1 te
2t dt

1
p>2

0  x sin 2x dx1
1

0  x cos 2x dx

8 Show that

=

eax (a cos bx + b sin bx)

a2
+ b2

 + c

 �eax cos bx dx

11

Solutions to exercises

(a) 

(b) 

(c) 

(a)

(b) 

(c) 

(d) xex
+ c

5e3x(9x2
- 6x + 2)

27
 + c

-

7 cos 3x

9
-

7x sin 3x

3
 + c

x tan-1 x -

ln(x2
+ 1)

2
+ c4

x ln x - x + c3

-(x + 3) cos  x +  sin x + c2

 cos x + x  sin  x + c

e3ta t

3
-

1

9
b + c

sin 2x

4
-

x cos 2x

2
 + c1 (a) 

(b)

(a) 0.1006 (b) (c) 1.9488

3.3533

-0.563410

9

p

4
= 0.78548

-e-st(s2t2 + 2st + 2)

s3
 + c7

-e-st(st + 1)

s2
 + c6

2z cos kz

k2
 +

z2 sin kz

k
-

2 sin kz

k3
 + c

cos kx

k2
 +

x sin kx

k
 + c5

End of block exercises

Find the following integrals:

(a) 

(b) 

(c) 

(d) 

(e) 1(7 - x) sinx dx
1(2 + 3x)ex dx
13xe3x dx
1te-5t dt
1t sin 4t dt

1 Evaluate the following definite integrals:

(a) 

(b) 

(c) 1
p

0  e-x sin x dx

1
1

-1 (x + 5)e5x dx

1
1

0  2x2ex dx

2
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Let stand for the integral , so for 
example means . By writing 

as and using integration by parts
show that

Such a formula is called a reduction formula.
Used repeatedly it can be used to reduce an

In = -

1

n
 sinn - 1 x cos x +

n - 1

n
 In - 2

 sinn-1x  sin x

sinn x1sin4 x dxI4

1sinn x dxIn3 integral such as to one involving

and then to one involving or
simply 1. Use the reduction formula to find

.

Obtain a reduction formula for .1cosn x dx4

1sin6 x dx

sin0
 xsin2

 x
1sin4 x dx

Solutions to exercises

(a) 

(b) 

(c) 

(d) 

(e) (x - 7) cos  x -  sin x + c

ex(3x - 1) + c

e3x(3x - 1)

3
 + c

-

e-5t(5t + 1)

25
 + c

sin 4t

16
-

t cos 4t

4
 + c1 (a) 1.437 (b) 172.154 (c) 0.522

In =

1

n
 cosn - 1 x sin x +

n - 1

n
 In - 24

-
5
16 sin x cos x +

5x
16 + c

 I6 = -
1
6 sin5 x cos x -

5
24 sin3 x cos x3

2

5.2 The integration by parts formula 873
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BLOCK 6
Integration by substitution

6.1 Introduction

The technique described in this block involves making a substitution in order to sim-
plify an integral or make it more amenable to integration. There are many different
ways in which a substitution can be made. For example, we may let a new variable,
u say, equal a more complicated part of the function we are trying to integrate. The
choice of which substitution to make often relies upon experience: don’t worry if at
first you cannot see an appropriate substitution. This skill develops with practice.
However, it is not simply a matter of changing the variable – care must be taken with
the term dx, as we shall see.

Integrals of the form can be dealt with in a particularly simple way as

we show in Section 6.4. In Section 6.5 we provide a table of suggested substitutions
to be tried in some more difficult cases.

6.2 Making a substitution

The technique of integrating by substitution is illustrated in the following example.

Example 6.1

Find .

Solution
First, look at the function we are trying to integrate: . It looks quite a com-
plicated function to integrate. Suppose we introduce a new variable, u, such that

. Doing this means that the function we must integrate becomes .
Would you not agree that this looks a much simpler function to integrate than

? There is a slight complication, however. The new function of u must be
integrated with respect to u and not with respect to x. This means that we must take
care of the term dx correctly. It is not simply a matter of changing the dx to du. From
the substitution

note, by differentiation, that

du

dx
 = 3

u = 3x + 5

(3x + 5)6

u6u = 3x + 5

(3x + 5)6

1(3x + 5)6 dx

� f ¿(x)

f (x)
 dx
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176.2 Making a substitution 875

It follows that we can write

This is the way in which the dx is changed into du.
The required integral then becomes

The factor of , being a constant, means that we can write

To finish off we must rewrite this answer in terms of the original variable x and
replace u by :

Example 6.2
By making the substitution find .

Solution
First differentiate the given substitution.

Hence write down an expression for dx.

Now the integral can be written entirely in terms of the variable u:

Complete the integration:

1

2
 sin u + c =

1

2
 sin (2x - 7) + c

1

2
 �cos u  du�cos (2x - 7) dx =

dx =

1

2
 du

 2
du

dx
 =

1cos(2x - 7) dxu = 2x - 7

�(3x + 5)6 dx =

(3x + 5)7

21
+ c

3x + 5

 =

u7

21
+ c

 =

1

3
 
u7

7
+ c

 �(3x + 5)6 dx =

1

3
 �u6 du

1
3

�(3x + 5)6 dx = �u6 
1

3
 du

dx =

1

3
 du
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Example 6.3
By means of the substitution , find the integral .

Solution
First differentiate .

This implies that , so and .

Rewrite the integral in terms of u.

Complete the integration:

Finally rewrite the answer in terms of the original variable, x.

Sometimes it may be possible to complete the square to obtain a recognisable
standard form.

Example 6.4

Find .

Solution
By completing the square in the denominator we can write the integral as

Referring to the table of integrals, Table 1.1 in Block 1, note that

� 1

x2
+ a2 dx =

1
a

 tan-1 a x

a
b + c

� 1

(s + 3)2
+ 9

 ds

�  
1

s2
+ 6s + 18

 ds

-

(1 - x2)3>2
3

+ c

-

1

2
 
u3>2
3>2 + c = -

1

3
 u3>2

+ c

-

1

2
 �1u  du�x21 - x2 dx =

x dx = -  12 du21 - x2
= 1ux dx = -

1
2 du

-2x
du

dx
=

u = 1 - x2

1x21 - x2 dxu = 1 - x2
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This standard form suggests the substitution , from which

. Write down and complete the resulting integral:

 
1

3
 tan-1 a s + 3

3
b + c

 � 1

x2
+ 32 dx

dx = ds

dx

ds
= 1x = s + 3

Exercises

Use a substitution to find

(a) (b) 
(hint: let ) (c) 

(d) (e) 

(f) 

Find (a) (b) .

By making the substitution , and using
the laws of logarithms, find .13x dx

u = 3x3

14 sin(3x + 7) dx13e-x - 1 dx,2

1sin2 4t cos 4t dt
1x(2x2

+ 7)4 dx1e2x - 3 dx
1sin(3x - 1) dxu = t3 + 1

1t2 sin(t3 + 1) dt1(4x + 1)7 dx

1
Find (a) (b) .

Find .

By factorising the denominator and making a
substitution find

� 1

t2 - 2t + 1
 dt

6

1cos(1 - x) dx5

�  
1

(2x + 3)3
 dx� 1

(x + 1)2
 dx,4

Solutions to exercises

(a) (b) 

(c) (d) 

(e) (f) 

(a) (b) -4
3 cos(3x + 7) + c-3e-x-1

+ c2

sin3 4t

12
+ c

(2x2
+ 7)5

20
+ c

e2x - 3

2
+ c-

cos(3x - 1)

3
+ c

-

cos(t3 + 1)

3
+ c

(4x + 1)8

32
+ c1

(a) (b) 

-

1

t - 1
+ c6

-  sin(1 - x) + c5

-

1

4
 #  

1

(2x + 3)2
+ c-

1

x + 1
+ c4

1

ln 3
  3x

+ c3

6.3 Substitution and definite integrals

If you are dealing with definite integrals (ones with limits of integration) you must
be particularly careful when you substitute. Consider the following example.

Example 6.5

Find by making the substitution .u = t21
3

2  t sin(t2) dt
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Solution

Note that if then so that . We find

An important point to note is that the limits of integration are limits on the variable t,
not on u. To emphasise this they have been written explicitly as and .
When we integrate with respect to the variable u, the limits must be written in terms
of u too. From the substitution , note that

when , and when , 

so the integral becomes

Example 6.6
By making the substitution find .

Solution
State the corresponding limits on u:  

Make the substitution and obtain an integral in terms of u:

This integration can be performed by removing the brackets and integrating each
term separately. Finish the solution:

c2
5

 u5>2
-

2

3
 u3>2 d

2
 

5

= 14.530

�
5

2
(u - 1)1u  du

2, 5

1
4

1  
t1t + 1 dtu = t + 1

 = 0.129

 =

1

2
 (-cos 9 + cos 4)

 
1

2
 �

u = 9

u = 4
sin u du =

1

2
 [-cos u]

9
4

u = 9t = 3u = 4t = 2

u = t2

t = 3t = 2

 =

1

2
 �

t = 3

t = 2
sin u du

 �
t = 3

t = 2
t sin(t2) dt = �

t = 3

t = 2
t sin u 

du

2t

dt =

du

2t

du

dt
 = 2tu = t2

878 Block 6 Integration by substitution

Exercises

Use a substitution to find

(a) (b) 1
1

0   3t2et3

dt1
2

1  
(2x + 3)7dx

1
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6.4 Integrals of the form 

Example 6.7

Find .

Solution
Let us consider what happens when we make the substitution . Note
that

so that we can write

Then

Note that, in the previous example, the numerator of the integrand is the derivative of
the denominator. The result is the logarithm of the denominator. This is a special
case of the following rule, which should be remembered:

 = ln ƒx3
+ x + 2 ƒ + c

 = ln ƒz ƒ + c

 � (3x2
+ 1) 

x3
+ x + 2

 dx = �dz

z
 

dz = (3x2
+ 1) dx

dz

dx
 = 3x2

+ 1

z = x3
+ x + 2

� (3x2
+ 1) 

x3
+ x + 2

 dx

� f ¿(x)
f (x)

dx

Solutions to exercises

(a) (b) 1.71833.3589 * 1051

Key point �df>dx

f (x)
 dx = ln ƒ  f (x) ƒ + c

Example 6.8
Write down, purely by inspection, the following integrals:

(a) (b) (c) � 1

x - 3
 dx� 2x

x2
+ 8

 dx� 1

x + 1
 dx
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17 880 Block 6 Integration by substitution

Solution

(a)

(b)

(c)

Example 6.9

Evaluate by inspection.

Solution

Sometimes it is necessary to make slight adjustments to the integrand to obtain a
form for which the previous rule is suitable. Consider the next example.

Example 6.10

Find .

Solution
In this example the derivative of the denominator is whereas the numerator is just

. We adjust the numerator as follows:

Note that this sort of procedure is possible only because we can move constant fac-
tors through the integral sign. It would be wrong to try to move terms involving x in
a similar way. Then

Example 6.11

Adjust the numerator of the integral in order to find the integral.

Solution

Finish the calculation:

- ln ƒ 1 - x ƒ + c� 1

1 - x
 dx =

- � -1

1 - x
 dx� 1

1 - x
 dx =

� 1

1 - x
 dx

1

3
 � 3x2

x3
+ 1

 dx =

1

3
 ln ƒx3

+ 1 ƒ + c

� x2

x3
+ 1

 dx =

1

3
 � 3x2

x3
+ 1

 dx

x2
3x2

� x2

x3
+ 1

 dx

C ln ƒ t3 + t2 + 1 ƒ D42 = ln 81 - ln 13 = 1.83

�
4

2

3t2 + 2t

t3 + t2 + 1
 dt

ln ƒ x - 3 ƒ + c

ln ƒx2
+ 8 ƒ + c

ln ƒ x + 1 ƒ + c
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176.5 Some harder examples of integration by substitution 881

6.5 Some harder examples of integration by substitution

The range of possible substitutions is so wide and varied that it is impossible to give
examples of every type here. However, Table 6.1 provides some suggestions for
evaluating when takes particular forms.f (x)1f (x) dx

Exercises

Write down the result of finding the following
integrals:

(a) (b) � 2t

t2 + 1
 dt�1

x
 dx

1

(c) (d) �  
2

3x - 2
 dx� 1

2x + 5
 dx

Solutions to exercises

(a) (b) 

(c) (d) 23 ln ƒ3x - 2 ƒ + c1
2 ln ƒ2x + 5 ƒ + c

 ln|t2 + 1| + c ln|x| + c1

f (x) contains make the substitution:

sin x, cos x ,

where 

, ,

where t = tan x

dx

dt
=

1

1 + t2
sin x =

 t

21 + t2
 , cos x =

 1

21 + t2
 cos2

 xsin2
 x

t = tan 
x

2

dx

dt
=

2

1 + t2
sin x =

2t

1 + t2
, cos x =

1 - t2

1 + t2

dx

du
= a sec u tan ux = a sec u

dx

du
= a sinh ux = a cosh u2x2

- a2

dx

du
= a sec 2 ux = a tan u

dx

du
= a cosh ux = a sinh u2a2

+ x2

dx

du
= a sech2 ux = a tanh u

dx

du
= a cos ux = a sin u2a2

- x2

Table 6.1
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17 882 Block 6 Integration by substitution

Example 6.12
By making a hyperbolic substitution, find . You will also need to
make use of the hyperbolic identities:

Solution
Study the form of the integrand and use Table 6.1 to select an appropriate substitution.

It follows that .

Make the substitution and use the first of the identities to obtain an integral in
terms of u.

The second of the identities allows us to rewrite the integral in the form

which can be integrated directly. Complete the calculation.

From u it follows that x and so in terms of the original vari-
able, x, we have

This integral arises when calculating the length of a quadratic curve as you will see
in Chapter 18, Block 5.

Example 6.13

Find � dx

1 + cos x + sin x
 .

1

2
 sinh-1 x +

1

4
 sinh(2 sinh-1 x) + c

u = sinh -1x = sinh 

1

2
 u +

sinh 2u

4
 + c

�  
1 + cosh 2u

2
 du

�21 + sinh2 u cosh u du = �cosh2 u du

dx

du
 = cosh u

x = sinh u

cosh2 u - sinh2 u = 1,  cosh2 u =

1 + cosh 2u

2

121 + x2 dx
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Solution
By noting the form of the integrand and referring to Table 6.1 we let

Make these substitutions and simplify the result to obtain an integral in terms of t.

This can be integrated using the technique of Section 6.4.

Finally, reverting to the original variable x we have

� dx

1 + cos x + sin x
 = lna1 + tan 

1

2
 xb + c

ln(1 + t) + c

� dt

1 + t
 

 
dx

dt
=

2

1 + t2

 sin x =

2t

1 + t2
 and cos x =

1 - t2

1 + t2
 , where t = tan 

x

2

Exercises

Find 

Find 

Find .

Refer to Figure 6.1 from which tan . 

Show that (a) ,sin x =

t

21 + t2 

x = t4

�
p>2

0

1

2 + cos x
 dx3

12x2
- 1 dx.2

� x

24 - x2
 dx.1 (b) , (c) .

Refer to Figure 6.2 and use it to obtain the

substitution given in Table 6.1.t = tan 
x

2

5

dx

dt
 =

1

1 + t2
cos x =

1

21 + t2 

Show that

�
p>2

0

1

3 cos x + 4 sin x
 dx =

1

5
 ln 6.

6

x

t

1

Figure 6.1

t

1

x/2

Figure 6.2
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17 884 Block 6 Integration by substitution

Solutions to exercises

sinh(2 cosh-1 x)

4
-

cosh-1 x

2
 + c2

- 2(4 - x2) + c1 p13

9
3

End of block exercises

Find .

Find .

Find .

Find .� 3

(x + 2)2
 dx4

�
p>3

0
cos3 x sin x dx3

�
4

3

t

2t2 - 3
 dt2

� 1

4x - 3
 dx1 Find .

Find .

Find .

Find by making the substitution

.z = ln x
� ln x

x
 dx8

� 1

23 + y
 dy7

1(9 - 2t)7 dt6

� 7

(2 - x)3
 dx5

Solutions to exercises

1.156

0.234

7

2(2 - x)2
+ c5

-

3

x + 2
+ c4

3

2

1
4 ln(4x - 3) + c1

(ln x)2

2
+ c8

2(3 + y)1>2
+ c7

-

(9 - 2t)8

16
+ c6
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BLOCK 7
Integration using partial fractions

7.1 Introduction

Often the technique of partial fractions can be used to write an algebraic fraction as
the sum of simpler fractions. On occasions this means that we can then integrate a
complicated algebraic fraction. We shall explore this approach in this block. A
thorough understanding of the various forms that partial fractions can take is an
essential prerequisite.

7.2 Integration using partial fractions

Sometimes expressions which at first sight look impossible to integrate using the
techniques already met may in fact be integrated by first expressing them as simpler
partial fractions, and then using the techniques described earlier in this chapter.
Consider the following example.

Example 7.1
By expressing the integrand as the sum of its partial fractions find

Solution
The denominator of the integrand contains a repeated linear factor . The
appropriate form of partial fractions is

Then

from which, by letting , we find . Equating coefficients of x, for
example, gives . The integral becomes

� 2

x + 7
-

3

(x + 7)2 dx

A = 2
-3 = Bx = -7

2x + 11 = A (x + 7) + B

2x + 11

(x + 7)2 =

A

x + 7
+

B

(x + 7)2

(x + 7)2

� 2x + 11

(x + 7)2 dx
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The first integral is of the form covered in Section 6.4. Thus

The second integral can be evaluated by making a substitution , ,

to give

Finally, putting both parts together we find

Example 7.2
Express

as the sum of its partial fractions. Hence find

Solution
First produce the partial fractions (hint: write the fraction in the form ):

Then integrate each term separately.

2 ln ƒ x - 5 ƒ - 3 ln ƒ x + 4 ƒ + c

A = 2, B = -3

A

x - 5
+

B

x + 4

� 23 - x

(x - 5)(x + 4)
 dx

23 - x

(x - 5)(x + 4)

� 2x + 11

(x + 7)2 dx = 2 ln ƒ x + 7 ƒ +

3

x + 7
+ K

 = -

3

x + 7
+ c

 = -

3
u

+ c

 � 3

(x + 7)2 dx = � 3

u2 du

du

dx
 = 1u = x + 7

� 2

x + 7
 dx = 2 ln ƒ x + 7 ƒ + c

� f ¿(x)

f (x)
 dx

886 Block 7 Integration using partial fractions

Exercises

By expressing the following in partial fractions
evaluate the given integral. Remember to select the
correct form for the partial fractions.

� 1

x3
+ x

 dx1 � 13x - 4

6x2
- x - 2

 dx2
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� 2x

(x - 1)2 (x + 1)
 dx4

� 1

(x + 1)(x - 5)
 dx3

7.2 Integration using partial fractions 887

� 1

x2
- 2x - 1

 dx5

Solutions to exercises

1
6 ln ƒ x - 5 ƒ -

1
6 ln ƒ x + 1 ƒ + c3

3
2 ln ƒ 2x + 1 ƒ +

2
3 ln ƒ 3x - 2 ƒ + c2

ln ƒ x ƒ -
1
2 ln ƒ x2

+ 1 ƒ + c1

1

222
 lna  

x - 1 - 22

x - 1 + 22
b5

-
1
2 ln ƒ x + 1 ƒ +

1
2 ln ƒ x - 1 ƒ -

1

x - 1
+ c4

End of block exercises

Find .

Find .

Find .

Find .� 3 - x

(x - 2)2 (x + 1)
 dx4

� t

(t + 3)(t - 2)
 dt3

� x + 3

(x + 1)2
 dx2

� 3x - 17

x2
- 2x - 3

 dx1 Find .

Find .

Find .� 8 - x

(x - 2)2 (x + 1)
 dx7

� 2 

(1 + t)(1 + 3t)
 dt6

� 15x - 6

(1 - 2x)(2 - x)
 dx5

Solutions to exercises

4

9
 ln(x + 1) -

4

9
 ln(x - 2) -

1

3(x - 2)
+ c4

3

5
 ln(t + 3) +

2

5
 ln(t - 2) + c3

ln(x + 1) -

2

x + 1
+ c2

5  ln(x + 1) - 2  ln(x - 3) + c1

ln 
x + 1

x - 2
-

2

x - 2
+ c7

ln(3t + 1) - ln(t + 1) + c6

8 ln(x - 2) -

ln(2x - 1)

2
+ c5
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BLOCK 8
Integration of trigonometrical functions

8.1 Introduction

Integrals involving trigonometrical functions are commonplace in engineering
mathematics. This is especially true when modelling waves, and alternating current
circuits. When the root-mean-square (r.m.s.) value of a waveform or signal is to be
calculated, you will often find this results in an integral of the form

In Fourier analysis it is necessary to find integrals such as

In this block you will learn how such integrals can be evaluated.
Simple integrals involving trigonometrical functions have already been dealt with

in Block 1. See what you can remember.

Example 8.1
Write down the following integrals:

(a) (b) (c) (d) 

Solution

(a)

(b)

(c)

(d)

The basic rules from which these results can be derived are summarised here:

sin 2x

2
+ c

-

cos 2x

2
+ c

sin x + c

-cos x + c

1cos 2x dx1sin 2x dx1cos x dx1sin x dx

�sin mt cos nt  dt

�sin2t dt

Key point �sin kx dx = -

cos kx

k
+ c, �cos kx dx =

sin kx

k
+ c
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178.2 The integration of more complicated trigonometrical functions 889

8.2 The integration of more complicated trigonometrical functions

In engineering applications it is often necessary to integrate functions involving
powers of the trigonometrical functions such as

Note that these integrals cannot be obtained directly from the formulae in the Key point
above, which involve multiples of the variable x rather than powers of trigonometrical
functions. However, by making use of trigonometrical identities the integrands can be
rewritten in an alternative form. It is often not clear which identities are useful, and
each case needs to be considered individually. Experience and practice are essential.
Work through the following example.

Example 8.2
Use the trigonometrical identity

to express the integral in an alternative form.

Solution

Note from the last example that the trigonometrical identity was used to convert
a power of sin x into a function involving cos 2x, which can be integrated directly.

Example 8.3

Find the integral .

Solution

Example 8.4
Use the trigonometrical identity to find

1sin x cos x dx

sin 2x = 2 sin x cos x

1

2
 ax -

sin 2x

2
 + cb =

1

2
 x -

1

4
 sin 2x + K where K =

c

2

1sin2 x dx

1
1
2 (1 - cos 2x) dx

1sin2 x dx

sin2 u =
1
2 (1 - cos 2u)

�sin2x dx or �cos2vt dt
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17 890 Block 8 Integration of trigonometrical functions

Solution
Use the identity to rewrite the integrand.

Complete the integration.

Example 8.5

Find .

Solution
In this example you will need to make use of the trigonometrical identity

Use this identity to rewrite the integral:

Now complete the calculation:

Example 8.6

Find .

Solution
To perform this calculation you will need to use a trigonometrical identity, and also
use a substitution (see Block 6).

Make the substitution .

Write down .

Write as and use the trigonometrical identity .
Try to obtain an integral in terms of u.

Complete the calculation:
sin4 x

4
-

sin6 x

6
+ c

�u3
- u5 du

cos2
 x = 1 - sin2 xcos2

 x cos xcos3
 x

cos x

du

dx
 

u = sin x

1sin3 x cos3 x dx

-

cos 10x

10
-

cos 4x

4
 + c

�sin 10x + sin 4x dx

2 sin A cos B = sin(A + B) + sin(A - B)

12 sin 7x cos 3x dx

-

1

4
 cos 2x + c�1

2
 sin 2x dx =

�1

2
 sin 2x dx
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If you have worked through the previous examples you will have realised that there
is no single approach for tackling such integrals. Sometimes it is appropriate to make
a substitution; sometimes a trigonometrical substitution is appropriate. You may
need to integrate by parts. When faced with a particular integral to evaluate you may
need to have several attempts and try different methods. Carrying out a range of
practice exercises will help build your confidence.

Exercises

You will need to refer to a table of trigonometrical
identities to answer these questions.

Find .

Find .

Find .1(cos2 u + sin2 u) du3

1
p>2

0 cos2 t dt2

1cos2 x dx1

The mean square value of a function over
the interval to is defined to be

Find the mean square value of over
the interval to .

Find where m and n are
constants and .

Find .� sin3 x

cos x
 + sin x cos x dx8

m Z n
1sin mt sin nt dt7

t = 2pt = 0
f (t) = sin t

1

b - a
 �

b

a
 ( f (t))2 dt

t = bt = a
f (t)6

Use the identity
to

find .

Find .1(1 + tan2 x) dx5

1sin 3x cos 2x dx

sin(A + B) + sin(A - B) = 2 sin A cos B

4

Solutions to exercises

-

cos 5x

10
-

cos x

2
 +  c4

u + c3

p

4
2

1
2 x +

1
4 sin 2x + c1

1tan x dx = ln sec x + c8

1

2
 a sin(m - n)t

m - n
-

sin(m + n)t

m + n
b + c7

1
26

tan x + c5

End of block exercises 

Find .

Find .1sin 3x cos 3x dx2

1sin2 2x dx1 Find .

Find .1cos vt sin vt dt4

15 sin t cos t dt3

8.2 The integration of more complicated trigonometrical functions 891
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Find .

Find .

Find .1cos 3x cos 5x dx7

1
p

-p
 cos2 3t dt6

1
p

-p  sin2 t dt5 Find .

Find .

Find .1cos p dx10

1sin2 x + cos2 x dx9

1sin t sin 2t dt8

Solutions to exercises

p5

-

cos 2vt

4v
+ c4

-

5

4
 cos 2t + c3

-

1

12
 cos 6x + c2

x

2
-

sin 4x

8
+ c1

(cos p)x + c = -x + c10

x + c9

sin t

2
-

sin 3t

6
 + c8

sin 8x

16
+

sin 2x

4
+ c7

p6

End of chapter exercises

Find the following integrals using an
appropriate technique selected from this
chapter:

(a)

(b)

(c)

(d)

(e)

(f) �2x2
+ x + 2

x3
+ x

 dx

1
1.2

1 tan x dx

1
p

0 cos t dt

� 1

4 - t
 dt

1cos2 x dx

� 1

4 + x2
 dx

1 (i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

(q) � 1

x(x - 3)
 dx

1sin 5x cos 2x dx

1sec t dt

13x dx

�x cos 
x

2
 dx

� 1

2100 - 4x2
 dx

�
3

1

1

1 + x2
 dx

1
1
- 1cosh 3t dt

� 3

2t2 + 0.25
 dt

(g)

(h) � 1

16 - x2
 dx

1sin 3t cos 3t dt

892 Block 8 Integration of trigonometrical functions
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17

(r)

(s)

(t)

(u)

(v)

(w)

(x)

(y)

(z)

By making the substitution find

.

Use the substitution to show that

Find .

Find .

By means of the substitution find

.

Find .

Find .�
p>4

0
sin2 t dt8

�A
x

x - 2
 dx7

�A
x

1 - x
 dx

x = sin 
2

 u 6

�  
dx

(1 - x)1x
5

�
1

0

1 + 2x

1 + x2
 dx4

�
p>4

0
ln(1 + tan t) dt =

1

8
 p ln 2.

t =

p

4
- u3

�sin1x dx

u2
= x2

� 7

(et)7
 dt

� 8t + 10

4t2 + 8t + 3
 dt

� x2

x3
+ 1

 dx

1cos x2sin x dx

1
2

0  t2 et dt

� 1

5 + 4 cos x
 dx

1t23t - 2 dt

�  
ln x

x
 dx

� 1

t2(t - 1)
 dt

Use the substitution to find

.

Find .

Use integration by parts to find .

If show that

Find .

Find .

Find .

Find .

Find .

Find .

Find .

Mechanical Engineering – Distance travelled
by a projectile. The velocity, , in , of
a projectile is given by

(a) Calculate the distance travelled in the first
3 seconds.

(b) Calculate the average speed over the first
3 seconds.

Thermodynamics. The pressure, P, and
volume, V, of a gas are connected by 

Calculate the work done by the gas as it
expands in volume from 100 to 1000 units.

PV 
0.9

= 106

21

v(t) = 10e-t  t Ú 0

m s-1v(t)
20

� 1

x2
- 4x + 3

 dx19

1
q

0 e-x cos x dx18

1
q

0 e-2t dt17

� 1

s2
- 2s + 5

 ds16

� 4

3 - x
 dx15

� cos t - sin t

sin t + cos t
 dt14

� 2x + 7

x2
+ 7x

 dx13

In =

xne2x

2
-

n

2
 In - 1.

In = 1xn e2x dx12

1sec3 x dx11

�
0.3

0

1

x2
- 3x + 2

 dx10

� e2x

ex
- 1

 dx

u = ex
- 19

End of chapter exercises 893
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17

Solutions to exercises

(a) 

(b) (c) 

(d) 0 (e) 0.4 (f) 

(g) (h) 

(i) (j) 6.679 (k) 0.464

(l) 

(m) 

(n) (o) ln

(p) 

(q) 

(r) (s) 

(t) 

(u) 

(v) 12.778 (w) 

(x) 

(y) 

(z) -e- 7t
 +  c

1
2 ln(2t + 3) +

3
2 ln(2t + 1) + c

1
3 ln(x3

+ 1) + c

2
3 (sin x)3>2

+ c

2

3
 tan-1a tan(x>2)

3
b + c

2(3t - 2)3>2 (9t + 4)

135
+ c

1

2
 (ln x)2

+ c
1

t
- ln 

t

t - 1
+ c

-1

3
 ln x +

1

3
 ln(x - 3) + c

-

cos 7x

14
-

cos 3x

6
 + c

ƒ sec x +  tan x ƒ  +  c
1

ln 3
  3x

+ c

2x sina x

2
b + 4 cosa x

2
b + c

1

2
 sin-1 

x

5
+ c

3 sinh-1
 2t +  c

1

8
 ln 

4 + x

4 - x
+ c-

cos 6t

12
 + c

 tan-1
 x +  2 ln x +  c 

— ln (4 -  t) + c
1

2
 ax +

sin 2x

2
 b + c

1
2 tan-1a x

2
b + c1

1.479

0.194

0.5

0.5

(a) 9.502 (b) 3.167

4.104 * 10621

20

1
2 ln(x - 3) -

1
2 ln(x - 1) + c19

18

17

1
2 tan-1a s - 1

2
b + c16

—4 ln(3 - x) +  c15

ln(sin t + cos t) +  c14

ln(x2
 +  7x) +  c13

1
2 ln ƒ tan x + sec x ƒ +

1
2 tan x sec x + c11

10

ex
+ ln(ex

- 1) +  c9

p

8
-

1

4
8

21x - 2 (x + 4)

3
+ c7

(x - 1)A
x

1 - x
+ tan-1 aA

x

1 - x
b + c 6

- lna1x - 1

1x + 1
b + c5

4

2 sin 1x - 21x cos 1x + c2

894 Block 8 Integration of trigonometrical functions
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Chapter 18
Applications of integration

In the previous chapter integration was introduced, and you were
shown a wide variety of techniques for obtaining integrals. In this
chapter you will meet several important applications of those
techniques.

The first block is particularly important for it introduces integration as
the limit of a sum. This involves obtaining a physical quantity by
considering it to be made up of contributions from lots of small parts.
The sum of these contributions is calculated using integration. An
understanding of Block 1 is essential if you want to be able to apply
the techniques to a wider range of problems than those described
here.
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Chapter 18 contents

Block 1 Integration as the limit of a sum

Block 2 Volumes of revolution

Block 3 Calculating centres of mass

Block 4 Moment of inertia

Block 5 The length of a curve and the area of a surface of
revolution

Block 6 The mean value and root-mean-square value of a function

End of chapter exercises
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BLOCK 1
Integration as the limit of a sum

1.1 Introduction

In Chapter 17, integration was introduced as the reverse of differentiation. A more
rigorous treatment would show that integration is a process of adding or ‘sum-
mation’. By viewing integration from this perspective it is possible to apply the tech-
niques of integration to finding areas, volumes, centres of gravity and many other
important physical quantities.

The content of this block is important because it is here that integration is defined
properly. A thorough understanding of the process involved is essential if you need
to apply the techniques to practical problems.

1.2 The limit of a sum

Consider the graph of the positive function shown in Figure 1.1. Suppose we are
interested in finding the area under the graph between and .x = bx = a

y(x)

y

a b x

y(x)

Area required

Figure 1.1
The area under a
curve.

One way in which this area can be approximated is to divide it into a number of
rectangles, find the area of each rectangle, and then add all these individual areas up.
This is illustrated in Figure 1.2(a), which shows the area divided into n rectangles,
and Figure 1.2(b), which shows the dimensions of a typical rectangle that is located
at .x = xk

Figure 1.2
(a) The area
approximated by n
rectangles; (b) a
typical rectangle.

y

a b
x

y(x)

y(xk)

xk

n rectangles

y

x

δx

(a) (b)
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898 Block 1 Integration as the limit of a sum18

First, refer to Figure 1.2(a) and state the distance from a to b:

In Figure 1.2(a) the area has been divided into n rectangles. If n rectangles span the
distance from a to b state the width of each rectangle:

It is conventional to label the width of each rectangle as . Suppose we label the x
coordinates at the left-hand side of the rectangles as , up to . A typical rec-
tangle, the kth rectangle, is shown in Figure 1.2(b). Note that its height is .
Calculate its area:

The sum of the areas is then

which we write concisely using sigma notation (introduced in Chapter 5, Block 1) as

This, of course, gives us an estimate of the area under the curve, but it is not exact.
To improve the estimate we must take a large number of very thin rectangles. So,
what we want to find is the value of this sum when n tends to infinity and tends to
zero. We write this as

The lower and upper limits on the sum correspond to the first and last rectangle where
and respectively, and so we can write this limit in the equivalent form

(1)

If this sum can actually be found, it is called the definite integral of , from

to , and it is written . You are already familiar with the mech-

anism for finding definite integrals, which were studied in Chapter 17, Block 2.
Therefore we have the following definition:

1
b

a y(x) dxx = bx = a

y(x)

lim
dx:0

 a
x = b

x = a
 y(x)dx 

x = bx = a

lim
n: q

 a
n

k = 1
 y(xk)dx

dx

a
n

k = 1
 y(xk)dx

y(x1)dx + y(x2)dx + y(x3)dx +
. . .

+ y(xn)dx

y(xk) * dx

y(xk)
xnx2x1

dx

b - a

n

b - a

Key point The definite integral

is defined as

lim
dx:0

 a
x = b

x = a
 y(x)dx

�
b

a
y(x) dx
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1.2 The limit of a sum 899 18

Note that the quantity represents the thickness of a small but finite rectangle.
When we have taken the limit as tends to zero to obtain the integral, we write .

This process of dividing an area into very small regions, performing a calculation
on each region, and then adding the results by means of an integral is very important.
This will become apparent when finding volumes, centres of gravity, moments of
inertia, etc., in the following blocks.

Example 1.1
The area under the graph of between and is to be found using
the technique just described. If the required area is approximated by a large number
of thin rectangles, the limit of the sum of their areas is given from equation (1) as

Write down the integral that this sum defines and evaluate it to obtain the area under
the curve.

Solution
The limit of the sum defines the integral . Here and so

To show that taking the limit of a sum actually works we have provided a detailed
example for you to work through.

Example 1.2
Use the idea of the limit of a sum to find the area under the graph of between

and .

Solution
Refer to the graph in Figure 1.3 to help you answer the questions.

If the interval between and is divided into n rectangles what is the
width of each rectangle?

x = 1x = 0

x = 1x = 0
y = x2

 =

1

3

�
1

0
 x2 dx =  c x3

3
d1

0

y = x2
1

1
0  y(x) dx

lim
dx:0

 a
x = 1

x = 0
 y(x)dx

x = 1x = 0y = x2

dxdx
dx

Figure 1.3
The area under

is
approximated by a
number of thin
rectangles.

y = x2

x

y � x 
2

n rectangles

O 1

1

y
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900 Block 1 Integration as the limit of a sum18

Mark this on Figure 1.3.
What is the x coordinate at the left-hand side of the first rectangle?

What is the x coordinate at the left-hand side of the second rectangle?

What is the x coordinate at the left-hand side of the third rectangle?

Mark these coordinates on Figure 1.3.
What is the x coordinate at the left-hand side of the kth rectangle?

Given that , what is the y coordinate at the left-hand side of the kth rectangle?

The area of the kth rectangle is its . Write down the area of the kth
rectangle:

To find the total area of the n rectangles we must add up all these individual areas:

This sum can be simplified and then calculated as follows. You will need to make use
of the formulae for the sum of the first k integers, and the sum of the squares of the
first k integers. Details of these will be given in Chapter 19, Block 2. For complete-
ness we state the relevant formulae now:

Then, the total area of the rectangles is given by

 =

1

n3 a
n

k = 1
 k2

- 2k + 1

 a
n

k = 1
 
(k - 1)2

n3  =

1

n3 a
n

k = 1
 (k - 1)2

a
n

k = 1
 1 = n,   a

n

k = 1
 k =

n

2
 (n + 1),   a

n

k = 1
 k2

=

n

6
 (n + 1)(2n + 1)

total area of rectangles = a
n

k = 1
 
(k - 1)2

n3

a k - 1
n
b2

*

1
n

=

(k - 1)2

n3

height * its width

a k - 1
n
b2

y = x2

k - 1
n

2
n

1
n

0

1
n
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1.2 The limit of a sum 901 18

Note that this is a formula for the total area of the n rectangles. It is an estimate of the 

area under the graph of . Now, as n gets larger, the terms and become 

small and will eventually tend to zero. If we now let n tend to infinity we obtain the
exact answer:

The required area is .

The area has been found as the limit of a sum.

In the calculations that follow in subsequent blocks the need to evaluate complicated
limits like this is avoided by performing the integration using the techniques of
Chapter 17. Nevertheless it will still be necessary to go through the process of divid-
ing a region into small sections, performing a calculation on each section and then
adding the results, in order to obtain the integral required.

1

3

1

3
lim

n: q

a1

3
-

1

2n
+

1

6n2 b =

1

6n2

1

2n
y = x2

 =

1

3 
-

1

2n
+

1

6n2

 =

1

6n2 (2n2
- 3n + 1)

 =

1

n2 a (n + 1)(2n + 1)

6
 -

6n

6
 b

 =

1

n2 a (n + 1)(2n + 1)

6
- nb

 =

1

n2 a (n + 1)(2n + 1)

6
- (n + 1) + 1b

 =

1

n3 an

6
 (n + 1)(2n + 1) - 2

n

2
 (n + 1) + nb

 =

1

n3 aa
n

k = 1
 k2

- 2a
n

k = 1
 k + a

n

k = 1
 1b

Exercises

There are deliberately few exercises in this block because in practice integrals are evaluated using the
techniques of Chapter 17 and not via taking the limits of sums explicitly. What is important though is an
understanding of how the appropriate sum is formed.

Find the area under from to
using the limit of a sum.x = 10

x = 0y = x + 11 Find the area under from to
using the limit of a sum.x = 2

x = 0y = 3x22
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902 Block 1 Integration as the limit of a sum18

Write down, but do not evaluate, the integral
defined by the limit as , or , of
the following sums:

(a) (b) 

(c) (d) a
x = 1
x = 0  6mx2 dxa

y = 1
y = 0  y

3 dy

a
x = 4
x = 0  4px2 dxa

x = 1
x = 0  x

3 dx

dy : 0dx : 0
3

Solutions to exercises

60

82

1 (a) (b) (c) 

(d) 1
1

0  6mx2 dx

1
1

0  y3 dy4p1
4

0  x2 dx1
1

0  x3 dx3

End of block exercises

Use the method of the limit of a sum to find
the area bounded by the curve and the 
x axis between and . You may
assume the result

a
n

k = 1
k3

=

n2

4
 (n + 1)2

x = bx = a
y = x3

1 Write down, but do not evaluate, the integral
defined by the limit as , or

of the following sums:

(a) (b) 

(c)

(d)

(e) a
s = 1
s = 0  s

2 ds

a
x = b>2
x = -b>2  mbx2 dx

a
y = 2
y = 0  m(2 - y)y dy

a
x = a
x = 0 px2 dxa

x = 5
x = 1 px3 dx

ds : 0
dx : 0, dy : 0

2

Solutions to exercises

(b4 - a4)

4
1 (a) (b) 

(c) (d) 

(e) 1
1

0  s
2 ds

1
b>2

-b>2  mbx2 dx1
2

0  m(2 - y)y dy

1
a

0 px2 dx1
5

1 px3 dx2
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BLOCK 2
Volumes of revolution

2.1 Introduction

In this block we show how the concept of integration as the limit of a sum can be
used to find volumes of solids formed when areas are rotated around the x or
y axes.

2.2 Volumes generated by rotating areas about the x axis

Figure 2.1 shows a graph of the function for x between 0 and 3.y = 2x

Figure 2.1
A graph of the
function ,
for .0 … x … 3

y = 2x

Figure 2.2
When the area
under is
rotated around the
axis, a solid is
generated.

y = 2x

x

y � 2x

O 3

6
y

x

y � 2x

O 3

6
y

Imagine rotating the shaded area under a full revolution around the x axis.
The body so formed is a cone as shown in Figure 2.2. Such a three-dimensional body
is known as a solid of revolution or a volume of revolution.

y = 2x
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904 Block 2 Volumes of revolution18

Example 2.1
Find the volume of the cone generated by rotating the area under , for

, around the x axis, as shown in Figure 2.2.

Solution
In order to find the volume of this solid we assume that it is composed of lots of
thin circular discs all aligned perpendicular to the x axis, such as that shown in
Figure 2.3. From Figure 2.3 we note that a typical disc has radius y, which in this
example equals , and thickness .dx2x

0 … x … 3
y = 2x

Figure 2.3
The cone is
divided into a
number of thin
circular discs.

(x, y)

y � 2x

O 3

6

y

x
δx

The volume of a circular disc is the circular area multiplied by the thickness.
Write down an expression for the volume of this typical disc:

To find the total volume we must sum the contributions from all discs and find the limit
of this sum as the number of discs becomes infinite and becomes zero. That is,

This is the definition of a definite integral. Write down the corresponding integral.

Find the required volume by performing the integration:

c4px3

3
d

0

3

= 36p

�
3

0
4px2

 dx

lim
dx:0

 a
x = 3

x = 0
 4px2 dx

dx

p(2x)2 dx = 4px2 dx
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2.2 Volumes generated by rotating areas about the x axis 905 18

Example 2.2
A graph of the function for x between 0 and 4 is shown in Figure 2.4. The
area under the graph is rotated around the x axis to produce the solid shown. Find
its volume.

y = x2

Figure 2.4
The solid of
revolution is
divided into a
number of thin
circular discs.

(x, y)

y � x2

O 4

16

y

x
δx

Solution
As in Example 2.1, the volume is considered to be composed of lots of circular discs
of radius y, which in this example is equal to , and thickness .

The volume of a circular disc is the circular area multiplied by the thickness.
Write down the volume of each disc:

Write down the expression that results by summing the volumes of all such discs:

Write down the integral that results from taking the limit of the sum as :

Perform the integration to find the volume of the solid:

In general, suppose the area under the graph of between and is
rotated about the x axis, and the solid so formed is considered to be composed of lots
of circular discs of thickness .

Write down an expression for the radius of a typical disc:

y

dx

x = bx = ay(x)

45 p

5
= 204.8p

�
4

0
 px4 dx

dx : 0

a
x = 4

x = 0
 px4 dx

p(x2)2 dx = px4 dx

dxx2
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906 Block 2 Volumes of revolution18

Write down an expression for the volume of a typical disc:

The total volume is found by summing these individual volumes and taking the limit
as becomes zero:

Write down the definite integral that this sum defines:

�
b

a
py2 dx

lim
dx:0

 a
x = b

x = a
 py2 dx

dx

py2 dx

Key point If the area under the graph of , between and , is rotated about the x axis
the volume of the solid formed is

�
b

a
py2 dx

x = bx = ay(x)

Exercises

When the area under the graph of between
and is rotated around the x axis,

show that the volume of the solid formed is 

.

Find the volume of the solid formed when the
area under between and is
rotated about the x axis.

x = 2x = 1y = x2
2

1
b

a py2 dx

x = bx = a
y(x)1 The area under the parabola for 

is rotated around the x axis. Find the
volume of the solid formed.
x … 1

0 …y2
= 4x3

Solutions to exercises

31p

5
2 2p3

2.3 Volumes generated by rotating areas about the y axis

We can obtain a different solid of revolution by rotating an area around the y axis
instead of around the x axis. In Figure 2.5 the area between the graph of and the
y axis has been rotated about the y axis.

To find the volume of this solid it is divided into a number of circular discs as
before, but this time the discs are horizontal. The radius of a typical disc is x and

y(x)
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2.3 Volumes generated by rotating areas about the y axis 907 18

its thickness is . The volume of the disc will be where is the thickness
of the disc.

The total volume is found by summing these individual volumes and taking the
limit as . If the lower and upper limits on y are c and d, we find

which is the definite integral

�
d

c
px2 dy

lim
dy:0

 a
y = d

y = c
 px2 dy

dy : 0

dypx2 dydy

Figure 2.5
A solid can be
generated by
rotation around the
y axis.

(x, y)

y(x)

O

y

xδy

Key point If the area between the graph of and the y axis between and (Figure 2.6)
is rotated about the y axis the volume of the solid formed is

�
d

c
px2 dy

y = dy = cy(x)

Figure 2.6
Rotating the
shaded area about
the y axis produces
a volume of
revolution.

y

x

y(x)

d

c
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908 Block 2 Volumes of revolution18

Example 2.3
Find the volume generated when the area between and the y axis between

and is rotated around the y axis.

Solution
Write down the required integral.

Because this integral can be written entirely in terms of y. Do this now, and
then evaluate the integral.

�
1

0
py dy = cpy2

2
 d

0

1

=

p

2

y = x2

�
1

0
px2 dy

y = 1y = 0
y = x2

Exercises

The area between and the y axis
between and is rotated about the
y axis. Find the volume of the solid formed.

y = 4y = 1
y = x21 The area between and the y axis

between and is rotated around
the y axis. Find the volume of revolution.

y = 2y = -2
y = 2 - 2x2

Solutions to exercises

15p

2
1

16p

3
2

End of block exercises

The area between the parabola and
the x axis for is rotated around the
x axis. Show that the volume of the solid
formed is .

The equation of a circle with centre the origin
and radius a is . By considering
that portion of the circle that lies in the first
quadrant, and rotating this around the x axis,
show that the volume of a hemisphere of 

radius a is .
2pa3

3

x2
+ y2

= a2
2

2pa3

0 6 x 6 a
y2

= 4ax1 Find the volume obtained when the area
between and the x axis for

is rotated around the x axis.

The area under between and 

is rotated about the x axis. Find the
volume of revolution.
x = 3

x = 1y =

1

x
4

0 6 x 6 p

y =  sin x
3
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2.3 Volumes generated by rotating areas about the y axis 909 18

Consider the area bounded by the curve
between and and the 

x axis. If this area is rotated around the y axis
show that the volume of the solid generated 
is .9p

2

x = 2x = 1y = x2
- 1

5 The area between and the x axis

for is rotated around the y axis.
Find the volume of the solid generated.

0 … x … 2

y = 1 -
1
2 x6

Solutions to exercises

2p

3
4

p2

2
3

4p

3
6
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BLOCK 3
Calculating centres of mass

3.1 Introduction

In this block we show how the idea of integration as the limit of a sum can be used to
find the centre of mass of an object such as a thin plate, like a sheet of metal. Such a
plate is also known as a lamina. An understanding of a ‘moment’ is necessary, and so
this concept is introduced as well.

3.2 The centre of mass of a collection of point masses

Suppose we have a collection of masses located at a number of known points. The
centre of mass is the point where, for many purposes, all the mass can be assumed
to be located.

For example, if two objects each of mass m are placed at the locations and
, as shown in Figure 3.1(a), then the total mass, 2m, can be assumed to be

located at as shown in Figure 3.1(b). This is the point where we could imag-
ine placing a pivot to achieve a perfectly balanced system.

x = 1.5
x = 2

x = 1

Figure 3.1
(b) The location
of the centre of 
mass of the 
objects in (a).

O 1 2

m m

O

1.5

2m

To think of this another way, if a pivot is placed at the origin, as on a see-saw, then
the two masses at and together have the same turning effect or moment
as a single mass 2m located at . This is illustrated in Figure 3.2.

Before we can calculate the position of the centre of mass of a collection of
masses it is important to define moment more precisely.

Given a mass M located a distance d from O, as shown in Figure 3.3, its moment
about O is defined to be

In words, the moment of the mass about O is the mass multiplied by its distance from
O. The unit of moment will therefore be kg m when the mass is measured in kilo-
grams and the distance is measured in metres.

moment = Md

x = 1.5
x = 2x = 1

(a)

(b)
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3.2 The centre of mass of a collection of point masses 911 18

Figure 3.2
The single object
of mass 2m has the
same turning
effect as the two
objects each of
mass m.

Example 3.1 Mechanical Engineering – Moments
Calculate the moment of the mass about O in each of the cases shown in Figures 3.4
and 3.5.

m m

1

O

2

2m
O

1.5

O

Moment � Md
M

d

Figure 3.3
The moment of the
mass M about O 
is Md.

Figure 3.4

Figure 3.5

O
5 kg

8 m

O
5 kg

10 m

(a)

(b)

Solution

(a)

(b)

Intuition tells us that a large moment corresponds to a large turning effect. A mass
placed 8 metres from the origin has a smaller turning effect than the same mass
placed 10 metres from the origin. This is of course why it is easier to rock a see-saw
by pushing it at a point further from the pivot.

For a collection of masses the moment of the total mass located at the centre of mass
is equal to the sum of the moments of the individual masses. This result enables
us to calculate the position of the centre of mass, as we shall see in the following

50 kg m

40 kg m

(a)

(b)
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912 Block 3 Calculating centres of mass18

examples. It is conventional to label the x coordinate of the centre of mass as 
pronounced ‘x bar’.

x,

Key point The moment of the total mass located at the centre of mass is equal to the sum of the
moments of the individual masses.

Example 3.2 Mechanical Engineering – Centre of mass
Objects of mass m and 3m are placed at the locations shown in Figure 3.6. Find the
distance of the centre of mass from the origin O.x

Figure 3.6

10

O 3m 4mm
6

O

x

O m1 m2

x1

x2

x

Centre of mass

Solution
First calculate the sum of the individual moments:

The moment of the total mass about O is

Now, the moment of the total mass is equal to the sum of the moments of the individ-
ual masses. Write down the equation satisfied by .

Solve for .

So the centre of mass is located a distance 9 units along the x axis.

Example 3.3 Mechanical Engineering – Centre of mass
Obtain an equation for the location of the centre of mass of two objects of masses 
and located at and respectively, as shown in Figure 3.7.x = x2x = x1m2

m1

x = 9

x

36m = 4mx

x

(4m)x

6(m) + 10(3m) = 36m

Figure 3.7
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3.2 The centre of mass of a collection of point masses 913 18

Solution
Referring to Figure 3.7, first write down an expression for the sum of the individual
moments:

Write down an expression for the total mass:

Write down an expression for the moment of the total mass:

The moment of the total mass is equal to the sum of the moments of the individual
masses. Write down the equation satisfied by .

Finally write down an expression for .

The formula obtained in the previous example can be generalised very easily to deal
with the situation of n masses, , , , , located at , , , :xnÁx2x1mnÁm2m1

x =

m1x1 + m2x2

m1 + m2

x

(m1 + m2)x = m1x1 + m2x2

x

(m1 + m2)x

m1 + m2

m1x1 + m2x2

Key point The centre of mass of , , , located at , , , is

x =

a
n

i = 1
 mi xi

a
n

i = 1
 mi

 

xnÁx2x1mnÁm2m1

Example 3.4 Mechanical Engineering – Centre of mass
Calculate the centre of mass of the four masses distributed as shown in Figure 3.8.

Figure 3.8

O 1 2 3 4 5 6 7 8 9

9 1 5 2

Solution

x =

a
4

i = 1
 mixi

a
4

i = 1
 mi
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914 Block 3 Calculating centres of mass18

� 

� 

The centre of mass is located a distance units along the x axis from O.

When n masses are distributed, not just along the x axis but anywhere in the x–y
plane (Figure 3.9), the coordinates of their centre of mass are given as follows:

74
17 L 4.35

74

17

(9)(2) + (1)(3) + (5)(7) + (2)(9)

9 + 1 + 5 + 2

Key point The centre of mass of , , , located at ( , ), ( , ), , ( , ) has
coordinates

x =

a
n

i = 1
 mi xi

a
n

i = 1
 mi

 , y =

a
n

i = 1
 miyi

a
n

i = 1
 mi

 

ynxnÁy2x2y1x1mnÁm2m1

Figure 3.9
These masses 
are distributed
throughout the 
x–y plane. m1

m2

m3

(x1, y1)

(x2, y2)

(x3, y3)

(x, y)

x

y

Example 3.5 Mechanical Engineering – Centre of mass
Masses of 5 kg, 3 kg and 9 kg are located at the points with coordinates ( , 1), 
(4, 3) and (8, 7) respectively. Find the coordinates of their centre of mass.

Solution
Here .

 = 4.65

 =

79

17

 =

5(-1) + 3(4) + 9(8)

5 + 3 + 9

 x =

a
3

i = 1
 mixi

a
3

i = 1
 mi

n = 3

-1
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3.3 Finding the centre of mass of a plane, uniform lamina 915 18

Hence the centre of mass is located at the point (4.65, 4.53).

 
5(1) + 3(3) + 9(7)

17
= 4.53y =

Exercises

Explain what is meant by the centre of mass of
a collection of point masses.

Find the x coordinate of the centre of mass of
five identical masses placed at , ,

, , .

Derive the formula for given in the previous
key point.

y3

x = 12x = 9x = 7
x = 5x = 2

2

1 Mechanical Engineering – Centre of mass.
Calculate the position of the centre of mass of
2 kg placed at , 3 kg placed at , 1 kg
placed at and 6 kg placed at .

Mechanical Engineering – Centre of mass.
Masses of 3 kg, 2 kg, 2 kg and 4 kg are located
at points with coordinates (1, 3), ( , 0), 
(4, ) and ( , 4), respectively. Calculate 
the coordinates of the centre of mass.

-3-1
-2

5

x = -5x = 6
x = 4x = 1

4

Solutions to exercises

x = -
5
64

x = 72 , y =
23
11x = -

5
115

3.3 Finding the centre of mass of a plane, uniform lamina

In the previous section you calculated the centre of mass of several individual point
masses. Suppose we are interested in the centre of mass of a thin sheet of material,
such as a plane sheet of metal. Such an object is called a lamina. The mass is not
located at individual points. Rather, it is distributed continuously throughout the
lamina. In what follows we assume that the mass is distributed uniformly throughout
the lamina. In this section you will see how integration as the limit of a sum is used
to find the centre of mass.

Figure 3.10 shows a lamina where the centre of mass has been marked at point G
with coordinates . If the total mass of the lamina is M then the moments about(x, y)

Figure 3.10
The centre of mass
of the lamina is
located at .G(x, y)

G (x, y)

x

y
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916 Block 3 Calculating centres of mass18

the y and x axes are respectively and . Our approach to locating the position
of G is to divide the lamina into many small pieces, find the mass of each piece and
the moment of each piece about the axes. The sum of the moments of the individual
pieces about the y axis will be equal to . The sum of the moments of the individ-
ual pieces about the x axis will be equal to .

There are no formulae that can be memorised for finding the centre of mass of a
lamina because of the wide variety of possible shapes. Instead you should be famil-
iar with the technique for deriving the centre of mass.

An important preliminary concept is ‘mass per unit area’.

Mass per unit area

Suppose we have a uniform lamina and suppose we select a piece of the lamina that
has area equal to 1 unit. Let m stand for the mass of such a piece. Then m is called the
mass per unit area. The mass of any other piece can be expressed in terms of m. For
example, an area of 2 units must have mass 2m. An area of 3 units must have mass
3m, and so on. Any other portion of the lamina that has area A has mass mA.

M y
M x

M yM x

Key point If a lamina has mass per unit area m, then the mass of part of the lamina having area A
is Am.

We shall illustrate the calculation of centre of mass in the following examples.

Example 3.6 Mechanical Engineering – Centre of mass of a lamina
Consider the plane sheet, or lamina, in Figure 3.11. Find the location of its centre
of mass.

Figure 3.11
By symmetry the
centre of mass of
this lamina lies on
the x axis.

G (x, y)

x

y

O 1x

y � 3x

3

Solution
First inspect the figure and note the symmetry of the lamina. Purely from the sym-
metry, what must be the y coordinate, , of the centre of mass?

y = 0 since the centre of mass

      must lie on the x axis
 

y
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3.3 Finding the centre of mass of a plane, uniform lamina 917 18

Let m stand for the mass per unit area of the sheet. The total area is 3 units. The total
mass is therefore 3m. Its moment about the y axis is where is the x coordinate
of the centre of mass.

To find first divide the sheet into a large number of thin vertical slices. In
Figure 3.12 a typical slice has been highlighted. Note that the slice has been drawn
from the point P on the graph of . The point P has coordinates (x, y). The thick-
ness of the slice is . This notation is consistent with that introduced in Block 1.dx

y = 3x

x

x3mx

Figure 3.12
A typical slice of
this sheet has been
shaded.

P (x, y)

x

y

O 1

y � 3x
3

y

δx

Assuming that the slice is rectangular in shape, write down its area.

Writing m as the mass per unit area, write down the mass of the slice.

The centre of mass of this slice lies on the x axis. So the slice can be assumed to be a
point mass, , located a distance x from O.

Write down the moment of the mass of the slice about the y axis:

By adding up contributions from all such slices in the lamina we obtain the sum of
the moments of the individual masses:

The limits on the sum are chosen so that all slices are included.
Write down the integral defined by letting :

�
x = 1

x = 0
  2mxy dx

dx : 0

a
x = 1

x = 0
 2mxydx

(2ydx)mx

2ymdx

(2ydx)m

2ydx
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918 Block 3 Calculating centres of mass18

Note that this represents the sum of all the individual moments taken throughout the
entire lamina. Noting that express the integral in terms of x and evaluate it:

This must equal the moment of the total mass acting at the centre of mass.
Hence

from which

Finally the coordinates of the centre of mass are .

Example 3.7 Mechanical Engineering – Centre of mass of a lamina
Find the centre of mass of the plane lamina shown in Figure 3.13.

123 , 02
x =

2

3

3mx = 2m

�
1

0
 6mx2 dx = [2mx3]0

1
= 2m

y = 3x

Figure 3.13
We assume that the
shaded slice is
rectangular.

(x, y)

x

y

O

y � x
2

δx

2

Solution
The coordinates of and must be calculated separately.

To calculate
Let m equal the mass per unit area. Write down the total area, the total mass and its
moment about the y axis:

To calculate the lamina is divided into thin slices; a typical slice is shown in 
Figure 3.13. Assume that it is rectangular.

Write down the height of the typical strip shown in Figure 3.13.

Write down the area of the typical strip.

Write down the mass of the typical strip.

(ydx)m

ydx

y

x

2, 2m, 2mx

x

yx
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3.3 Finding the centre of mass of a plane, uniform lamina 919 18

Write down the moment about the y axis of the typical strip.

The sum of the moments of all strips is

Write down the integral that follows as .

In this example, y � x. Substitute this for y in the integral, and evaluate it.

Equating the sum of individual moments and the total moment gives

from which

To calculate
We will illustrate two alternative ways of calculating .

Referring to Figure 3.13, the centre of mass of the slice must lie half-way along 

its length: that is, its y coordinate is . Assume that all the mass of the slice, ,

acts at this point. Then its moment about the x axis is . Adding contributions
from all slices gives the sum

Write down the integral which is defined as .

which we can write as

m�
2

0
 
y2

2
 dx

�
2

0
 
my2

2
 dx

dx : 0

a
x = 2

x = 0
 
y2m

2
 dx

ymdx 
y

2

ymdx
y

2

y
y

x =

4

3

2mx =

8

3
 m

�
2

0
mx2 dx =

8

3
 m

�
2

0
mxy dx

dx : 0

a
x = 2

x = 0
 mxydx

(ydx)mx
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920 Block 3 Calculating centres of mass18

In this example , so the integral becomes

which equals . This is the sum of the individual moments about the x axis and 

must equal the moment of the total mass about the x axis which is . Therefore

from which

Finally, the coordinates of the centre of mass are .

Consider now an alternative way of finding .
This time the lamina is divided into a number of horizontal slices; a typical slice is

shown in Figure 3.14.
The length of the typical slice shown is .2 - x

y

a4

3
, 

2

3
b

y =

2

3

2my =

4m

3

2my

4m

3

m�
2

0
 
x2

2
 dx

y = x

Figure 3.14
A typical
horizontal slice is
shaded.

(x, y)

x

y

O

y � x
2

δy

2

2 � x

Write down its area, its mass and its moment about the x axis

Write down the expression for the sum of all such moments and the corresponding
integral as .

Now, since the integral can be written entirely in terms of y as

Evaluate the integral:

4m

3

�
2

0
m(2 - y)y dy

y = x

a
y = 2

y = 0
 m(2 - x)ydy, �

2

0
m(2 - x)y dy

dy : 0

(2 - x)dy, m(2 - x)dy, m(2 - x)ydy
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3.3 Finding the centre of mass of a plane, uniform lamina 921 18

As before the total mass is 2m, and its moment about the x axis is . Hence

from which

as before.

Example 3.8 Mechanical Engineering – Centre of mass of a lamina
Find the position of the centre of mass of a uniform semicircular lamina of radius a.

Solution
The lamina is shown in Figure 3.15. The equation of a circle with centre the origin,
radius a, is . By symmetry must lie on the y axis. However, it is nec-
essary to calculate .y

xx2
+ y2

= a2

y =

2

3

2my =

4m

3

2my

Figure 3.15
A typical
horizontal strip 
is shaded.

(x, y)

x

y x2 � y2 � a2 or x �   a2 � y2

δy

The lamina is divided into a number of horizontal strips, and a typical strip is
shown. Assume that each strip is rectangular. Writing the mass per unit area as m,
identify the area and the mass of the strip:

Write down the moment of the mass about the x axis:

Write down the expression representing the sum of the moments of all strips and the
corresponding integral obtained as .

Now since the integral becomes

�
a

0
2my2a2

- y2 dy

x = 2a2
- y2

a
y = a

y = 0
 2xmydy,�

a

0
2xmy dy

dy : 0

2xmydy

2xdy, 2xmdy
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922 Block 3 Calculating centres of mass18

Evaluate this integral by making the substitution to obtain the total
moment.

The total area is half that of a circle of radius a, that is . The total mass is
Its moment is .

Hence

from which

y =

4a

3p

1

2
 pa2my =

2ma3

3

1
2pa2my1

2pa2m.

1
2pa2

2ma3

3

u2
= a2

- y2

Exercise

Find the centre of mass of a lamina bounded
by and .x = 9y2

= 4x
1

End of block exercises

Find the position of the centre of mass of a
lamina in the shape of a triangle formed by

, for , and the x and
y axes.

Show that the distance of the centre of mass of a
uniform solid right circular cone, of height h, 

from its plane base is . (Hint: you will need to 
h

4

2

0 6 x 6 1y = 1 - x

1
introduce a mass per unit volume, or density, and
divide the cone into a large number of discs.)

Show that the centre of mass of a uniform
triangular lamina ABC is at a distance from
BC where h is the perpendicular distance from
A to BC.

1
3h

3

Solution to exercise

a27

5
, 0b1

Solutions to exercises

a1

3
, 

1

3
b1
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BLOCK 4
Moment of inertia

4.1 Introduction

Figure 4.1 shows a lamina, or plane sheet, which is allowed to rotate about an axis
perpendicular to the plane of the lamina and through O. The moment of inertia
about this axis is a measure of how difficult it is to rotate the lamina. It plays the
same role when dealing with rotating bodies as the mass of an object plays when
dealing with motion in a line. An object with large mass needs a large force to
achieve a given acceleration. Similarly, an object with large moment of inertia needs
a large turning force to achieve a given angular acceleration. A knowledge of the
moments of inertia of laminae, and also of solid bodies, is essential for understand-
ing their rotational dynamics.

Figure 4.1
A lamina rotating
about an axis
through O.

�
δm

r

O

In this block we show how the idea of integration as the limit of a sum can be used
to find the moment of inertia of a lamina.

4.2 Calculating the moment of inertia

Suppose a lamina is divided into a large number of small pieces or elements. A
typical piece is shown in Figure 4.2.

Figure 4.2
The moment of
inertia of the small
element is .dmr2
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924 Block 4 Moment of inertia18

It has mass , and is located a distance r from the axis O. The moment of inertia
of this small piece is defined to be , that is the mass multiplied by the square of
its distance from the axis of rotation. To find the total moment of inertia we sum the
individual contributions to give

where the sum must be taken in such a way that all parts of the lamina are included.
As we obtain the following integral as the definition of moment of inertia, I:dm : 0

a r2dm

dmr2
dm

Key point

where the limits of integration are chosen so that the entire lamina is included.

moment of inertia I = �r2 dm

The unit of moment of inertia is kg .
We shall illustrate how the moment of inertia is actually calculated in practice, in

the following examples.

Example 4.1 Mechanical Engineering – Moment of inertia of a square
Calculate the moment of inertia about the y axis of the square lamina of mass M and
width b, shown in Figure 4.3. The moment of inertia about the y axis is a measure of
the resistance to rotation around this axis.

m2

Figure 4.3
A square lamina
rotating about the 
y axis.

δx

y

xOb

b

x

�b/2 b/2

Solution
Let the mass per unit area of the lamina be m. Then, because its total area is , its
total mass is , which must equal the given mass, M.

Imagine that the lamina has been divided into a large number of thin vertical
strips. A typical strip is shown in Figure 4.3. The strips are chosen in this way
because each point on a particular strip is approximately the same distance from the
axis of rotation (the y axis).

Referring to Figure 4.3 write down the width of each strip.

dx

b2m
b2
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4.2 Calculating the moment of inertia 925 18

Write down the area of the strip.

With m as the mass per unit area write down the mass of the strip.

The distance of the strip from the y axis is x. Write down its moment of inertia.

Adding contributions from all strips gives the expression , where the sum
must be such that the entire lamina is included. As the sum defines an inte-
gral. Write down this integral.

Note that the limits on the integral have been chosen so that the whole lamina is
included. Then

Noting that then we can write I as .

Example 4.2 Mechanical Engineering – Moment of inertia of a 
circular disc

Find the moment of inertia of a circular disc of mass M and radius a about an axis
passing through its centre and perpendicular to the disc.

Solution
Figure 4.4 shows the disc lying in the plane of the paper. Imagine that the axis of
rotation is coming out of the paper through O and is perpendicular to the disc. The
disc can be considered to be spinning in the plane of the paper. Because of the circu-
lar symmetry the disc is divided into concentric rings of width . A typical ring is
shown in Figure 4.5. Note that each point on the ring is approximately the same dis-
tance from the axis of rotation.

The ring has radius r and inner circumference . Imagine cutting the ring and
opening it up. Its area will be approximately that of a long thin rectangle of length

and width . If m is the mass per unit area write down an expression for the
mass of the ring.

2prmdr

dr2pr

2pr

dr

Mb2

12
M = b2m

mb4

12
=

mb c x3

3
d

-b>2
b>2

=

I = mb�
b>2

-b>2 x
2 dx

I = �
b>2

-b>2
 mbx2 dx

dx : 0
ambx2dx

mbx2dx

mbdx

bdx
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926 Block 4 Moment of inertia18

The moment of inertia of the ring about O is its mass multiplied by the square of its
distance from the axis of rotation. This is .

The contribution from all rings must be summed. This gives rise to the sum

Note the way that the limits have been chosen so that all rings are included in the
sum. As the limit of the sum defines the integral

Evaluate this integral to give the moment of inertia I.

Write down the radius and area of the whole disc.

With m as the mass per unit area, write down the mass of the disc.

But this total mass is M. Hence I can be written .
Ma2

2

pa2m

a, pa2

I = c2mpr4

4
d

0

a

=

mpa4

2

�
a

0
2mpr3 dr

dr : 0

a
r = a

r = 0
 2pr3mdr

(2prmdr) * r2
= 2pr3mdr

Figure 4.4
A circular disc
rotating about an
axis through O.

Figure 4.5
The lamina is
divided into many
circular rings.

O

a

a

O

a

r

a

δr
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4.2 Calculating the moment of inertia 927 18

Exercises

The moment of inertia about a diameter of a
sphere of radius 1 m and mass 1 kg is found
by evaluating the integral

Show that the moment of inertia of the sphere
is .

Find the moment of inertia of the lamina in
Figure 4.3 about one of its sides.

Calculate the moment of inertia of a uniform
thin rod of mass M and length l about a
perpendicular axis of rotation at its end.

Calculate the moment of inertia of the rod in
question 3 about an axis through its centre and
perpendicular to the rod.

The parallel axis theorem states that the
moment of inertia about any axis is equal to

5

4

3

2

2
5 kg m2

3

8
 �

1

-1
 (1 - x2)2 dx

1 the moment of inertia about a parallel axis
through the centre of mass, plus the mass
of the body the square of the distance
between the two axes. Verify this theorem
for the rod in questions 3 and 4.

The perpendicular axis theorem applies to a
lamina lying in the x–y plane. It states that the
moment of inertia of the lamina about the z
axis is equal to the sum of the moments of
inertia about the x and y axes. Suppose a thin
circular disc of mass M and radius a lies in the
x–y plane and the z axis passes through its
centre. The moment of inertia of the disc about
this axis is .
(a) Use this theorem to find the moment of

inertia of the disc about the x and y axes.
(b) Use the parallel axis theorem to find 

the moment of inertia of the disc about
a tangential axis parallel to the plane of 
the disc.

1
2Ma2

6

*

Solutions to exercises

1

12
 Ml24

1

3
 Ml23

Mb2

3
2 (a) The moments of inertia about the x and y

axes must be the same by symmetry, and
are equal to .

(b)
5Ma2

4

1
4Ma2

6

End of block exercises

A lamina of mass M has profile 

for . Find the moment of 
inertia of the lamina about the y axis.

A uniform rectangular lamina of mass M is
defined by the region and-a 6 x 6 a

2

-222 6 x 6 222

y = 8 - x21 . It is allowed to rotate about
the y axis. Show that its moment of inertia is 

.

If the lamina in question 2 is allowed to rotate
about the x axis, show that its moment of
inertia is .1

3 Mb2

3

1
3 Ma2

-b 6 y 6 b
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928 Block 4 Moment of inertia18

If the lamina in question 2 rotates about the
line show that the relevant moment of
inertia is .

Prove that the moment of inertia of a uniform
ring of mass M and radius a, about an axis
through its centre and perpendicular to its
plane, is .

Use the parallel axis theorem given in the
previous exercises to show that the moment of
inertia of a thin circular disc of mass M and
radius a, about an axis perpendicular to the
plane of the disc and passing through a point
on the circumference, is .

When a body rotates about a fixed axis with
angular speed radians per second, its kineticv

7

3
2 Ma2

6

Ma2

5

4
3 Ma2

x = -a
4 energy, KE, is given by , where I is

the moment of inertia of the body about the
fixed axis. Show that the kinetic energy of a
rod of length l rotating about an axis through
its midpoint is .

A lamina has a profile in the first quadrant
given by , for .
(a) Show that the area of the lamina is

.

(b) Show that its moment of inertia about the y
axis is .

(c) Show that its moment of inertia about the x
axis is .4

5 Mab

3
7 Mb2

4
3 a1>2 b3>2

0 … x … by2
= 4ax

8

1
24 Ml2v2

KE =
1
2 Iv2

Solutions to exercises

8M

5
1
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BLOCK 5
The length of a curve and the area 
of a surface of revolution

5.1 Introduction

Integration can be used to find the length of a curve and the area of the surface
generated when a curve is rotated around an axis. In this block we state and use the
formulae for doing this.

5.2 The length of a curve

Given a curve with equation , then the length of the curve between the
points where and is given by the formulax = bx = a

y = f (x)

Key point
length of curve = �

b

a A1 + ady

dx
b2

 dx

The proof of this formula is left as an exercise (question 1).
Because of the form of the integrand, and in particular the square root, integrals of

this type are often difficult to calculate and, in practice, approximate rather than
exact methods are needed to perform the integration. We shall illustrate the applica-
tion of the formula by an example which could be calculated in a much simpler way,
before looking at some harder examples.

Example 5.1
Find the length of the curve between and .

Solution
In this example, the curve is in fact a straight line, although we shall proceed as
though it had been more complicated.

Notice from the formula in the Key point that it is necessary to find . Do this
first.

dy

dx
 = 3

dy

dx
 

x = 5x = 1y = 3x + 2
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930 Block 5 The length of a curve and the area of a surface of revolution18

Applying the formula we find

Thus the length of the curve between the points where and 
is 12.65 units.

Example 5.2 Mechanical Engineering – Length of a curve
Find the length of the catenary between and .

Solution

First find .

Hence write down the required integral:

This integral can be evaluated by making use of the hyperbolic identity

Write down the integral that results after applying this identity.

Perform the integration for yourself to find the required length.

Thus the length of between and is 3.63 units.x = 2x = 0y = cosh x

[sinh x]0
2

= 3.63

�
2

0
cosh x dx

cosh2 x - sinh2 x = 1

�
2

0
21 + sinh2 x dx

dy

dx
= sinh x

dy

dx
 

x = 2x = 0y = cosh x 

x = 5x = 1y = 3x + 2

 = 12.65

 = 4210

 = (5 - 1)210

 = c210 x d
1

5

 = �
5

1
210 dx

 length of curve = �
5

1
21 + (3)2 dx
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The final example is more complicated still and requires the use of a hyperbolic sub-
stitution and knowledge of the hyperbolic identities.

Example 5.3
Find the length of the curve between and .

Solution

Given then . Apply the formula to obtain the integral required:

Make the substitution , to obtain an integral in terms of u.

Use the hyperbolic identity to rewrite this integral:

Another hyperbolic identity is . Apply this identity to
rewrite the integrand.

Finally, performing the integration we can now complete the calculation:

Thus the length of the curve between and is 9.75 units.x = 3x = 0y = x2

 = 9.75

  
1

4 �
sinh-1 6

0
cosh 2u + 1 du =

1

4
 c sinh 2u

2
+ u d

0

sinh-1 6

1

4 �
sinh-1 6

0
cosh 2u + 1 du

cosh2 u =

1

2
 (cosh 2u + 1)

1

2 �
sinh-1 6

0
cosh2 u du

cosh2
 u - sinh2

 u = 1

�
sinh-1 6

0
21 + sinh2 u  

1

2
 cosh u du

x =

1

2
 sinh u, 

dx

du
=

1

2
 cosh u

�
3

0
21 + 4x2 dx

dy

dx
= 2xy = x2

x = 3x = 0y = x2

5.2 The length of a curve 931 18

Exercises

Figure 5.1 shows the portion of the curve y(x)
between and . A small piece of
this curve has been selected and can be
considered as the hypotenuse of a triangle with
base and height .dydx

x = bx = a
1 (a) Use Pythagoras’s theorem to find the

length of the hypotenuse.
(b) By summing all such contributions

between and , and letting
, obtain the integral expression for

the total length of the curve.
dx : 0

x = bx = a
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932 Block 5 The length of a curve and the area of a surface of revolution18

Find the length of the line 
between and using the technique
of this section. Verify your result from your
knowledge of the straight line.

Find the length of between and
.

Calculate the length of the curve 
between and .x = 2x = 0

y2
= 4x34

x = 5
x = 0y = x3>23

x = 3x = 1
y = 2x + 72

Figure 5.1

y

xO a b

δx
δy

y(x)

Solutions to exercises

(a)

(b) which, by taking
out a factor of from under the square
root, gives

and then letting defines the integral

�
b

a A1 + ady

dx
 b2

 dx

dx : 0

a
x = b

x = a
 A1 + ady

dx
b2

 dx

(dx)2
a

x = b
x = a 2(dx)2

+ (dy)2

2(dx)2
+ (dy)21

12.41

6.06 (first quadrant only)4

3

225 = 4.472

5.3 The area of a surface of revolution

Given a curve with equation , then the area of the surface generated by rotat-
ing that part of the curve between the points where and around the x
axis is given by the formula

x = bx = a
y = f (x)

Key point
area of surface = �

b

a
2pyA1 + ady

dx
b2

 dx

The proof of this formula is left as an exercise (question 1).

Example 5.4
Find the area of the surface generated when the part of the curve between

and is rotated around the x axis.x = 4x = 0
y = x3
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5.3 The area of a surface of revolution 933 18

Solution
The area of surface is given by

This integral can be found by making a substitution , so that

. When , and when , 

Write down the corresponding integral in terms of u.

Perform the integration.

Apply the limits of integration to find the area.

p

27
 [(2305)3>2

- 1]

p

18
 c2

3
 u3>2 d

1

2305

p

18
 �

2305

1
1u du

u = 2305.x = 4u = 1x = 0x3 dx =

du

36

du

dx
= 36x3u = 1 + 9x4

 = �
4

0
 2px321 + 9x4 dx

 = �
4

0
 2px321 + (3x2)2 dx

 area = �
b

a
 2pyA1 + ady

dx
b2

 dx

Exercises

Figure 5.2 shows the portion of the curve
y(x) between and , which is
rotated around the x axis through 360°. A
small disc of the solid of revolution has 
been selected. Its radius is y and so its
circumference has length . The surface
area of this disc is then approximately 

. Obtain the formula for
the total surface area.

The line between and is
rotated around the x axis.
(a) Find the area of the surface 

generated.

x = 1x = 0y = x2

2py2(dx)2
+ (dy)2

2py

x = bx = a
1

Figure 5.2

y

xa b

(x, y)
y(x)
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934 Block 5 The length of a curve and the area of a surface of revolution18

(b) Verify this result by finding the curved
surface area of the corresponding cone.
(The curved surface area of a cone of
radius r and slant height l is .)prl

Find the area of the surface generated when
for is rotated

completely about the x axis.
1 …  x …  2y = 2x

3

Solutions to exercises

p122 8.283

End of block exercises

Calculate the length of the curve 
between and .

When a curve is defined parametrically by
, , show that

(a) the length of the curve between the points
where and is

(b) the area of the surface of revolution is

Show that the area of the surface generated 

when between and is 

rotated around the x axis is .

The curve shown in Figure 5.3 is called a
cycloid. It is the path traced out by a point on
the rim of a wheel that rolls along the ground
without slipping. This curve has parametric
equations

x = u - sin  u,   y = 1 - cos  u

4

98p
81

x = 2x = 0y =

x3

9

3

�
t2

t1

 2pyA adx

dt
b2

+ ady

dt
b2

 dt

�
t2

t1
A adx

dt
b2

+ a dy

dt
b2

 dt

t = t2t = t1

y = y(t)x = x(t)
2

x = 3x = 1
y2

= 8x31

and the graph shows the part of the curve
generated when lies between 0 and .
(a) Using the result from question 2(a) show

that the length of one arch of this curve, 

that is , is 8. Hint: to integrate

use the trigonometrical
identity 

.

(b) Using the result from question 2(b) show
that the area of the surface generated when
the arch between is rotated
completely around the x axis is .64p

3

0 …  u …  2p

bsin2 A =

1 - cos 2A

2

21 - cos u 

 a0 …  u …  2p

4pu

y

xO π 2π 3π

1

2

Figure 5.3
A cycloid.

Solutions to exercises

12.041
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BLOCK 6
The mean value and root-mean-square 
value of a function

6.1 Introduction

Currents and voltages often vary with time. Engineers may wish to know the average
value of such a current or voltage over some particular time interval. The average
value of a time-varying function is defined in terms of an integral. An associated
quantity is the root-mean-square (r.m.s.) value of a function. The r.m.s. value of a
current is used in the calculation of the power dissipated by a resistor.

6.2 Average value of a function

Suppose a function f (t) is defined on the interval . The area, A, under the
graph of f (t) is given by the integral

This is illustrated in Figure 6.1.

A = �
b

a
f (t) dt

a … t … b

Figure 6.1
The area under the
curve from 
to and the
area of the
rectangle are
equal.

t = b
t = a

f (t)

ta b

h

On Figure 6.1 we have also drawn a rectangle with base spanning the interval
and which has the same area as that under the curve. Suppose the height

of the rectangle is h. Then

The value of h is the average value of the function across the interval a … t … b.

  h =

1

b -  a
 �

b

a
f (t) dt 

  h(b - a) = �
b

a
f (t) dt

 area of rectangle = area under curve

a … t … b
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936 Block 6 The mean value and root-mean-square value of a function18

The average value depends upon the interval chosen. If the values of a or b are
changed, then the average value of the function across the interval from a to b
will change as well. Note that the average value is also referred to as the mean
value.

Example 6.1
Find the average value of across the interval 

Solution
Here and .

Example 6.2
Find the average value of across the interval 

Solution
Here and .

13=

1

5 - 2
 �

5

2
t2 dtaverage value =

b = 5a = 2

2 … t … 5.f (t) = t2

 =

13

3

 =

1

2
 a26

3
 b

 =

1

2
 a9 -

1

3
b

 =

1

2
 c t3

3
d

1

3

 =

1

3 - 1
 �

3

1
t2 dt

 average value =

1

b - a
 �

b

a
 f (t) dt

b = 3a = 1

1 … t … 3.f (t) = t2

Key point
average value =

1

b - a
 �

b

a
 f (t) dt
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6.2 Average value of a function 937 18

Example 6.3 Electrical Engineering – A thyristor-firing circuit
Figure 6.2 shows a simple circuit to control the voltage across a load resistor, .
This circuit has many uses, one of which is to adjust the level of lighting in a room.
The circuit has an alternating current power supply with peak voltage, . The main
control element is the thyristor. This device is similar in many ways to a diode. It has
a very high resistance when it is reverse biased and a low resistance when it is for-
ward biased. However, unlike a diode, this low resistance depends on the thyristor
being ‘switched on’ by the application of a gate current. The point at which the
thyristor is switched on can be varied by varying the resistor, . Figure 6.3 shows a
typical waveform of the voltage, , across the load resistor.vL

RG

VS

RL

Figure 6.3
Load voltage
waveform.

Figure 6.2
A thyristor-firing
circuit.

VS

RLvL

~

RG
Thyristor

Gate

vL

t
αT αT αT

VS

The point at which the thyristor is turned on in each cycle is characterised by the
quantity , where and T is the period of the waveform. This restric-
tion on reflects the fact that if the thyristor has not turned on when the supply volt-
age has peaked in the forward direction then it will never turn on.

Calculate the average value of the waveform over a period and comment on the
result.

Solution
The average value of load voltage is

 =

VS 

2p
 (1 + cos 2pa)

 =

VS 

T
 

T

2p
 c -cosa2pt

T
b d
aT

T>2
 
1

T �
T

0
vL 

dt =

1

T �
T>2

aT
VS sina2pt

T
b  dt

a

0 … a … 0.25aT
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938 Block 6 The mean value and root-mean-square value of a function18

If , then the average value is , the maximum value for this circuit. If

, then the average value is , which shows that delaying the turning on of

the thyristor reduces the average value of the load voltage.

VS

2p
a = 0.25

VS

p
a = 0

Exercises

Calculate the average value of the given
functions across the specified interval:
(a) across [0, 2]
(b) across 
(c) across [0, 1]
(d) across [0, 2]

(e) across [1, 3]

Calculate the average value of the given
functions over the specified interval:
(a) across [1, 3]

(b)

(c)
(d) across 

(e) f (t) =

1

t2
 across [-3, -2]

[-1, 1]f (z) = z3
- 1

f (t) = 1t  across [0, 2]

f (x) =

1

x
 across [1, 2]

f (x) = x3

2

f (z) = z2
+ z

f (t) = t2
f (t) = t2

[-1, 1]f (x) = 2x - 1
f (t) = 1 + t

1 Calculate the average value of the following:
(a)

(b) across 

(c) across 

(d)

(e) across 

(f) across 

(g) across [0, 1]

Calculate the average value of the following
functions:
(a)

(b) across 

(c) across 3-1, 14f (t) = 1 + et

3-1, 14f (t) = et

f (t) = 2t + 1 across [0, 3]

4

f (t) = sin vt + cos vt

[0, p]f (t) = cos vt

[0, p]f (t) = cos t

f (t) = cos t across 30, p24
[0, p]f (t) = sin vt

[0, p]f (t) = sin t

f (t) = sin t across 30, p24
3

Solutions to exercises

(a) 2 (b) (c) (d) (e) 

(a) 10 (b) 0.6931 (c) 0.9428 (d) (e) 

(a) (b) (c) (d) 
2
p

1

pv
 [1 - cos(pv)]

2
p

2
p

3

1

6
-12

19

3

4

3

1

3
-11 (e) 0 (f) (g) 

(a) (b) 1.1752 (c) 2.1752
14

9
4

1 + sin v - cos v

v
 

sin(pv)

pv
 

6.3 Root-mean-square value of a function

If f (t) is defined on the interval , the root-mean-square (r.m.s.) value is
given by the following formula:

a … t … b

Key point
r.m.s. value = A

1

b - a
 �

b

a
3 f (t)42 dt

M18_CROF5939_04_SE_C18.QXD  9/27/18  9:46 AM  Page 938



6.3 Root-mean-square value of a function 939 18

The r.m.s. value depends upon the interval chosen. If the values of a or b are
changed, then the r.m.s. value of the function across the interval from a to b will
change as well. Note that when finding an r.m.s. value the function must be squared
before it is integrated. The expression

is the mean value of over the interval from a to b, that is the mean square value.

Example 6.4
Find the r.m.s. value of across the interval from 

Solution

Example 6.5 Electrical Engineering – r.m.s. value of a
sinusoidal current

The r.m.s. value is often used in the analysis of circuits. A sinusoidal current, i(t), is
given by

Calculate the r.m.s. value of i(t) across the interval 

Solution
Here and .

r.m.s. value = A
1

2p �
2p

0

 sin2 t dt

b = 2pa = 0

t = 0 to t = 2p.

i(t) = sin t

 =  4.92

 = A
242

10

 = A
1

2
 a243

5
-

1

5
b

 = A 1

2
 a35

5
-

1

5
b

 = A 1

2
 c t5

5
d

1

3

 = A
1

2 �
3

1
t4 dt 

 = A
1

3 - 1 �
3

1
3t242 dt

 r.m.s. value = A
1

b - a �
b

a
3f (t)42 dt 

t = 1 to t = 3.f (t) = t2

3f (t)42

1

b - a
 �

b

a
3f (t)42 dt
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940 Block 6 The mean value and root-mean-square value of a function18

The integral of is performed by using trigonometrical identities to rewrite it in
the alternative form . This technique was described in Chapter 17,
Block 8.

Thus the r.m.s. value is 0.707.

In the previous example the amplitude of the sine wave was 1, and the r.m.s. value
was 0.707. In general, if the amplitude of a sine wave is A, its r.m.s. value is 0.707A.

 =  0.707

 = A
1

2

 = A
1

4p
 (2p)

 = A 1

4p
 c t -

sin 2t

2
d

0

2p

 = A
1

4p �
2p

0
(1 - cos 2t) dt 

 r.m.s. value = A
1

2p �
2p

0

 
(1 - cos 2t)

2
 dt

1
2 (1 - cos 2t)

sin2
 t

Key point The r.m.s. value of any sinusoidal waveform taken across an interval equal to one period
is the amplitude of the waveform.0.707 *

Exercises

Calculate the r.m.s. values of the functions in
question 1 in the previous exercises.

Calculate the r.m.s. values of the functions in
question 2 in the previous exercises.

2

1 Calculate the r.m.s. values of the functions in
question 3 in the previous exercises.

Calculate the r.m.s. values of the functions in
question 4 in the previous exercises.

4

3

Solutions to exercises

(a) 2.0817 (b) 1.5275 (c) 0.4472 (d) 1.7889
(e) 6.9666

(a) 12.4957 (b) 0.7071 (c) 1 (d) 1.0690
(e) 0.1712

(a) 0.7071 (b) 0.7071 

(c) (d) 0.7071 A
1

2
 -

sin pv cos pv

2pv
 

3

2

1 (e) 0.7071 (f) 

(g) 

(a) 1.5811 (b) 1.3466 (c) 2.27244

A1 +

sin2 v

v
 

A
1

2
+

sin pv cos pv

2pv
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6.3 Root-mean-square value of a function 941 18

End of block exercises

Find the average value of the following
functions across the specified interval:
(a) across [0, 4]

(b) across [1, 3]

(c) across [1, 4]

(d) across [0, 4]

(e) across [0, 1]

Calculate the average value of the following:

(a) across 

(b) across 

(c) across [0, ]

(d) across 

(e) across [0, ]pf (t) = sin t cos t

c0, 
p

2
df (t) = cosa t

2
b

pf (t) = sin t + cos t

c0, 
p

2
df (t) = A sin 4t

c0, 
p

2
df (t) = 2 sin 2t

2

f (t) = t2>3
f (t) = 2t + 1

 f (t) = t +

1

t

f (t) = t2 - 2

f (t) = 3 - t

1 Calculate the average value of the following
functions:
(a) across [0, 1]

(b) across [0, 2]

(c) across [1, 3]

(d) across [0, 2]

(e) across [0, 2]

Find the average and r.m.s. values of
across

(a) [0, 2 ]
(b) [0, ]

Find the r.m.s. values of the functions in
question 1.

Find the r.m.s. values of the functions in
question 2.

Find the r.m.s. values of the functions in
question 3.

7

6

5

p

p

A cos t + B sin t
4

f (t) = t + et

f (t) = et
+ e-t

f (t) = 3 - e-t

f (t) =

1

e3t

f (t) = Aekt

3

Solutions to exercises

(a) 1 (b) (c) 2.9621 (d) (e) 

(a) (b) 0 (c) (d) 0.9003 (e) 0

(a) (b) 0.1663 (c) 2.8410 

(d) 3.6269 (e) 4.1945

(a) average , r.m.s.

(b) average , r.m.s.

(a) 1.5275 (b) 3.2965 (c) 3.0414 
(d) 2.3805 (e) 0.6547

5

= A
A2

+ B2

2
=

2B
p

= A
A2

+ B2

2
= 04

 Aa ek - 1

k
b3

2
p

4
p

2

3

5

7

3

7

3
1 (a) 1.4142 (b) (c) 1 (d) 0.9046 

(e) 0.3536

(a) (b) 0.2887 (c) 2.8423

(d) 3.9554 (e) 4.8085
A

e2k - 1

2k
7

A

22
6
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End of chapter exercises

Find the mean value of each of the following
functions across the interval stated:
(a) , 

(b) , 

(c) , 
(d) , 

Calculate the root-mean-square value of each
of the following functions across the interval
stated:
(a) , 
(b) , 
(c) , 
(d) , 

The acceleration, , of an object varies with
time, , according to the formula .
Given that velocity is given by ,
find the velocity after 5 seconds given that the
object is at rest at .t = 0

v = 1a(t) dtv
a = t2 + 3tt

a3

[0, 0.01]f (t) = 10 sin 50pt
[0, p]f (t) = sin 2t
[0, p]f (t) = cos 2t

[0, 10]f (t) = t

2

[0, 0.5]f (t) = 20 + 2 sin pt
[0, 2]f (t) = e3t

[1, 5]f (t) = t3
[0, p]f (t) = sin t

1 Find the volume of the solid generated when
the curve for is rotated
around the axis.

Find the volume of the solid generated when 

for is rotated about the axis.

Consider the cycloid defined by
, where is

a constant. Show that the length of this curve
for values of the parameter between 0 and

is . (Hint: see Block 5, End of block
exercises, question 4.)

Find the length of the curve for
.-1 … x … 1

y = cosh x7

8a2p
u

ay = a(1 - cos u)x = a(u - sin u)
6

x1 … x … 5y =

1

x

5

y
0 … x … 1y = 3x2

4

Solutions to exercises

(a) (b) 39 (c) 67.07 (d) 

(a) 5.7735 (b) (c) 

(d) 

79.23

250 = 7.07106

1

22

1

22
2

4
p

+ 20 = 21.2732
2
p

1

2 sinh 1 = 2.357

4p

5
5

3p

2
4

942 Block 6 The mean value and root-mean-square value of a function
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Chapter 19
Sequences and series

A sequence is a set of numbers written down in a specific order. If a
continuous function or waveform is measured, or sampled, at periodic
intervals we obtain a sequence of values. Sequences also arise when
an attempt is made to find approximate solutions of equations that
model physical phenomena. Such approximation is often necessary
if a solution is to be obtained using a digital computer.

Sequences are important in engineering mathematics because they
can be used to describe discrete time signals. These are signals that
have a non-zero value only at certain specific instants of time. For
example, in digital computers calculations are carried out at fixed
intervals of time governed by an electronic clock.

A series is formed when the terms of a sequence are added. Series are
important because the solutions of some mathematical problems can
be expressed as series. Two notable groups of series are known
as Taylor series and Maclaurin series. These are used extensively to
provide approximations or estimates of function values.

In this chapter we discuss properties common to all sequences and
series and look at some particular and important examples.
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Chapter 19 contents

Block 1 Sequences and series

Block 2 Sums of whole numbers, their squares and cubes

Block 3 Pascal’s triangle and the binomial theorem

Block 4 Taylor, Maclaurin and other series

End of chapter exercises

M19_CROF5939_04_SE_C19.QXD  9/27/18  10:35 AM  Page 944



BLOCK 1
Sequences and series

1.1 Introduction

A sequence is a set of numbers written down in a specific order. For example, 1, 3,
5, 7, 9 and , , , , are both sequences. Each number in the sequence is
called a term of the sequence. Sometimes we use the symbol . . . to indicate that the
sequence continues. For example, 1, 2, 3, . . . , 20 is the sequence of integers from
1 to 20 inclusive. The sequence 1, 3, 5, 7, 9, . . . can be assumed to continue
indefinitely.

It is necessary to introduce a notation for handling sequences. Consider again the
sequence of odd numbers 1, 3, 5, 7, 9, . . . . Suppose we let x[1] stand for the first
term, x[2] stand for the second term, and so on. Then

Clearly x[k] will stand for the k th term. Note that by inspection we can write down a
formula for the k th term. It is . Substitute some values of k for your-
self to check this.

To denote the full sequence concisely we write

Some books use the alternative notation , , and

Example 1.1
Consider the sequence of even numbers 2, 4, 6, 8, . . . . By inspection find a formula
for the k th term of this sequence.

Solution

Example 1.2
Write down the first five terms of the sequence given by where 

k � 1, 2, 3, . . . .

Solution

Write down the third, fourth and fifth terms.

1

3
, -

1

4
, 

1

5

 x[2] = (-1)3 12 = -
1
2

 x[1] = (-1)2 11 = 1

1

k
x[k] = (-1)k + 1

x[k] = 2k, where k = 1, 2, 3, . . .

xk = 2k - 1.x3 = 5x2 = 3x1 = 1

x[k] = 2k - 1 where k = 1, 2, 3, . . .

x[k] = 2k - 1

x[1] = 1, x[2] = 3, x[3] = 5, and so on

-5-4-3-2-1
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946 Block 1 Sequences and series19

A series is obtained when the terms of a sequence are added. For example, if we add
the terms of the sequence 1, 3, 5, 7, 9 we obtain the series

We use sigma notation, first introduced in Chapter 5, Block 1, to write a series con-
cisely. For example, the sum of the first 10 odd numbers can be written

where the lowermost and uppermost values of k are placed below and above the sigma
sign respectively. Similarly, the sum of the first six even numbers can be written

Example 1.3

Write out explicitly the terms of the series .

Solution

In this block we start by discussing the behaviour of sequences and series that have
an infinite number of terms. Then two particular types of sequence are described: 
the arithmetic sequence and the geometric sequence. These are particularly straight-
forward, and there are simple formulae for finding their sums.

1 +

1

2
+

1

3
+

1

4
+

1

5

a
5

k = 1
 
1

k

a
6

k = 1
 2k

a
10

k = 1
 2k - 1

1 + 3 + 5 + 7 + 9

Exercises

Explain carefully the distinction between a
sequence and a series.

Write out fully the following sums:

(a) (b) (c) 

A sequence is defined by

State the first five terms.

x[k] =

k2

2
+ k, k = 0, 1, 2, 3, . . . 

3

a
k = 5
k = 1  k

3
a

k = 4
k = 1  k

2
a

6
k = 1  k

2

1 A sequence is given by 5, , , , . . . . Write
down an expression to denote the full
sequence.

Write out explicitly the series

a
4

k = 1
 

1

(2k + 1)(2k + 3)

5

5
64

5
27

5
84
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1.2 The limit of an infinite sequence 947 19

1.2 The limit of an infinite sequence

Some sequences stop after a finite number of terms. These are called finite
sequences. Others continue indefinitely, and these are called infinite sequences.
Sometimes the terms of an infinite sequence get closer and closer to a fixed value. 

For example, the terms of the sequence , for , 2, 3, . . . , are

The terms appear to be getting smaller. What do you think will be the eventual
behaviour of the sequence as k gets large?

We say that ‘as k tends to infinity, x[k] tends to zero’, or ‘the limit of x[k] as k tends
to infinity is zero’ and write this as

When a sequence possesses a limit as k tends to infinity, it is said to converge.

Example 1.4
Write down the first four terms of the sequence , for , 2, 3, . . . . 

What is the behaviour of the sequence as k tends to infinity?

Solution
The first four terms are

As k tends to infinity, tends to zero.
1

k2

1, 
1

4
, 

1

9
, 

1

16

k = 1x[k] =

1

k2

lim
k: q  

x[k] = 0

terms approach the value 0

1, 
1

2
, 

1

3
, 

1

4
, 

1

5
, . . .

k = 1x[k] =

1

k

Solutions to exercises

(a)

(b)

(c)

0, , 4, , 1215
2

3
23

13
+ 23

+ 33
+ 43

+ 53

12
+ 22

+ 32
+ 42

1 + 2 + 3 + 4 + 5 + 62 , k � 1, 2, 3, . . . , for example

1
(3)(5) +

1
(5)(7) +

1
(7)(9) +

1
(9)(11)5

x[k] =

5

k3
4
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948 Block 1 Sequences and series19

Example 1.5

Explore the behaviour of the sequence , , . . ., as 

Solution
Write down the first few terms of this sequence:

As k tends to infinity the term tends to zero. So .

When a sequence does not possess a limit it is said to diverge. The sequence of odd
numbers diverges because the terms of the sequence get larger and larger and so the
sequence does not possess a limit. The oscillating sequence , 1, , 1, , 1, . . .
is divergent because it does not possess a limit.

Example 1.6
(a) Write out the first four terms of the sequence , , 2, 3, . . ..
(b) Find .

Solution

(a) 1, , , .
(b) The terms of this sequence increase indefinitely. The sequence therefore

diverges.

Example 1.7

Find the limit of the sequence as 

Solution
The approach to tackling a problem like this is to rewrite x[k] in a form in which we
can sensibly let Dividing both numerator and denominator by the highest
power of k, that is , gives

Now because and both tend to zero as k tends to infinity it follows that

 =

1

3

 =

3

9

 lim
k: q

x[k] = lim
k: q

3 +

2

k
-

7

k2

9 -

7

k

1

k2

1

k

x[k] =

3 +

2

k
-

7

k2

9 -

7

k

k2
k : q .

k : q .x[k] =

3k2
+ 2k - 7

9k2
- 7k

242322

lim
k: q  

x[k]
k = 1x[k] = 2k

-1-1-1

lim
k: q

 x[k] = 221

k

23, 221
2,221

3, Á

k : q .k = 1, 2, 3x3k4 = A2 +

1

k
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1.3 The sum of an infinite series 949 19

1.3 The sum of an infinite series

When the terms of an infinite sequence are added we obtain an infinite series. It may
seem strange to try to add together an infinite number of terms but under some cir-
cumstances their sum is finite and can be found. For example, consider the infinite 

series formed from the sequence , 

We can calculate the sum of n terms, , for various values of n. For example, the
sum of just the first term is

The sum of the first two terms is

Similarly , , . . . , . The sequence , , , . . .
is called the sequence of partial sums. As we calculate for larger and larger
values of n, we note that gets nearer and nearer to 2. We write S to stand for the
sum of an infinite number of terms, so

 = 2

S = a

q

k = 0
 
1

2k

Sn

Sn

S3S2S1S10 = 1.9980S4 = 1.875S3 = 1.75

 = 1.5

S2 = 1 +

1

2

S1 = 1

Sn

1 +

1

2
+

1

4
+

1

8
+

. . .

k = 0, 1, 2, . . ..x[k] =

1

2k

Exercises

Find if possible the limit of each of the
following sequences:

(a)

(b) , , 2, 3, . . .

(c) x[k] =

k - 1

k + 1
, k = 1, 2, 3, . . .

k = 1x3k4 = k2

x[k] =

1

k + 1
, k = 1, 2, 3, . . .

1 (d)

(e) x[k] =

2k + 3

4k + 2
, k = 1, 2, 3, . . .

x[k] = a1

3
b k

, k = 1, 2, 3, . . . 

Solutions to exercises

(a) 0 (b) diverges (c) 1 (d) 0 (e) 
1

2
1
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950 Block 1 Sequences and series19

For any infinite series, say , we can form the sequence of partial sums:

If the sequence converges to a limit S we say that the infinite series has sum S, or
that it has converged to S.

In general it is difficult to determine whether or not an infinite series has a finite
sum. It is possible to establish tests or convergence criteria to help decide whether
or not a given series converges or diverges, but for these you must refer to a more
advanced book.

Example 1.8
Calculate the first six partial sums of the series

Solution
The first six terms of the series are

Form the first six partial sums for yourself working to 4 d.p.

If you proceed to calculate many more terms you will see that the sequence of
partial sums converges to 0.6931, which is in fact ln 2.

1, 0.5000, 0.8333, 0.5833, 0.7833, 0.6167

1 -

1

2
+

1

3
-

1

4
+

1

5
-

1

6

a

q

k = 1
 (-1)k + 1 

1

k

Sn

S1 = x[1], S2 = x[1] + x[2], S3 = x[1] + x[2] + x[3], . . .

a
q

k = 1 x[k]

Maple and Matlab, in common with similar packages, have built-in commands for find-
ing sums of finite and infinite series. For example, using Maple Example 1.8 can be
implemented using

sum((-1)^(k+1)/k, k = 1 .. 6);

evalf(sum((-1)^(k + 1)/k, k = 1 .. 6))

The command evalf( ) produces a decimal approximation. The sum to infinity can be
found using

sum((-1)^(k+1)/k,k = 1 .. infinity);

In Matlab, the symsum command calculates the symbolic sum of a series:
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1.4 Arithmetic sequences 951 19

Exercises

Calculate the first four partial sums of the

series . ( .)Recall 0! = 1a

q

k = 0
 
1

k!

1 Calculate the first four partial sums of the

series .a

q

k = 0
 (-1)k 

1

(2k)!

2

Solutions to exercises

1, 2, 2.5, 2.6667 (in fact this converges to
).e = 2 .7183

1 1, 0.5, 0.5417, 0.5403 (this converges to
cos 1 = 0 .5403).

2

sym k

symsum((-1)^(k+1)/k,k,1,6)

vpa(ans)

The command vpa( ) produces a decimal approximation. The sum to infinity can be
found using

symsum((-1)^(k + 1)/k,k,1,Inf)

You should investigate commands like these in the packages to which you have access.

1.4 Arithmetic sequences

An arithmetic sequence is a sequence of numbers where each new term after
the first is formed by adding a fixed amount called the common difference to the
previous term in the sequence. For example, the sequence

is an arithmetic sequence. Note that having chosen the first term to be 3, each new
term is found by adding 2 to the previous term, so the common difference is 2.

The common difference can be negative: for example, the sequence

is an arithmetic sequence with first term 2 and common difference .
In general we can write an arithmetic sequence as follows:

-3

2, -1, -4, -7, . . .

3, 5, 7, 9, 11, . . .
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952 Block 1 Sequences and series19

Key point Arithmetic sequence

a, a + d, a + 2d, a + 3d, . . .

where the first term is a and the common difference is d. Some important results
concerning arithmetic sequences now follow:

Key point The nth term of an arithmetic sequence is given by

a + (n - 1)d

The sum of the terms of an arithmetic sequence is known as an arithmetic series.

Example 1.9
Find the 17th term of an arithmetic sequence with first term 5 and common
difference 2.

Solution
The nth term is a � (n � 1)d.

Hence

5 + (17 - 1)2 = 5 + 32 = 37

17th term =

Key point The sum of the first n terms of an arithmetic sequence is

Sn =

n

2
 [2a + (n - 1)d]

This result arises from inspection of the terms in the general sequence in the previ-
ous Key point. Note, for example, that the third term is given by a � (3 � 1)d � a �
2d. Similarly, the 100th term would be a � (100 � 1)d � a � 99d.

This result can be derived as follows:
Write out the sum of n terms, Sn, of the sequence twice, first in order, and then in

reverse order:

Sn � a � (a � d) � (a � 2d) � (a � 3d) � . . . � (a � (n � 2)d) � (a � (n � 1)d)     (1)
Sn � (a � (n � 1)d) � (a � (n � 2)d) � . . . � (a � 3d) � (a � 2d) � (a � d) � a    (2)

Adding equations (1) and (2), and noting that each pair of terms adds to give 
2a � (n � 1)d, we find

2Sn � (2a � (n � 1)d) � (2a � (n � 1)d) � (2a � (n � 1)d) � . . . � (2a � (n � 1)d)
2Sn � n � (2a � (n � 1)d)

Sn �
n

2
 (2a + (n - 1)d)
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1.5 Geometric sequences 953 19

Example 1.10
Find the sum of the first 23 terms of the arithmetic sequence

Solution
First identify a and d.

Then, using , find the sum of 23 terms:

23

2
 [2(4) + (23 - 1) (-7)] = -1679

Sn =

n

2
32a + (n - 1)d4

a = 4, d = -7

4, -3, -10, . . .

Exercises

Find the 23rd term of an arithmetic sequence
with first term 2 and common difference 7.

Find the sum of the first five terms of the
arithmetic sequence with first term 3 and
common difference 5.

Write down the 10th and 19th terms of the
arithmetic sequence
(a) 8, 11, 14, . . . (b) 8, 5, 2, . . .

3

2

1 An arithmetic sequence is given by

(a) State the sixth term.
(b) State the kth term.
(c) If the 20th term has a value of 15, find b.

b, 
2b

3
, 

b

3
, 0, . . . 

4

Solutions to exercises

156

652

1 (a) 35, 62 (b) , 

(a) (b) (c) -
45

16

b(4 - k)

3
-

2b

3
4

-46-193

1.5 Geometric sequences

A geometric sequence is a sequence of numbers where each term after the first is
found by multiplying the previous term by a fixed number called the common ratio.
For example, the sequence

1, 3, 9, 27, . . .
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954 Block 1 Sequences and series19

is a geometric sequence with first term 1 and common ratio 3. Each term after the
first is found by multiplying the preceding term by 3.

The common ratio could be a fraction and it might be negative.

Example 1.11
Write down the first few terms of the geometric sequence with first term 2 and
common ratio .

Solution

In general we can write a geometric sequence as follows:

2, -
2

3
, 

2

9
, -

2

27
, . . . 

-
1
3

Key point Geometric sequence

a, ar, ar2, ar3, . . .

where the first term is a and the common ratio is r.
Some important results concerning geometric sequences now follow:
Note that if r � 1, all terms will be the same and be equal to a.

Key point The nth term of a geometric sequence is given by

ar(n - 1)

Key point The sum of the first n terms of a geometric sequence is

Sn =

a(1 - rn)

1 - r
 (valid only if r Z 1)

This result arises from inspection of the terms in the general sequence in the previ-
ous Key point. Note, for example, that the third term is given by ar3�1 � ar2. Simi-
larly, the 10th term would be ar10�1 � ar9.

Write out the sum of n terms, Sn:

Sn � a � ar � ar2 � ar3 � . . . � arn�1
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1.5 Geometric sequences 955 19

The sum of the terms of a geometric sequence is known as a geometric series.

Example 1.12
Find the seventh term of the geometric sequence

Solution
First identify a and the common ratio r.

Then, the nth term is arn�1, so the seventh term is

If the common ratio in a geometric series is less than 1 in modulus (i.e. ,
the sum of an infinite number of terms converges and can be calculated. This is known
as the sum to infinity,

The formula for  can be obtained from by noting that as
, when .-1 6 r 6 1rn : 0n : q

Sn =

a (1 - rn)

1 - r
Sq

Sq .

-1 6 r 6 1)

(2)(-3)6
= 1458

a = 2, r = -3

2, -6, 18, . . .

Multiply both sides by r:

rSn � ar � ar2 � ar3 � . . . � arn�1 � arn

Subtracting, and noting that most terms cancel out:

Sn � rSn � a � arn

(1 � r)Sn � a(1 � rn)

Sn � for r Z 1
a (1 - rn)

1 - r
 

Key point Sq =

a

1 - r
  provided -1 6 r 6 1

Example 1.13
Find the sum to infinity of the geometric sequence with first term 3 and common
ratio .

Solution

6 =  

Sq =

a

1 - r

1
2
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Exercises

Find the seventh term of a geometric sequence
with first term 2 and common ratio 3.

Find the sum of the first five terms of the
geometric sequence with first term 3 and
common ratio 2.

Find the sum of the infinite geometric series
with first term 2 and common ratio .

A geometric sequence has first term 1. The
ninth term exceeds the fifth term by 240. Find
possible values for the eighth term.

4

1
2

3

2

1 The sum to infinity of a geometric sequence is
four times the first term. Find the common
ratio.

A geometric series has and .
Find the first term and the common ratio.

A geometric sequence is given by .
What is its common ratio?

1, 12, 14, . . .7

S6 =
3367
512S3 =

37
86

5

Solutions to exercises

1458

93

4

;1284

3

2

1

1
27

2, 346

3
45

End of block exercises

State whether the following sequences are
arithmetic, geometric or neither:
(a) 1, , , , . . . (b) 4, 2, 1, 0.5, . . .
(c) 6, 7, 8, 9, . . . (d) 4, 5, 7, 10, . . .
(e) 1, 0.1, 0.01, 0.001, . . .
(f) 1, , 1, , 1, . . . (g) 1, 1, 1, 1, . . .

An arithmetic sequence has first term and
common difference 4. State (a) the 10th term,
(b) the 300th term.

An arithmetic series has first term 4 and
common difference . Find (a) the sum of
the first 20 terms, (b) the sum of the first
100 terms.

A geometric sequence has first term and
common ratio . State the 20th term.-

3
4

-24

1
2

3

-32

-1-1

-5-3-1

1 A geometric series has first term equal to 3 and
a common ratio of 1.5. Calculate the sum of
(a) the first 10 terms, (b) the first 50 terms,
(c) the 30th to the 49th terms inclusive.

Find the limit as , if it exists, of each of
the following:
(a) (b) 

(c)

(d)

Show that the sum of the first n terms of an
arithmetic sequence, , can be expressed as

Sn =

n

2
 (first term + last term)

Sn

7

x[k] =

3k2
+ k

k2
+ k + 1

x[k] =

k2
+ k

k2
+ k + 1

x[k] = sin kx[k] = k5

k : q6

5
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1.5 Geometric sequences 957 19

Solutions to exercises

(a) arithmetic (b) geometric (c) arithmetic
(d) neither (e) geometric (f) geometric
(g) arithmetic and geometric

(a) 33 (b) 1193

(a) 175 (b) 28753

2

1

(a) 339.99 (b) 
(c) 

(a) diverges (b) diverges (c) 1 (d) 36

2.5497 * 109
3.8257 * 1095

8.4566 * 10-34
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BLOCK 2
Sums of whole numbers, their squares and cubes

2.1 Introduction

There are a number of series that arise in the solution of certain problems and it is
useful to know their sums. In this block we give these series.

2.2 The sum of the first n positive integers

Key point The sum of the first n positive integers is given by

 =

n

2
 (n + 1)

 a
n

k = 1
 k = 1 + 2 + 3 +

. . .
+ n

In fact this series is an arithmetic series with first term 1 and common difference 1,
as discussed in Block 1.

Example 2.1
Find the sum of the first 100 integers, .

Solution
Use the formula with :

2.3 The sum of the squares of the first n positive integers

100

2
 (101) = 5050

n = 100

1 + 2 + 3 +
. . .

+ 100

Key point The sum of the squares of the first n positive integers is given by

 =

n

6
 (n + 1)(2n + 1)

 a
n

k = 1
 k2

= 12
+ 22

+ 32
+

. . .
+ n2 
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2.4 The sum of the cubes of the first n positive integers 959 19

Example 2.2
Find the sum of the squares of the first 10 integers, .

Solution
Use the formula with :

2.4 The sum of the cubes of the first n positive integers

10

6
 (11)(21) = 385

n = 10

12
+ 22

+ 32
+

. . .
+ 102

Key point The sum of the cubes of the first n positive integers is given by

 = an(n + 1)

2
b2

 a
n

k = 1
 k  

3
= 13

+ 23
+ 33

+
. . .

+ n3

Example 2.3
Find the sum of the cubes of the first 12 integers, .

Solution
Use the formula with :

a12(13)

2
b2

= 6084

n = 12

13
+ 23

+ 33
+

. . .
+ 123

Exercises

Find the sum of the first 20 positive integers.

Find the sum of the squares of the first
20 positive integers.

2

1 Find the sum of the cubes of the first six
positive integers.

Find the sum of the first 40 positive integers.4

3

Solutions to exercises

210

28702

1 441

8204

3
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960 Block 2 Sums of whole numbers, their squares and cubes19

End of block exercises

Find .

Find .

Find the sum of the integers from 18 to 96
inclusive.

3

a
18
k = 1  k2

a
32
k = 1  k

21 Find the sum of the integers from to 
inclusive.

Find the sum of the integers from to 24
inclusive.

Find .72
+ 82

+
. . .

+ 2126

-505

-6-2004

Solutions to exercises

11440

171

45033

2

1

32206

-9755

-200854
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BLOCK 3
Pascal’s triangle and the binomial theorem

3.1 Introduction

It is frequently necessary to expand expressions of the form or .
The expansion of an expression of the form is called a binomial
expansion. When the power n is small it is possible to multiply out the brackets. If n
is large this approach becomes tedious. An alternative and very simple approach is to
use Pascal’s triangle, which is described in the next section.

When n is very large, even Pascal’s triangle is tedious, and the binomial theorem
provides an alternative.

3.2 Pascal’s triangle

Consider the triangle of numbers shown below. Every entry is obtained by adding the
two entries on either side in the preceding row, always starting and finishing a row
with a 1.

(a + b)n
(a + b)3(a + b)2

Key point Pascal’s triangle

      1      

     1   1     

    1   2   1    

   1   3   3   1   

  1   4   6   4   1  

 1   5   10   10   5   1 

 o o  o  o  o  o  o

Example 3.1
Complete the next two rows in the triangle. Add these rows to the triangle above.

1 7 21 35 35 21 7 1

1 6 15 20 15 6 1
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Compare the third and fourth rows of the triangle with the expansions of 
and .

Note that Pascal’s triangle gives the coefficients in the expansions. Furthermore, the
terms in these expansions are composed of decreasing powers of a and increasing
powers of b. If we want the expansion of the row in the triangle beginning
1, 4 will provide the coefficients. We simply insert the appropriate powers of a and b,
starting with the highest power of a, namely . Thus

Example 3.2
Use Pascal’s triangle to expand .

Solution

Example 3.3
Find 

Solution
The answer can be written down immediately:

(cos x + sin x)3 = cos3 x + 3 cos2 x sin x + 3 cos x sin2 x + sin3 x

(cos x + sin x)3.

a5
+ 5a4b + 10a3b2

+ 10a2b3
+ 5ab4

+ b5

(a + b)5

(a + b)4
= a4

+ 4a3b + 6a2b2
+ 4ab3

+ b4

a4

(a + b)4

(a + b)2
= a2

+ 2ab + b2, (a + b)3
= a3

+ 3a2b + 3ab2
+ b3

(a + b)3
(a + b)2

962 Block 3 Pascal’s triangle and the binomial theorem19

Exercises

Use Pascal’s triangle to expand .(a + b)71 Expand . By letting and
expand .(1 + 3y)4b = 3y

a = 1(a + b)42

Solutions to exercises

21a2b5
+ 7ab6

+ b7
a7

+ 7a6b + 21a5b2
+ 35a4b3

+ 35a3b4
+1 1 + 12y + 54y2

+ 108y3
+ 81y42

3.3 The binomial theorem when n is a positive integer

The binomial theorem is concerned with the expansion of . It is useful to
separate the discussion into two cases, the first when n is a positive integer, and the
second when n is negative or fractional. Section 3.4 will deal with the second case.

(a + b)n
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3.3 The binomial theorem when n is a positive integer 963 19

When n is a positive integer, the expansion of contains a finite number of
terms. For example, we have seen in Example 3.2 that

and so the expansion contains six terms. The binomial theorem is useful when we
want to expand for large n. To use the theorem you will need to recall
factorial notation first introduced in Chapter 5, Block 1.

2! = 2 * 1, 3! = 3 * 2 * 1, 4! = 4 * 3 * 2 * 1, and so on

(a + b)n

(a + b)5 = a5
+ 5a4b + 10a3b2

+ 10a2b3
+ 5ab4

+ b5

(a + b)n

Key point The binomial theorem states that when n is a positive integer

 +  
n(n - 1)(n - 2)

3!
 an - 3 b3

+
. . .

+ bn

  (a + b)n
= an

+ nan - 1 b +

n(n - 1)

2!
 an - 2 b2

This is a sum of a finite number of terms, that is the series stops. The last term is 

Example 3.4
(a) Write out the first three terms of the expansion of .
(b) What would be the last term?

Solution
(a) Using the theorem with we can write down the first three terms:

(b) The last term is .

The theorem is often quoted for the particular case when and :b = xa = 1

b21

(a + b)21
= a21

+ 21a20b +

21(20)

2!
 a19b2

+
. . .

n = 21

(a + b)21

bn.

Key point Binomial theorem (alternative form)

(1 + x)n = 1 + nx +

n(n - 1)

2!
 x2

+

n(n - 1)(n - 2)

3!
 x3

+
. . .

+ xn

Example 3.5
Use the theorem to write down the expansion of .

Solution
Use the expansion with :

1 + 4x + 6x2
+ 4x3

+ x4

n = 4

(1 + x)4
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964 Block 3 Pascal’s triangle and the binomial theorem19

3.4 The binomial theorem when n is not a positive integer

The theorem can be applied when n is not a positive integer provided that x lies
between and 1. However, when n is not a positive integer, the series is infinite:-1

Exercises

Use the binomial theorem to expand

(a) (b) (c) a1 -

x

2
b5a1 +

x

3
b4

(1 + x)3

1 Write down the first three terms in the
expansion of .(x + 3y)12

2

Solutions to exercises

(a)

(b)

(c) 1 -

5x

2
+

5x2

2
-

5x3

4
+

5x4

16
-

x5

32

1 +

4x

3
+

2x2

3
+

4x3

27
+

x4

81

1 + 3x + 3x2
+ x31 x12

+ 36x11y + 594x10y2
+

. . .2

Key point The binomial theorem states that when n is not a positive integer

This is an infinite series.

only for -1 6 x 6 1

(1 + x)n
= 1 + nx +

n(n - 1)

2!
 x2

+

n(n - 1)(n - 2)

3!
 x3

+
. . .

Example 3.6
Use the binomial theorem to write down the first four terms in the expansion of

.

Solution
Use the theorem with 

1 +

1

2
 x +

A12 B A -1
2 B

2!
 x2

+

A12 B A -1
2 B A -3

2 B
3!

 x3
+

. . .

n =

1

2
.

(1 + x)1>2
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3.4 The binomial theorem when n is not a positive integer 965 19

Simplify your result:

Note that and have the same numerical value 

only when x lies in the range to 1. If x is outside this range the two expressions
have different values.

Example 3.7

Expand in ascending powers of x up to and including the term in .

Solution

can be written . Use the binomial theorem with :

This expansion is valid provided 

Example 3.8
Obtain the first four terms in the expansion of in powers of .

Solution

Note that we can rewrite in the following way:

The binomial theorem can then be used to expand :

 = 1 + 2 a x

l
b + 3 a x

l
b2

+ 4 a x

l
b3

+
. . .

 +

(-2)(-3)(-4)

3!
 a -

x

l
b3

+
. . .

a1 -

x

l
b-2

= 1 + (-2) a -

x

l
b +

(-2)(-3)

2!
 a -

x

l
b2

a1 -

x

l
 b-2

 =

1

l2
a1 -

x

l
b-2

 
1

(l - x)2 =

1

l2 a1 -

x

l
b2

1

(l - x)2

x

l

1

(l - x)2

-1 6 x 6 1.

1 -  x + x2 -  x3
+

. . .

n = -1(1 + x)-11

1 + x

x31

1 + x

-1

1 +

x

2
-

x2

8
+

x3

16
+

. . .(1 + x)1>2

1 +

x

2
 -  

x2

8
+

x3

16
+

. . .
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Hence

1

(l - x)2 =

1

l2
 c1 + 2 a x

l
b + 3 a x

l
b2

+ 4 a x

l
b3 

 +  . . . d

966 Block 3 Pascal’s triangle and the binomial theorem19

Exercises

Obtain the first five terms in the expansion of
. State the range of values of x for

which the expansion is valid.
(1 + x)-2

1 Obtain a quadratic approximation to
using the binomial theorem. For what range of
values of x is your expansion valid?

(1 - 2x)1>22

Solutions to exercises

1 - 2x + 3x2
- 4x3

+ 5x4, -1 6 x 6 11 1 - x -

1

2
 x2

+
. . . , -

1

2
 6 x 6

1

2
2

End of block exercises

(a) Use the binomial theorem to expand
.

(b) Use the result from part (a) to expand
.

Expand (a) , (b) , 

(c) , (d) , (e) .

Expand where .j2 = -1(cos  u + j  sin  u)53

(z + 3)3(1 + 2z)3(2 + z)3

(2 - z)3(1 - z)32

(1 + 3y)5

(1 + y)5
1 Write down the first two terms in the binomial

expansion of

Expand .a2 -

1

x
b5

5

a1 +

x

5
b1>4

4

Solutions to exercises

(a)

(b) 

(a)

(b)

(c)

(d)

(e) z3
+ 9z2

+ 27z + 27

1 + 6z + 12z2
+ 8z3

8 + 12z + 6z2
+ z3

8 - 12z + 6z2
- z3

1 - 3z + 3z2
- z32

1 + 15y + 90y2
+ 270y3

+ 405y4
+ 243y5

1 + 5y + 10y2
+ 10y3

+ 5y4
+ y51

32 -

80

x
+

80

x2
-

40

x3
+

10

x4
-

1

x5
5

1 +

x

20
4

j(sin5
 u - 10 cos2

 u sin3
 u + 5 cos4

 u sin u)
cos5

 u - 10 cos3
 u sin2

 u + 5 cos u sin4
 u +3
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BLOCK 4
Taylor, Maclaurin and other series

4.1 Introduction

Suppose the value of a function and the value of its derivatives are known at a partic-
ular point. From this information it is possible to obtain values of the function
around that point, using a series called a Taylor series.

When the particular point is the origin, it is possible to obtain function values at
neighbouring points using a Maclaurin series. Thus the Maclaurin series is a special
case of the Taylor series.

These two series are explored in this block.

4.2 Maclaurin series

Suppose we have a function f (x) from which we find the value of the function when
, that is f (0). Suppose also that by successive differentiation we find the value

of the derivatives of f (x) at , that is , , and so on.
The Maclaurin series formula enables us to find the value of the function at a

point, x, close to the origin:

f –(0)f ¿(0)x = 0
x = 0

Key point Maclaurin series

f (x) = f (0) + xf ¿(0) +

x2

2!
 f  –(0) +

x3

3!
 f  ‡(0) +

. . .

This is an infinite series, although often we can approximate f (x) by using just a
finite number of the terms as we shall show.

Consider the following example.

Example 4.1
Obtain the Maclaurin series for .

Solution
Here . Evaluate f (0):

Differentiate f (x) and so find .

f  ¿(x) = ex, f  ¿(0) = 1

f ¿(0)

f  (0) = e0 = 1

f (x) = ex

f (x) = ex
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We can continue in this way to show that

Applying the Maclaurin series formula,

This is an infinite series, which is equal to for all values of x. We can write it
concisely using sigma notation as

It is also known as the power series expansion of about the origin.

We have shown in the previous example that

By taking successive partial sums of this Maclaurin series we can obtain polynomials
that are approximations to , known as Maclaurin polynomials. Denoting these
polynomials by , , and so on, we have

by taking just the first term

by taking the first two terms

and so on 

Each Maclaurin polynomial is a function that approximates the original function, in
this case As more and more terms are included the approximation improves. To
see this more clearly study the graphs in Figure 4.1. The first shows 
together with the graph of . The second and third graphs show 

together with and . Notice that close to the

origin you would expect and to give good approximate values of , but the
quality of the approximation will deteriorate as you move further from the origin.

exp2p1

p2(x) = 1 + x +

x2

2!
p1(x) = 1 + x

f (x) = exp0 = 1
f (x) = ex

ex.

  p2(x) = 1 + x +

x2

2!
, 

  p1(x) = 1 + x,

  p0(x) = 1,

p1(x)p0(x)
ex

ex
= a

q

n = 0
 
xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

. . .

ex

ex
= a

q

n = 0
 
xn

n!

ex

 ex
= 1 + x +

x2

2!
+

x3

3!
+

. . .

  f(x) = f (0) + xf ¿(0) +

x2

2!
 f –(0) +

x3

3!
 f ‡(0) +

. . .

f –(0) = 1, f ‡(0) = 1, and so on

968 Block 4 Taylor, Maclaurin and other series19

f (x) � ex

p0(x) � 11

�1 1 x

y

f (x) � ex

p1(x) � 1 1 x1

�1 1 x

y f (x) � ex

p2(x) � 1 1 x 11

�1 1 x

y

x 
2

2!

Figure 4.1
together

with a number of
Maclaurin
polynomials.

f (x) = ex
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Example 4.2
(a) Find the Maclaurin series for , where x is measured in radians.
(b) State a cubic approximation to sin x.

Solution
(a) Obtain the successive derivatives of f (x) and evaluate them when .

Remember that, whenever it is necessary to differentiate trigonometrical
functions, work must be carried out in radians and not in degrees.

,

,

,

Continuing in this way and then substituting into the Maclaurin series formula
you will find

This is the power series expansion of sin x about the origin.
(b) Taking the first two non-zero terms of the Maclaurin series gives the cubic

polynomial

A useful exercise would be for you to use a computer package to draw graphs
of sin x and the first few Maclaurin polynomials to see the way in which the
approximation improves as the degree of the polynomial increases.

The power series expansions obtained in Examples 4.1 and 4.2 are valid for any x.
This means that the value of the series and the value of the function used to generate
it are equal for every value of x. However, some functions have a power series expan-
sion that is valid only for a limited range of values of x. For example, the Maclaurin

expansion of is valid only when .

Some common power series expansions are shown in Table 4.1.

The small-angle approximations

The Maclaurin series for sin x and cos x can be used to approximate the trigonomet-
rical ratios when x is small and measured in radians.

-1 6 x 6 1f  (x) =

1

1 + x

p3 (x) = x -

x3

3!

sin x = x -

x3

3!
+

x5

5!
-

x7

7!
+

. . .

-cos x, - 1f ‡(0) = f ‡(x) =

-sin x, 0f –(0) = f –(x) =

cos x, 1f ¿(0) = f ¿(x) =

0 f  (x) = sin x, f  (0) =  

x = 0

f (x) = sin x

4.2 Maclaurin series 969 19

Key point Small-angle approximations
If x is small and measured in radians:

sin x L x and cos x L 1 -

x2

2
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970 Block 4 Taylor, Maclaurin and other series19

Use your calculator to verify these approximations. For example, show that
.sin 0.3 L 0.3

Table 4.1
Some common
power series
expansions.

for all x

for all x

for all x

for 

for 

for 

for all x

for all xcosh x = 1 +

x2

2!
+

x4

4!
+

x6

6!
+

. . .

sinh x = x +

x3

3!
+

x5

5!
+

x7

7!
+

. . .

-

p

2
 6 x 6

p

2
tan x = x +

x3

3
+

2x5

15
+

17x7

315
+

. . .

-1 6 x 6 1(1 + x) p
= 1 + px +

p(p - 1)

2!
 x2

+

p(p - 1) (p - 2)

3!
 x3

+
. . .

-1 6 x … 1log  e(1 + x) = x -

x2

2
+

x3

3
-

x4

4
+

. . .

cos x = 1 -

x2

2!
+

x4

4!
-

x6

6!
+

. . .

sin x = x -

x3

3!
+

x5

5!
-

x7

7!
+

. . .

ex = 1 +

x

1!
+

x2

2!
+

x3

3!
+

. . .

Exercises

Derive the Maclaurin series for .

Use the power series expansion of to show
that

Use the power series expansion of cos x to
show that

cos 
x

2
 = 1 -

x2

8
+

x4

384
-

x6

46080
+

Á

3

e2x = 1 + 2x + 2x2
+

4x3

3
+

Á

ex2

f (x) =  cos x1 Determine the Maclaurin series expansion for 

.

Find the Maclaurin expansion for . 
(Hint: use a trigonometrical identity and the
series for sin x.)

Obtain the Maclaurin series expansion for
.

(a) Obtain a quadratic Maclaurin polynomial
approximation, , to .

(b) Compare the approximate value given by
with actual value f (1).p2(1)

f (x) =  cos 2xp2(x)
7

f (x) = cosh x
6

 sin2 x5

f (x) =

1

1 + x

4

Solutions to exercises

x2
-

1

3
 x4

+

2

45
  x6

-
. . .5

1 - x + x2
- x3

+
. . .

= a

q

n = 0
 (-1)n xn4

(a) (b) , p2 (1) = 3f (1) = 3.76221 + 2x27

1 +

x2

2!
+

x4

4!
+

x6

6!
+

. . .6
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4.3 Taylor series

The Taylor series is very similar to the Maclaurin series. The only difference is that
the expansion is now taken about any point, say, not necessarily the origin. So
if we know the value of a function and its derivatives when we can use the
Taylor series formula to find the value of the function at nearby points.

x = a
x = a

4.3 Taylor series 971 19

Key point Taylor series

f (x) = f (a) + (x - a) f ¿(a) +

(x - a)2

2!
 f –(a) +

(x - a)3

3!
 f ‡(a) +

. . .

Example 4.3
Find the Taylor series expansion of about the point .

Solution
Here, the known point is . We must evaluate f (x) and its derivatives at this
point:

and so 

Now obtain the second and third derivatives of f(x).

Evaluate the second and third derivatives at .

Substitute these values into the Taylor series formula:

 1x = 2 + (x - 4) 

1

4
+

(x - 4)2

2
 a-

1

32
b +

(x - 4)3

6
 a 3

256
b +

. . .

  f (x) = f (4) + (x - 4) f ¿(4) +

(x - 4)2

2!
 f  –(4) +

(x - 4)3

3!
 f ‡(4) +

. . .

f –(4) = -

1

32
,  f ‡(4) =

3

256

x = 4

f  –(x) = -

1

4(1x)3  ,  f ‡(x) =

3

8 (1x)5

f ¿(4) =

1

224
 =

1

4
 .

1

2
 x-1>2

=

1

22x
 f ¿(x) =

 =  2

 f (4) = 14

x = 4

x = 4f (x) = 1x
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972 Block 4 Taylor, Maclaurin and other series19

This is the Taylor series expansion of about .

In the previous example we calculated the Taylor series of . By taking successive
partial sums of this series we can obtain polynomials that are approximations to 
known as Taylor polynomials. Denoting these polynomials by , and so
on, we have

by taking just the first term

by taking the first two terms

and so on

Each Taylor polynomial is a function that approximates the original function, in this
case when x is close to the expansion point, . As more and more terms are
included the approximation improves.

The first graph in Figure 4.2 shows together with a graph of 

The second and third graphs show together with and . Notice
how the approximation improves as the degree of the polynomial increases.

p2(x)p1(x)f (x) = 1x

p0(x) = 2.f (x) = 1x

x = 41x

 p2(x) = 2 +
1
4 (x - 4) -

1
64 (x - 4)2,

 p1(x) = 2 +
1
4 (x - 4),

 p0(x) = 2,

p0(x), p1(x)
1x,

1x

x = 41x

 = 2 +

1

4
 (x - 4) -

1

64
 (x - 4)2

+

1

512
 (x - 4)3

+
. . .

p0(x) � 2

p1(x) � 2 � (x � 4)
4

p2(x) � 2 � �
(x � 4)

4
(x � 4)2

64f (x) �   x

f (x) �   x f (x) �   x2

4 x

2

4 x

2

4 x

Figure 4.2

together with a
number of Taylor
polynomials.

f (x) = 1x 

Maple and Matlab, in common with similar packages, have built-in commands for find-
ing Taylor and Maclaurin series. For example, using Maple, the result in Example 4.3 can
be found from

taylor(sqrt(x), x = 4,4);

In Matlab the same is achieved using

taylor(sqrt(x),'ExpansionPoint',4,'Order',4)

You should investigate commands like these in the packages to which you have access.
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Exercises

Show that the first four terms in the Taylor series

expansion of about are

1 + 2ax -

p

4
b + 2ax -

p

4
b2

+

8

3
 ax -

p

4
b3

x =

p

4
f (x) = tan x

1 Find the Taylor series for about
.x = 1

f (x) = x + ex2

Solutions to exercises

f (x) = (1 + e)x + ea (x - 1)2

2!
+

(x - 1)3

3!
+

(x - 1)4

4!
+ . . .b2

4.4 Other series

Series play a fundamental role in engineering mathematics. We saw in Section 4.2 of
this chapter that many common functions, f(x), have power series expansions: that
is, they can be expressed as an infinite sum of terms each of which is a power of x.
Several other functions that have applications in engineering are defined by finite or
infinite series. These include an important class of functions known as Bessel func-
tions. But the terms in a series need not be restricted to powers of x. A Fourier
series is an infinite sum of sines and/or cosines used in a wide variety of engineering
applications ranging from the synthesis of sound waves to imitate musical instru-
ments to the analysis of the flow of thermal energy in heat exchangers employed in
chemical engineering processes (see Chapter 24).

Example 4.4 Mechanical Engineering – The profile of a vibrating 
circular membrane
A Bessel function of order zero, J0(x), is defined by the infinite series

which can be expressed concisely using sigma notation as

In the analysis of a vibrating circular membrane such as a drum skin it can be shown
that in one of the possible modes of vibration the displacement, u(r), of the skin at a
specific moment in time and at a point distance r from the centre, has a profile given
by a Bessel function of order zero, J0(r). A graph of this function is shown in 
Figure 4.3.

J0(x) = a

q

m = 0

(-1)mx2m

22m(m!)2

J0(x) = 1 -

1

4
 x2

+

1

64
 x4

-

1

2304
 x6

+ . . .
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Computer and calculator exercises

(a) Calculate the second-order Taylor
polynomial, , generated by 
about .

(b) Draw y(x) and for .

(a) Calculate the second-order Taylor
polynomial, , generated by

about .
(b) Draw y(x) and for .-2 … x … 2p2(x)

x = 0y(x) =  sin x
p2(x)

2

-2 … x … 2p2(x)
x = 0

y(x) = x3p2(x)
1 (a) Calculate the second-order Taylor

polynomial, , generated by

(b) Draw y(x) and for .1 … x … 5p2(x)

y(x) = sina1

x
b  about x = 3

p2(x)
3

Example 4.5 Synthesis of waveforms using Fourier series
We show in Example 1.8 (page 1227) that the waveform, f (t), shown in Figure 4.4
can be built, or synthesised, by adding sine functions of different frequencies and
amplitudes.

974 Block 4 Taylor, Maclaurin and other series19

J0(r)

rO

Figure 4.3
Bessel functions,
which are defined by
infinite series, model
the displacement of a
vibrating drum skin.

1

1

t–1

(  )tf

O

Figure 4.4
This waveform can
be synthesised
using an infinite
series of sine
functions.

Specifically, this takes the form of an infinite series of sine functions:

Thus knowledge of infinite series is important in the modelling and analysis of many
physical phenomena of interest to engineers.

f (t) = a

q

n = 1

8 sin np/2

n2p2  sin npt =

8

p2
 sin pt -

8

9p2  sin 3pt +

8

25p2
 sin 5pt -

. . .
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End of block exercises

Use the Maclaurin expansion of to find the
value of e correct to four decimal places.

Obtain the Maclaurin series for ln( ).

Obtain the Maclaurin series for .f (x) = sinh x3

1 - 4x2

ex1 Obtain a small-angle approximation for tan x
and verify it by example.

Use the Maclaurin series for to deduce

that for .
1

1 - x2

1

1 - x
5

4

Solutions to exercises

2.7183

-4x - 8x2
-

64

3
x3

-
Á2

1

1 + x2
+ x4

+
Á5

 tan x = x4

End of chapter exercises

Write out explicitly the first three non-zero
terms of the series

Use the binomial theorem to show that

By integrating both sides of this expansion,
assuming that this is permissible, show that

has power series expansiontan-1 x

 for -1 6 x 6 1 

 
1

1 + x2
 = 1 - x2

+ x4 - x6
+

. . .

2

a

q

k = 0
 k(k + 1)(k + 3)

1

(a) If ln cos x show that y satisfies the
equation

(b) Hence obtain the Maclaurin expansion of
ln cos x as far as the term in .

Find 

Expand .a3 -

2

x
b5

5

103
+ 113

+
. . .

+ 203.4

x5y =

y‡ = -2 y–y¿

y =3

for -1 6 x 6 1

tan-1 x = x -

1

3
 x3

+

1

5
 x5

-

1

7
 x7

+
. . .

(a) Calculate the second-order Taylor
polynomial, , generated by

about .
(b) Draw y(x) and for .

Draw for . On the same 

axes draw the fourth-order Taylor polynomial
generated by y(x) about .x = 3

1 … x … 8y(x) =

1

x
5

-2 … x … 2p2(x)
x = 0y(x) = ecos x

p2(x)
4 Draw for . Using

the same axes, draw the fifth-order Taylor
polynomial generated by y(x) about .

Draw ln x for . On the
same axes, draw the third-, fourth- and fifth-
order Taylor polynomials generated by y(x)
about .x = 1

0.5 … x … 10y(x) =7

x = 0

-1 … x … 1y =  tan x6
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Use the Maclaurin series for to show that 
the sum of the infinite series

is e.

Use the Maclaurin series for ln to
show that the sum of the infinite series

is ln 2.

Find .a
4

k = 1
 k28

1 -

1

2
+

1

3
-

1

4
+

. . .

(1 + x)7

1 +

1

1!
+

1

2!
+

1

3!
+

. . .

ex6 Expand .

By considering as a single term,
expand .

Use the binomial theorem to expand
.

By considering the Maclaurin expansions of 
sin kx and cos kx where k is a constant, evaluate,
if possible,

(a) (b) 

(c) lim
x:0

 
sin kx

1 - cos kx
 

lim
x:0

 
cos kx - 1

x
 lim

x:0
 
sin kx

x
 

12

(9 + x2)1>211

(1 + x + x2)3
x + x210

(1 - 2x)49

Solutions to exercises

42075

308

243 -

810

x
+

1080

x2
-

720

x3
+

240

x4
-

32

x5
5

4

-

1

2
 x2

-

1

12
 x43

(1) (2) (4) + (2) (3) (5) + (3) (4) (6)1

, valid for 

(a) k (b) 0 (c) not defined12

-3 6 x 6 33 +

x2

6
-

x4

216
+

. . .11

1 + 3x + 6x2
+ 7x3

+ 6x4
+ 3x5

+ x610

1 - 8x + 24x2
- 32x3

+ 16x49

19 976 Block 4 Taylor, Maclaurin and other series
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Chapter 20
Differential equations

The solution of problems concerning the motion of objects, the flow of
charged particles, heat transport, etc., often involves discussion of
relations of the form

In the first equation, x might represent distance. For this case is the

rate of change of distance with respect to time, t, that is speed. In the

second equation, q might be charge and the rate of flow of charge,

that is current. These are examples of differential equations, so called
because they are equations involving the derivatives of various
quantities. Such equations arise out of situations in which change is
occurring. To solve such a differential equation means to find the
function x(t) or q(t) when we are given the differential equations.
Solutions to these equations may be analytical in that we can write
down an answer in terms of common elementary functions such as ,
sin t, and so on. Alternatively, the problem may be so difficult that only
numerical methods are available, which produce approximate
solutions. Modern software packages are available that can produce
analytical and numerical solutions. We shall introduce some of these
in Block 4.

et

dq
d t

dx
d t

dx
d t

= f (x, t ) or 
dq
d t

= g(q, t )
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In engineering, differential equations are most commonly used to
model dynamic systems. These are systems that change with time.
Examples include an electronic circuit with time-dependent currents
and voltages, a chemical production line in which pressures, tank
levels, flow rates, etc., vary with time, and a semiconductor device in
which hole and electron densities change with time.

There are a wide variety of differential equations that occur in
engineering applications, and consequently there are a wide variety
of solution techniques available. In order to be able to apply an
appropriate technique it is essential that you can identify the sort of
equation you are dealing with. Block 1 gives details of the terminology
associated with differential equations. Knowledge of this will help in
the selection of an appropriate method. Later blocks describe these
methods in detail.
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Chapter 20 contents

Block 1 Basic concepts of differential equations

Block 2 Separation of variables

Block 3 Solving first-order linear equations using an 
integrating factor

Block 4 Computational approaches to differential equations

Block 5 Second-order linear constant-coefficient equations I

Block 6 Second-order linear constant-coefficient equations II

End of chapter exercises
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BLOCK 1
Basic concepts of differential equations

1.1 Introduction

An equation is a mathematical expression that contains an unknown quantity that we
try to find. A differential equation is an equation that contains the derivative of an
unknown expression. For example, a very simple differential equation is

This equation contains the derivative of y, which represents the unknown expression
that we seek. Clearly y is an expression that when differentiated gives .

In order to solve a differential equation it is important to identify certain of its
features. This is because there are different techniques applicable to different sorts
of differential equations. In this block we introduce terminology associated with
differential equations that then allows these features to be described.

1.2 Basic definitions

Dependent and independent variables

Recall that in a function such as we say that x is the independent vari-
able and y is the dependent variable, since the value of y depends upon the choice
we have made for x. When solving a differential equation it is essential that you can
identify the dependent and independent variables.

In the differential equation , t is the independent variable and x is the

dependent variable. In the equation , x is the independent variable

and y is the dependent variable. Note that the dependent variable is always the vari-
able being differentiated.

Example 1.1
For each of the following differential equations, state which variable is dependent
and which is independent.

(a)
d2y

dx2 +

dy

dx
= x

dy

dx
= y + sin x

dx

dt
= x + t2

y = x2
+ 3x

x2

dy

dx
= x2
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1.2 Basic definitions 981 20

(b)

(c) are constants.

Solution
The dependent and independent variables are respectively:

(a)

(b)

(c)

Order

A differential equation may contain derivatives of various orders, for example first
derivatives, second derivatives, etc. The order of a differential equation is the order
of its highest derivative. Thus in the equation

the highest derivative is the second derivative, , so this equation is a second-
order differential equation. In the equation

the highest derivative is the first derivative , so this is a first-order differential
equation.

Example 1.2
State the order of the following differential equations:

(a)

(b)

Solution
(a) Look for the term involving the highest derivative.

The order of is

Note that although is raised to the power 3, it is not the highest derivative.

The highest derivative is .
d2y

dx2

dy

dx

2

d2y

dx2 + ady

dx
b3

= x7

dx

dt
 = (xt)5

d2y

dx2 + ady

dx
b3

= x7

dv

dt

dv

dt
+ v2

= 0

d2y

dx2

d2y

dx2 +

dy

dx
= y

dep.: vc; ind.: t

dep.: x; ind.: t

dep.: y; ind.: x

RC 
dvc 

dt
+ vc = VS;  R, C, VS 

dx

dt
= (xt)5
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982 Block 1 Basic concepts of differential equations20

(b) The order of is

Linear

A differential equation is said to be linear if the dependent variable and its deriv-
atives occur to the first power only and if there are no products involving the depen-
dent variable and/or its derivatives. There should be no non-linear functions of the
dependent variable, such as sine, exponential, etc. A differential equation that is not
linear is said to be non-linear. The linearity of a differential equation is not deter-
mined or affected by the presence of non-linear terms involving the independent
variable.

The equation

is linear, but the equations

are both non-linear, the former because the derivative of the dependent variable is

raised to the power 2, and the latter because of the product .

The equation

is non-linear because it contains a non-linear function, , of the dependent variable.
However the equation

is linear.
It is particularly important to know whether an equation is linear or not, because in

general non-linear equations can be much harder to solve than linear ones.
The solution of first-order linear equations is described in Block 3.
The solution of second-order linear equations is described in Blocks 5 and 6.

Example 1.3
Decide whether or not the following equations are linear:

(a)

(b) sin y 

dy

dx
+ y = x

sin x 

dy

dx
+ y = x

dy

dx
 + y = ex

ey

dy

dx
 + y = ey

y  

dy

dx

ady

dx
b2

= y and y 
dy

dx
= x

d2y

dx2 - y = ex

1

dx

dt
 = (xt)5
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1.2 Basic definitions 983 20

(c)

(d)

(e)

Solution

(a)

(b)

(c)

(d)

(e)

Note in part (b) that the equation is non-linear because of the product term involving 

the dependent variable and its derivative ; however, it is also non-linear 

because of the non-linear function of the dependent variable, sin y.

Constant-coefficient linear equations

A linear differential equation has constant coefficients if the coefficients of the
dependent variable and its derivatives are constants.

So

is a constant-coefficient equation. The coefficient of y is 8. The coefficients of the
first and second derivatives of y are and 5 respectively.

However,

is not a constant-coefficient equation since the coefficient of the second derivative of
y is x (i.e. not constant).

Example 1.4 Chemical Engineering – A liquid system
Figure 1.1 shows a tank of liquid. The tank has a constant cross-sectional area A. The
liquid can flow out from the tank through a valve near the base. As it does so, the
height, or head, h, of liquid in the tank will reduce. Let q stand for the rate at which
liquid flows out of the tank. Under certain conditions the rate of outflow is propor-
tional to the head, so that where k is a constant of proportionality. Situations
like this one arise frequently in the chemical engineering industry. By considering
the rate of change of the volume of liquid in the tank, obtain a differential equation
with h as the dependent variable, and time, t, as the independent variable.

q = kh

x 
d2y

dx2 + 7 
dy

dx
+ 4y = 0

-3

5 
d2y

dx2 - 3 
dy

dx
+ 8y = x2

asin y
dy

dx
b

non-linear

linear

non-linear

non-linear

linear

dy

dx
+ sin y = 0

dx

dt
+ x = t3

d2y

dx2 = -y2
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984 Block 1 Basic concepts of differential equations20

Now, the volume of liquid in the tank changes because liquid is flowing out.
Specifically

This is the law of conservation of mass. The rate of change of volume is . There
is no flow into the tank and liquid flows out at a rate q. Hence

But and A is constant, so the rate of change of volume is .
Therefore

We are also given that and so

This is a first-order differential equation with dependent variable h and independent
variable t. It is linear and has constant coefficients. The unknown function that we
seek is h(t). You will see how this equation can be solved to find the head, h, at any
time, t, in Block 2.

Example 1.5 Electrical Engineering – An LCR circuit
Figure 1.2 shows an LCR circuit. This is a circuit comprising an inductor of induc-
tance L, a capacitor of capacitance C, and a resistor of resistance R placed in series.

A 
dh

dt
= -kh

q = kh

A 
dh

dt
= -q

A
dh

dt
V = Ah

dV

dt
 = -q

dV

dt

the rate at which this volume changes = rate of flow in - rate of flow out

q

h

Area A

q � kh

Figure 1.1
Modelling a liquid
system can give
rise to a constant-
coefficient
equation.

L C R

V

i

� �

Figure 1.2
Modelling an LCR
circuit can give
rise to a constant-
coefficient
differential
equation.

Solution
The volume, V, of liquid in the tank at any time is 

V � Ah
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1.3 The solution of a differential equation 985 20

When a constant voltage source, V, is applied, it can be shown that the current, i,
through the circuit satisfies the differential equation

This equation can be derived using Kirchhoff’s voltage law, and the individual laws
for each component. Because L, R and C are constants, this is a constant-coefficient
equation. Furthermore it is linear and second order. When you have learnt how to
solve such equations you will be able to find the current in the circuit.

L 
d2i

dt2
+ R 

di

dt
+

1

C
 i = 0

Exercises

Explain the distinction between a dependent
variable and an independent variable.

In the differential equation

state which is the dependent variable and
which is the independent variable.

Explain what is meant by the order of a
differential equation.

3

du

dt
+ u = sin t

2

1 State the order of the equations

(a) (b) 

Explain what is meant by a linear differential
equation.

Is the equation linear?
d2y

dt2
+ y = sin t6

5

adx

dt
b3

+ x = 0y– + 2y¿ + 7y = 0

4

Solutions to exercises

is the dependent variable and t is the
independent variable.

(a) second (b) first4

u2 yes6

1.3 The solution of a differential equation

Given a differential equation such as

a solution is found when we have obtained an expression for y in terms of x that can
be substituted into the equation to make both sides equal. That is, a solution is an

dy

dx
= y
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986 Block 1 Basic concepts of differential equations20

expression that satisfies the differential equation. Note that a solution is an expres-
sion of the dependent variable in terms of the independent variable.

Example 1.6

Show that is a solution of the equation .

Solution

We are given an expression for y in terms of x, namely . We need to substi-

tute this into both sides of the given equation. To do this we need the derivatives 

and .

Write expressions for and .

Now substitute these expressions into the left-hand side of the given equation

:

Now substitute into the right-hand side of the given equation, 2y:

Note that both the left- and right-hand sides are the same and equal to when
. We conclude that is a solution of the equation.

Example 1.7
Show that is not a solution of .

Solution
Differentiate the given expression and substitute into the left-hand side:

Substitute for y on the right-hand side:

So the left-hand side is and the right-hand side is . But is not the same as and
so the given expression does not satisfy the equation and is therefore not a solution.

2exex2exex

2y = 2ex

dy

dx
= ex

dy

dx
= 2yy = ex

y = 5e2xy = 5e2x
10e2x

2y = 10e2x

y = 5e2x

20e2x
- 10e2x which equals 10e2x

d2y

dx2 -

dy

dx
 

 
d2y

dx2 = 20e2x

 
dy

dx
= 10e2x

d2y

dx2

dy

dx

d2y

dx2

dy

dx
 

y = 5e2x

d2y

dx2 -

dy

dx
 = 2yy = 5e2x
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1.3 The solution of a differential equation 987 20

There are many different expressions that can satisfy a differential equation: that is,
there are many solutions. A solution from which all possible solutions can be found
is called the general solution.

The general solution of the equation is , where C is any constant. 

C is called an arbitrary constant. By choosing different values of C, different
solutions are obtained. Every solution of the equation can be obtained from this
general solution.

Conditions

To determine a particular value for the constant C we need to be given more informa-
tion in the form of a condition. For example, if we are told that at , then
from we have

so that . Therefore is the solution of the differential equation that
additionally satisfies the condition . This is called a particular solution.

When the solution of a differential equation is sought, and a condition is to be sat-
isfied at the leftmost point of the interval of interest, such a condition is called an
initial condition. The problem of solving a differential equation subject to an initial
condition is often referred to as an initial value problem.

Example 1.8
Show that is a solution of the initial value problem

Solution
The solution requires us to do two things. Firstly we must check that satis-
fies the differential equation, and secondly we must check that it satisfies the initial
condition: that is, x must equal 2 when .

Substitute for and x in the left-hand side of the given equation.

which simplifies to , the same as the right-hand side. Thus is a solution
of the differential equation.

We now check that the initial condition is satisfied. and so the
condition is indeed satisfied.

x(0) = 2e0
= 2

x = 2e3t2e3t

6e3t
- 2(2e3t )

dx

dt
- 2x =

dx

dt
 

6e3t 

Differentiate x(t) = 2e3t.
t = 0

x = 2e3t

dx

dt
- 2x = 2e3t, x(0) = 2

x(t) = 2e3t

y(0) = 4
y = 4exC = 4

 = C
 4 = Ce0

y = Cex
y = 4x = 0

y = Cexdy

dx
= y
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Exercises

Verify that sin 2x is a solution of

Verify that , , , where A, B
are constants, all satisfy the differential equation

Verify that is a solution
of

Verify that satisfies the
differential equation

Verify also that and 
each individually satisfy the equation.

y = B sin xy = A cos x

d2y

dx2
+ y = 0

y = A cos x + B sin x4

t 
d2x

dt2
+

dx

dt
= 4t

x = t2 + A ln t + B3

d2y

dx2
- 2

dy

dx
+ y = 0

Axex
+ BexAxex3ex2

d2y

dx2
+ 4y = 0

y = 31 The general solution of the equation

is given by

Find the particular solution that satisfies

and when .

The general solution of

is . Find the particular solution

satisfying , .
dy

dx
 (0) = 1y(0) = 0

y = Axex
+ Bex

d2y

dx2
- 2   

dy

dx
+ y = 0

6

t = 0
dx

dt
 = 5x = 3

x = Aet
+ Be2t

d2x

dt2
- 3  

dx

dt
+ 2x = 0

5

Solutions to exercises

x = et
+ 2e2t5 y = xex6

1.4 Solving a differential equation by direct integration

When a differential equation has a particularly simple form it is easy to solve it by
integration.

Suppose we have a first-order equation of the form

Examples include and . That is, is equal to a

function of x only. Then y is given by

dy

dx

dy

dx
= 4 sin 2x + 3 cos 2x

dy

dx
= 3x4

dy

dx
= f    (x)
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Key point
if 

dy

dx
= f (x) then y = � f (x) dx

Consider the following example.

Example 1.9
Obtain the general solution of the equation

Solution
Here, the right-hand side is a function of x only.

This is the general solution. Notice that it contains one arbitrary constant.

The same method can be applied to second-order equations of the form

Here again, the right-hand side is a function of x only.

Example 1.10
Obtain the general solution of the equation

Solution
Integrating once gives

where A is an arbitrary constant. This gives . We must integrate again to find y.

where B is another arbitrary constant.

 =

5e2x

4
+ Ax + B

 y = � a5e2x

2
+ Ab  dx

dy

dx

 
dy

dx
=

5e2x

2
+ A

 
dy

dx
= �5e2x dx

d2y

dx2 = 5e2x

d2y

d x2 = f    (x)

 = sin x - cos x + c

 y = �cos x + sin x dx

dy

dx
= cos x + sin x
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This is the general solution. Notice that it contains two arbitary constants. This is
because the differential equation is second order.

The technique described in this section is applicable only when the right-hand side is
a function of the independent variable only. If the dependent variable appears on the
right, such as in the equation

you will need to apply other techniques such as those described in Blocks 2 and 3.

Example 1.11 Dynamics – The vertical motion of a projectile
When a projectile such as a ball is travelling vertically under the action of gravity its
motion is described by the differential equation

where g is a constant called the acceleration due to gravity. The dependent variable
y is the vertical displacement of the projectile, and the independent variable is time t.
This equation is a statement of Newton’s second law of motion. Solving the equation
gives y in terms of t, that is the displacement as a function of time.

(a) Integrate the differential equation twice, to obtain the general solution for y.

(b) Apply the following initial conditions: at , at , in
order to obtain a particular solution.

Solution
(a) Integrate once:

Integrate again:

This is the general solution.
(b) Apply the condition when to obtain a value for B.

So If this is differentiated, , which is a result
dy

dt
= -gt + Ay = -

gt2

2
+ At.

B = 0

t = 0y = 0

y = -

gt2

2
+ At + B

dy

d t 

= -gt + A

t = 0
dy

dt
 = v0t = 0y = 0

d2y

dt2  = -g

dy

dx
= xy
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already obtained. Applying the condition when gives a value 
for A:

So the particular solution is .y = -

gt2

2
+ v0 t

A = v0

t = 0
dy

dt
= v0

where K is known as the structural rigidity of the beam and is assumed to be con-
stant. It is the product of Young’s modulus and the moment of inertia of the beam
about its central axis.

(a) If w is constant, find an expression for the displacement of the beam. 
(b) The beam is fixed rigidly at both ends. Hence when x � 0 and x � L the

displacement is zero, that is H(0) � H(L) � 0. Additionally at these end-points
the gradient of the beam remains zero, so Find the
displacement at any point x.

(c) Show that the maximum displacement of the beam occurs half-way along its length.

H¿(0) = H¿(L) = 0.

Example 1.12 Mechanical Engineering – Bending of a beam
Figure 1.3(a) illustrates an unloaded beam of length L. The beam is fixed at both
ends. When a load (force) is applied the beam bends as illustrated in Figure 1.3(b).

Let the weight of the load being supported per unit length be w. Referring to
Figure 1.3(b) we see that, when loaded, the beam bends in the negative y direc-
tion. The magnitude of the bending is the crucial quantity and this is illustrated
in Figure 1.3(c). We refer to this as the displacement of the beam, denoted H(x).
Note that in Figure 1.3(c) the H axis is positive in the downward direction. It is
possible to show that 

K  

d4H

dx4 = w

L

w

y

x

H

x

w

Figure 1.3
(a) An unloaded
beam of length L;
(b) beam bending
under load (it is
fixed at both ends);
(c) displacement of
the beam.

(a)

(b)

(c)   
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992 Block 1 Basic concepts of differential equations20

Solution
(a) We are given

First divide through by K. Repeated integration then produces

(1)

(2)

(3)

(4)

where A, B, C and D are constants of integration.

(b) We now apply the given conditions to find the unknown constants A, B, C and D.
Applying H(0) � 0 to equation (4) yields

0 � D

Applying (0) � 0 to equation (3) yields 

0 � C

Applying H(L) � 0 to equation (4) with C � D � 0 yields

(5)

Applying (L) � 0 to equation (3) with C � 0 yields

(6)

Equations (5) and (6) can be solved to express A and B in terms of the known
constants w, K and L. This produces

Replacing the expressions for A and B and the values of C and D into equation
(4) and simplifying produces

 H(x) =

wx2

24K
  (x2

- 2Lx + L2) =

wx2

24K
  (x - L)2

 A = -

w L

2K
, B =

wL2

12K

 0 =

w

K
 
L3

6
+ A 

L2

2
 + BL

H¿

 0 =

w

K
 
L4

24
+ A 

L3

6
 + B 

L2

2

H¿

 H(x) =

w

K
  

x4

24
+ A 

x3

6
 + B 

x2

2
+  Cx + D

 
dH

dx
=

w

K
  

x3

6
+ A 

x2

2
+ Bx + C

 
d2H

dx2 =

w

K
  

x2

2
+ Ax + B

 
d3H

dx3 =

w

K
 x + A

K  

d4H

dx4 = w
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Exercises

Obtain the general solutions of the following
differential equations:

(a) (b) 

(c) , constant (d)
d2y

dx2
= -sin x

d2y

dx2
= k

dy

dx
= e3xdy

dx
= 3x + 2

1 Find the particular solution of

that satisfies the condition .x(3) = 0

dx

dt
= t2

2

(c) We now seek the point along the beam at which the displacement is a
maximum. Recall that turning points of a function are located by equating the
first derivative to zero, that is � 0; the nature of the turning point is then
determined using the second-derivative test.

Using equation (3) we have

which may be expressed as

so when , L.

The conditions (0) � (L) � 0 are given so we investigate that case where 
using the second-derivative test.

Using equation (2) we have

Substituting and simplifying yields

We note that this is negative and so H is a maximum at . Hence the max-
imum displacement occurs at , that is half-way along the beam. This
accords with intuition.

x = L>2
x = L>2

 
d 

2H

d x2  (L>2) = -

wL2

24K
 

x = L>2

 
d 

2H

d x2 =

wx2

2K
 -

wLx

2K
 +

wL2

12K
 

x = L>2 H¿H¿

x = 0, L>2dH>dx = 0

 
dH

d x
=

wx

12K
 (2x - L)(x - L)

 
dH

d x
=

wx3

6K
-

wLx2

4K
 +

wL2x

12K
=

wx

12K
 (2x2

- 3xL + L2) 

H¿
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Solutions to exercises

(a) y is the dependent variable; x is the
independent variable; first order, linear

(b) y is the dependent variable; x is the
independent variable; second order,
non-linear

2

y(x) = 3e2x, y(x) = e2x1
(c) x is the dependent variable; t is the

independent variable; third order, 
non-linear

particular solution: ; general solution:

(A + B) cos vt + (A - B)j sin vt

sin vt

v
4

994 Block 1 Basic concepts of differential equations20

End of block exercises

If is the general solution of ,

find the particular solution satisfying . 
What is the particular solution satisfying 

when ?

Identify the dependent and independent
variables of the following differential
equations. Give the order of the equations
and state which are linear.

(a)

(b)

(c)
d3x

dt3
 + 5 

dx

dt
 = sin x

ady

dx
 b ad2y

dx2
 b + 3   

dy

dx
 = 0

dy

dx
 + 9y = 0

2

x = 0
dy

dx
= 2

y(0) = 3

dy

dx
= 2yy = Ae2x1 Show that is a

solution of

The general solution of

is , where . Verify
that this is indeed a solution. What is the
particular solution satisfying , 

? Express the particular solution 

and the general solution in terms of
trigonometrical functions.

dx

dt
 (0) = 1

x(0) = 0

j2 = -1x = Ae jvt
+ Be-jvt

d2x

dt2
 = -v2x

4

d2x

dt2
 + 2x = -49 cos 3t + 4 sin 2t

x(t) = 7 cos 3t - 2 sin 2t3

Solutions to exercises

(a) (b) 

(c) y =

kx2

2
+ Ax + B

y =

e3x

3
 + cy =

3x2

2
+ 2x + c1

(d)

x =

t3

3
- 92

y = sin x + Ax + B
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BLOCK 2
Separation of variables

2.1 Introduction

Separation of variables is a technique commonly used to solve first-order differential
equations. It is so called because we try to rearrange the equation to be solved in
such a way that all terms involving the dependent variable (y say) appear on one side
of the equation, and all terms involving the independent variable (x say) appear on
the other. Then it is a matter of integration to complete the solution. It is not possible
to rearrange all first-order equations in this way, so this technique is not always
appropriate. Further, it is not always possible to perform the integration even if the
variables are separable. In this block you will learn how to decide whether the
method is appropriate, and how to apply it in such cases.

2.2 Separating the variables

In this section we consider differential equations that can be written in the form

Note that the right-hand side is a product of a function of x and a function of y.
Examples of such equations are

You may have to think carefully about some equations to recognise this form. For
example, the equation

can be written as

and so is of the form .
dy

dx
= f   (x)g(y)

dy

dx
= a 1

x + 1
by

dy

dx
=

y

x + 1

dy

dx
= x2y3,  

dy

dx
= y2 sin x and 

dy

dx
= (ln x)(sec y)

dy

dx
= f   (x)g(y)
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996 Block 2 Separation of variables20

Not all first-order equations can be written in this form. For example, it is not
possible to rewrite the equation

in the form

Example 2.1
Which of the following differential equations do you think can be written in the form 

?

If possible, rewrite each equation in this form.

(a) (b) (c)

Solution

(a)

(b)

(c)

The variables involved need not be x and y. Other equations of this type are

Given a differential equation in the form we can divide through by
g(y) to obtain

Note that in this form terms involving y and have been placed on the left, and

terms involving just x have been placed on the right.
If we now integrate both sides of this equation with respect to x we obtain

that is

� 1

g(y)
 dy = � f(x) dx

� 1

g(y)
 
dy

dx
 dx = �  f(x) dx

dy

dx

1

g(y)
 
dy

dx
= f    (x)

dy

dx
 = f    (x)g(y)

dz

dt
 = tez,  

du

dt
= -u and 

dv

dr
=

v

r2

dy

dx
= (7 - 3x) *

1
y

cannot be written in the stated form

dy

dx
= x2a 1

y2 b

y 
dy

dx
+ 3x = 7

dy

dx
= 4x2

+ 2y2dy

dx
=

x2

y2

dy

dx
= f (x)g(y)

dy

dx
= f   (x)g(y)

dy

dx
= x2

+ y3
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2.3 Applying the method of separation of variables 997 20

We have separated the variables because the left-hand side contains only the vari-
able y, and the right-hand side contains only the variable x. We can now try to inte-
grate each side separately. If we can actually perform the required integrations we
shall obtain a relationship between y and x. Examples of this process are given in the
next section.

Key point Separation of variables
The solution of the equation

is found from

� 1

g(y)
 dy = � f(x) dx

dy

dx
= f (x)g(y)

2.3 Applying the method of separation of variables

The method is illustrated in the following example.

Example 2.2

Solve the first-order equation by separation of variables.

Solution
Note that the right-hand side has the form f(x)g(y), where and .
Dividing both sides by g(y) we find

The left-hand side now contains terms involving only y and . The right-hand side
is a function of x. Integrating both sides with respect to x,

that is

Performing the two integrations gives

You might think that there should be a constant of integration on the left too. You are
quite right, but the two constants can be combined into a single constant and so we

1

3
 ln y = ex

+ c

� 1

3y
 dy = �ex dx

� 1

3y
 
dy

dx
 dx = �ex dx

dy

dx

1

3y
 
dy

dx
= ex

g(y) = 3yf(x) = ex

dy

dx
= 3yex
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998 Block 2 Separation of variables20

need write only one. We now have a relationship between y and x as required. This is
the general solution. In this case it could be rearranged to give y explicitly if required.

Example 2.3
Use the method of separation of variables to solve the differential equation

Solution

The equation already has the form where and .

Dividing both sides by g(y) we find

Integrating both sides with respect to x gives

that is

Note that the left-hand side is an integral involving just y; the right-hand side is an
integral involving just x. After integrating we find

where c is a constant of integration. We now have a relationship between y and x as
required. This is the general solution. Often it is sufficient to leave your answer in
this form but you may also be required to obtain an explicit relation for y in terms of
x. In this particular case

so that

Example 2.4
Use the method of separation of variables to solve the differential equation

Solution
Separate the variables so that terms involving y and appear on the left, and terms
involving just x appear on the right:

sin 2y 
dy

dx
= cos x

dy

dx

dy

dx
=

cos x

sin 2y
 

y = ; 22x3
+ D where D = 2c

y2
= 2x3

+ 2c

y2

2
= x3

+ c

�y dy = �3x2 dx

�y    

dy

dx
 dx = �3x2 dx

y   

dy

dx
= 3x2

g(y) =

1
y

f (x) = 3x2dy

dx
= f (x)g(y)

dy

dx
=

3x2

y
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2.3 Applying the method of separation of variables 999 20

Then integrate both sides with respect to x to obtain

that is

Now integrate both sides:

Finally, rearrange, if possible, to obtain an expression for y in terms of x:

This is the general solution.

Example 2.5 Mechanical Engineering – Simple harmonic motion
When an object such as a mass vibrating on a spring, or a pendulum oscillating under
the action of gravity, moves in simple harmonic motion its velocity v satisfies a
differential equation of the form

where x is displacement and k is a constant. Solve this equation.

Solution
The variables are already separated because v and are on the left, and the right-
hand side is a function of x only.

Integrate both sides with respect to x.

This can be written

Complete the integration to find v.

This is the general solution. If we wished to we could write v explicitly in terms of x.

v2

2
= -k2 

x2

2
+ c

�v dv = � -k2 x dx

�v 
dv

dx
 dx = � -k2 x dx

dv

dx
 

v 
dv

dx
 = -k2 x

y =

1

2
 cos-1(D - 2 sin x) where D = -2c

-

cos 2y

2
= sin x + c

�sin 2y dy = �cos x dx

�sin 2y 
dy

dx
 dx = �cos x dx
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Example 2.6 Chemical Engineering – A liquid system
The differential equation describing the head, h, of liquid in a tank (see Example 1.4
in Block 1) is given by

Solve this differential equation given that at the head of liquid is . A and k
are constants.

Solution
Separate the variables h and t:

Both sides are then integrated.

Perform the integration to obtain the general solution:

This is the general solution. By imposing the condition at find the
particular solution.

Thus

Rearranging and using the laws of logarithms to combine the two log terms,

Rearrange this to obtain h:

We interpret this result as saying that the head reduces exponentially from its initial
value of to a final value of zero as we would expect on physical grounds.

Example 2.7 Manufacturing Engineering – Heat transfer 
during quenching

During the manufacture of steel components it is often necessary to quench them in
a large bath of liquid in order to cool them down. This reduces the temperature of the
component to the temperature of the liquid. If is the temperature of the component
in excess of the liquid temperature it can be shown that the variation of with time,
t, satisfies the first-order differential equation

du

dt
= -ku

u

u

h0

h = h0e
-kt>A

 = -kt

  A ln h - A ln h0 = A ln 
h

h0

A ln h = -kt + A ln h0

C = A ln h0

t = 0h = h0

A ln h = -kt + C

A�dh

h
 = -k�dt

A

h
 
dh

dt
 = -k

h0t = 0

A 
dh

dt
= -kh

1000 Block 2 Separation of variables20
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2.3 Applying the method of separation of variables 1001 20

where k is a constant that depends upon the volume and surface area of the compo-
nent, its specific heat capacity, and the heat transfer coefficient between the
component and the liquid. Solve this equation given the initial condition that at

the temperature excess is .

Solution
Separate the variables.

Integrate both sides with respect to t.

Apply the initial condition.

Hence

from which

Finally, obtain as a function of t.

This means that the temperature excess of the component decays exponentially from
its initial value to zero. When the temperature excess is zero, the component has
cooled to the temperature of the bath.

u0

u = u0e
-kt

u

ln   

u

u0
= -kt

ln u - ln u0 = -kt

ln u0 + C = 0 so C = - ln u0

ln u + C = -kt

1

u
 
du

dt
= -k

u0t = 0

Exercises

Solve the equation

Solve the equation

subject to the condition .

Find the general solution of the following
equations:

(a) (b) 
dy

dx
=

6 sin x

y
 

dy

dx
= 3

3

y(0) = 1

dy

dx
= 3x2e-y

2

dy

dx
=

e-x

y
 

1 Find the general solution of the equation

Find the particular solution that satisfies the
condition .

Some equations that do not appear to be
separable can be made so by means of a
suitable substitution. In this exercise you will
solve the equation

by means of the substitution .z =

y

x

dy

dx
=

y2

x2
+

y

x
+ 1

5

x(0) = 5

dx

dt
= t(x - 2)

4
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(a) If , then . Using the product

rule for differentiation show that

(b) Make the substitution to obtain an
equation involving only z and x. Solve this
by separation of variables. Hence obtain
the solution of the given equation.

dy

dx
= z + x 

dz

dx
 

y = zxz =

y
x

The equation

where R, L and E are constants arises in
electric circuit theory. This equation can be
solved by separation of variables. Find the
solution that satisfies the condition .

Solve the equation .x
.

= 4xt7

i(0) = 0

iR + L 
di

dt
 = E

6

Solutions to exercises

(a) (b) 

x = 2 + Aet2>2, x = 2 + 3et2>24

y2

2
= C - 6 cos xy = 3x + C3

y =  ln(x3
+ e)2

y = ; 2D - 2e-x 1 (ln Dx) so that (ln Dx)

where 

x = Ae2t2

7

t = L>Ri =

E

R
 (1 - e-t>t)6

y = x tanz = tan 5

End of block exercises

Find the general solution of the following
equations:

(a) (b) (c) 

(d) (e) 

(f) (g) 
dx

dt
=

t4

x5
x2 

dy

dx
= 2y2

+ yx

y 
dy

dx
= x + 2y 

dy

dx
= sin x

dy

dx
= y2dy

dx
= -ky

dy

dx
= kx

1 Find the general solution of the following:

(a) (b) 

(c) (d) 
dx

dt
=

x2
- 1

t
t 

dx

dt
= tan x

dy

dx
=

x

y

dx

dt
= xt

2

Solutions to exercises

(a) (b) (c) 

(d) (e) 

(f) (g) 
x6

6
=

t 5

5
+ c

x

A - 2 ln x
 

y2
= x2

+ 4x + cy2
= 2(C-  cos x)

-

1

x + c
Ae-kxkx2

2
+ c1 (a) (b) 

(c) (d) x =

1 + At 2

1 - At 2
x =  sin 

-1(kt)

y2
= x2

+ Cx = Aet2>22
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BLOCK 3
Solving first-order linear equations
using an integrating factor

3.1 Introduction

The standard form of a first-order linear differential equation is

(1)

P(x) and Q(x) are given functions of x, which may be constants. All first-order linear

equations can be written in this form. Note that the coefficient of is 1. An example is

in which and .
Other variables will be used. For example,

is a first-order linear equation in standard form with dependent variable x and
independent variable t. Here, and .Q(t) = t2P(t) = sin  t

dx

dt
+ x sin t = t2

Q(x) = 3 + xP(x) = x2

dy

dx
+ x2y = 3 + x

dy

dx
 

dy

dx
+ P(x)y = Q(x)

Key point All first-order linear differential equations can be written in standard form as

dy

dx
+ P(x)y = Q(x)

Equations of this type can always be solved by multiplying through by a function
known as the integrating factor for the equation. In this block you will learn how to
determine the integrating factor and how to obtain the solution of the original equation.

3.2 Writing equations in standard form

In order to use the technique described in this block you must write the equation in
the standard form.

Example 3.1

Write in standard form. Identify P(x) and Q(x).x2 
dy

dx
+ 3xy = x3
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1004 Block 3 Solving first-order linear equations using an integrating factor20

Solution
Note that this is a first-order equation. It is linear, and so the integrating factor
method is appropriate. Study the standard form (1) of a first-order linear equation
and note that the coefficient of the derivative term is 1. We divide the given equation
through by to achieve this.

Compare this with the standard form to identify P(x) and Q(x).

Example 3.2

Compare the equation with the standard form and identify P(x) and

Q(x).

Solution
The coefficient of the derivative term is already 1.

The equation is already written in standard form.

Example 3.3 Electrical Engineering – Current in a circuit

The equation , where L, R and E are constants, models the current,

i(t), in a series circuit. Write the equation in standard form. Identify P and Q.

Solution
Note that this is a first-order equation. It is linear, and so the integrating factor
method is appropriate. Here the dependent variable is i and the independent variable
is t. Study the standard form (1) and note that the coefficient of the derivative term is 1.
Dividing the given equation through by L we can achieve this:

This is the standard form. Write down P(t) and Q(t).

E sin t

L
 Q(t) =

R

L
 , which is constantP(t) =

di

dt
+

R

L
 i =

E sin t

L
 

L 
di

dt
+ Ri = E sin t

xQ(x) =

-2, in this case, a constantP(x) =

dy

dx
- 2y = x

xQ(x) =

3
x

P(x) =

dy

dx
+

3
x

 y = x

x2
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203.3 Finding an integrating factor 1005

Exercises

Write each of the following equations in
standard form:

(a) x 
dy

dx
+ 2xy = xe-2x

1 (b)

(c) iR + L 
di

dt
= sin vt

dy

dx
+ 3y - sin x = 0

Solutions to exercises

(a) (b)

(c)

3.3 Finding an integrating factor

The idea behind the method is to multiply the equation

through by some function of x, as yet unknown, called an integrating factor. Let
this integrating factor be . Then

(2)

Suppose we choose in a special way so that the left-hand side of this equation can
be written more simply as

This special way of choosing is described below. The equation becomes

In this form the equation is said to be exact. It follows immediately, by integrating
both sides, that

(3)

So by knowing Q(x) and , and performing the integration on the right, and dividing
through by , we can obtain y.m

m

my = �mQ(x) dx

d

dx
 (my) = mQ(x)

m

d

dx
 (my)

m

m 
dy

dx
+ mP(x)y = mQ(x)

m

dy

dx
+ P(x)y = Q(x)

di

dt
+

R

L
 i =

1

L
 sin vt

dy

dx
+ 3y = sin x

dy

dx
+ 2y = e-2x1
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Choosing 

We want to choose so that the left-hand side of (2) is equal to . That is,

Using the product rule for differentiation we can expand the product on the right to
give

Comparing the coefficients of y on both sides shows that we must choose to satisfy

This is a first-order equation for , which can be solved by separating the variables
as follows:

from which

We have ignored the constant of integration. When you are experienced at this
technique, try including a constant of integration and you will see that it makes no
difference to the solution.

It follows that

Thus knowing P(x) we can use this formula to find the integrating factor. Once is
known y can be determined from the Key point.

m

m = e�P(x) dx

ln m = �P(x) dx

�dm

m
 = �P(x) dx

m

mP(x) =

dm

dx
 

m

m 
dy

dx
+ mP(x)y = m 

dy

dx
+ y 

dm

dx
 

m 
dy

dx
+ mP(x)y =

d

dx
 (my)

d

dx
(my)m

m

Key point The integrating factor method
If the linear differential equation is in the standard form

then the integrating factor is

and y is given by

my = �mQ(x) dx

m = e�P(x) dx

dy

dx
+ P(x)y = Q(x)

1006 Block 3 Solving first-order linear equations using an integrating factor
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203.3 Finding an integrating factor 1007

Example 3.4
Find the integrating factor for the equations

(a) (b)

Solution
In each case write the equation in standard form and identify P(x). The integrating

factor is found from .

(a)

(b)

Example 3.5
Use the integrating factors found in Example 3.4 to find the general solutions to the
following differential equations:

(a) (b)

Solution

(a) The standard form is for which the integrating factor is .

Note that .
From the previous Key point we have

so that

Therefore

This is the general solution.
(b) The equation is in standard form. The integrating factor is and

. From the Key point we have

my = �mQ(x) dx

Q(x) = 1
m =  cos  x

 = (x + C)e-2x

  y =

(x + C)

e2x
 

 = x + C

 = �1 dx

e2xy = �e2xe-2x dx

my = �mQ(x) dx

Q(x) = e-2x

m = e2xdy

dx
+ 2y = e-2x

dy

dx
- (tan x)y = 1x 

dy

dx
+ 2xy = xe-2x

P(x) = - tan x; m = eln cos x
= cos x

P(x) = 2; m = e2x

m = e�P(x) dx

dy

dx
- (tan x)y = 1x 

dy

dx
+ 2xy = xe-2x
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so that

giving

This is the general solution.

Example 3.6

(a) Use the integrating factor method to solve the equation .

(b) Find the particular solution where .

Solution
(a) Refer to the standard form and identify P(x) and Q(x).

The integrating factor is found from the formula . Find the integrating
factor:

Knowing the integrating factor y can be found using the previous Key point, then

where C is the constant of integration. So

so that

is the general solution.

y =

x

2
+

C

x

my = xy =

x2

2
+ C

 =

x2

2
+ C

 = �x * 1 dx

 my = �mQ(x) dx

m = e�(1>x) dx
= eln x

= x

m = e�P(x) dx

1Q(x) =

1
x

P(x) =

y(1) = 3

dy

dx
+

y

x
= 1

 = tan x + C sec x

  y =

sin x
cos x

+

C

cos x
 

 = sin x + C

  (cos x) y = �cos x dx

1008 Block 3 Solving first-order linear equations using an integrating factor
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203.3 Finding an integrating factor 1009

(b) We now apply the condition in order to find the constant C and thus
obtain the particular solution.

We know that when , , and so

that is . Thus the particular solution is .y =

x

2
+

5

2x
C =

5
2

3 =

1

2
+

C

1

y = 3x = 1

y(1) = 3

Exercises

Solve the equation

Find the solution of the equation

subject to the condition .

Find the general solution of the equation

Solve the equation

dy

dt
+ (cot t)y = sin t

4

dy

dt
+ (tan t)y = cos t

3

y(1) = 2

x 
dy

dx
- y = x

2

x2 
dy

dx
+ xy = 1

1 The temperature (measured in degrees) of a
body immersed in an atmosphere of varying
temperature satisfies the equation

Find the temperature at time t if when
.

In an LR circuit with applied voltage
the current i satisfies the

equation

If the initial current is find i subsequently.i0

L 
di

dt
 + Ri = 10(1 - e-0.1t )

E = 10(1 - e-0.1t)
6

t = 0
u = 60°

du

dt
 + 0.1u = 5 - 2.5t

u5

Solutions to exercises

y = a1

2
 t -

1

4
 sin 2t + Cb  cosec t4

y = (t + C)  cos  t3

y = x ln x + 2x2

y =

1

x
 ln x +

C

x
1

+ a i0 +

10L

R(10R - L)
be-Rt>L

 i =

10

R
- a 100

10R - L
be-0.1t6

u = 300 - 25t - 240e-0.1t5
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End of block exercises

Find the general solution of the following
equations:

(a) (b)

(c) (d)

(e) (f) 
dx

dt
= 3x - 8

dy

dx
= 6y + 9

dy

dx
- 3y = 2

dx

dt
+ 6x = 4

dy

dx
+ 2y = 6

dy

dx
+ y = 1

1 Use an integrating factor to obtain the general

solution of where R, L and

are constants.v

iR + L 
di

dt
= sin vt

2

Solutions to exercises

(a) (b)

(c) (d)

(e) (f) x =
8
3 + ce3ty = ce6x

-
3
2

y = ce3x
-

2
3x =

2
3 + ce-6t

y = 3 + ce-2xy = 1 + ce-x1 L[(R>L)sin vt - v cos vt] 

R2
+ L2v2

+ ce-Rt>L2

1010 Block 3 Solving first-order linear equations using an integrating factor
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BLOCK 4
Computational approaches to differential equations

4.1 Introduction

Computer software packages are readily available that can solve differential equations.
You may recall that when using software to perform integration the results produced
fall into two categories, symbolic and numerical. This is also true when we use
computers to solve differential equations.

For many equations it is possible for the computer to obtain a symbolic answer in
terms of common functions, and we shall illustrate this shortly. However, for many
equations it is impossible to obtain a symbolic answer and so techniques, known as
numerical methods, exist for obtaining approximate solutions. One technique for
solving first-order equations is Euler’s method. In general, numerical techniques are
laborious to perform by hand and so are best implemented using a computer. We
shall be content to illustrate Euler’s method using simple examples, and then rely
upon software to tackle more substantial problems.

4.2 Use of symbolic algebra packages to solve first-order differential
equations exactly

Many software packages designed for tackling mathematical problems have the
facility to solve first-order equations. You should enquire whether the package(s) to
which you have access can solve differential equations symbolically. You may need
to refer to local documentation. Some of the packages require additional software
to be loaded. For example, the standard version of Matlab does not come with a
symbolic processor, but requires a Symbolic Math Toolbox.

Example 4.1 Finding an exact, general solution

Use a computer algebra package to solve the differential equation .

This is a first-order equation, which can be solved using the method of separation of
variables.

dy

dx
- xy = 0
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1012 Block 4 Computational approaches to differential equations20

Solution

Maple
In Maple the command dsolve can be used to find the general solution of a differential
equation with dependent variable y and independent variable x. y must be input as y(x),
and the derivative term is input as diff(y(x), x), which stands for the derivative of y(x) 

with respect to x. So, to solve the equation the Maple command is

dsolve(diff(y(x),x)�x*y(x) � 0);

and Maple outputs

The output is the arbitrary constant, and so we can interpret this general solution as
simply .y = Ae

1
2x2

—C1

y(x) = —C1eA12x2B

dy

dx
- xy = 0

Matlab
Assuming the Symbolic Math Toolbox is available, the function dsolve computes symbolic
solutions to differential equations. In Matlab the symbol D is used to denote the derivative.
The command

dsolve('Dy-x*y=0','x')

generates the result

Note the requirement to put the differential equation and the independent variable
between apostrophes. Clearly the output is not as user-friendly as that provided by
Maple, although another Matlab command, pretty, can be applied to generate more
familiar output.

C1*exp(1>2*xN2)

The power of software packages lies in their ability to handle symbolic constants in
problems. Consider the following example.

Example 4.2 Electrical Engineering – RL circuit with sinusoidal input
In question 2, End of block exercises, Block 3 the integrating factor method was
used to solve the equation

where R, L and v are constants, in order to find the current i(t) in an RL circuit. Use
a computer algebra package to obtain the general solution of this equation.

iR + L 
di

dt
= sin vt
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204.2 Use of symbolic algebra packages to solve first-order differential equations exactly 1013

Solution

Maple
In Maple the relevant command is

dsolve(i(t)*R+L*diff(i(t),t) = sin(w*t));

and Maple produces the following output:

where represents the arbitrary constant in the general solution. Compare this
solution with the one stated analytically in question 2 on page 1010.

–C1

i(t) = e( -
Rt
L  ) –C1 +

-L w cos(wt) + R sin(wt)

R2
+ w2L2

Matlab
In Matlab the symbol i is used to denote and so should not be used here. Instead
we use y as the dependent variable. The command

dsolve('y*R+L*Dy = sin(w*t)','t')

results in the output

This is equivalent to that produced by Maple, although the format is not so user-friendly.

exp(-1>L*R*t)*C1*w^2*L^2)>(R^2 + w^2*L^2)

(-L*w*cos(w*t) + R*sin(w*t) + exp(-1>L*R*t)*C1*R^2 +

2-1

Example 4.3 Finding an exact, particular solution

Find the particular solution of that satisfies the initial condition

.

Solution
Software packages will have the facility to handle initial conditions.

y(0) = 3

dy

dx
- x2y = 0

Maple
In Maple the appropriate command is

and Maple outputs the particular solution\

y(x) = 3e113x32

dsolve({diff(y(x),x) - x^2*y(x) = 0,y(0) = 3});
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Matlab
The command

dsolve('Dy-x^2*y=0','y(0) = 3','x')

results in the output

3*exp(1>3*x^3)

Computer and calculator exercises

Use a computer algebra package to find the
general solutions of the following differential
equations:

(a)

(b) where m is a constantm 
dv

dt
= -v

dy

dx
=

xy

x2
+ 1

1 Use a computer algebra package to find the
exact, particular solution of the following
equations:

(a)

(b) , where R, L

and E are constants

iR + L 
di

dt
= E, i(0) = 0

du

dt
= -ku, u(0) = u0

2

1014 Block 4 Computational approaches to differential equations

4.3 Euler’s method

Although symbolic algebra packages are extremely powerful, there are nevertheless
some differential equations that they cannot solve exactly. In such cases it may be
possible to use the computer to obtain an approximate solution. There are many
sophisticated techniques available for doing this, the details of which can be found in
textbooks on numerical methods. The simplest technique is Euler’s method, which
we explain here.

Euler’s method is a numerical technique for finding approximate solutions of
differential equations having the form

dy

dx
= f   (x, y), y(x0) = y0

Solutions to exercises

(a)
(b) v(t) = Ce-t>m

y(x) = C2x2
+ 11 (a) (b) i(t) =

E

R
-

Ee(-Rt>L)

R
u(t) = u0 e

-kt2
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204.3 Euler’s method 1015

y0

y1

x0 x1

h
x

y

True solution

Tangent line approximation

y (x1)

Figure 4.1
A tangent line is
used to obtain an
estimate of the true
solution.

The point lies both on the solution curve and on the tangent line. Consider
moving to a nearby point on the tangent line. Let the nearby point be , where

. The value of h and hence is known. Then is on the tangent
line, but not on the solution curve. When the value of the solution is . We
do not know the value of . We can, however, use as an approximation to .

Referring to Figure 4.1 we note that the gradient of the tangent line is , and so

It follows by rearrangement that . So, knowing the values 
of , the function and the value of h we can calculate y1. Note from 
Figure 4.1 that is the true, but unknown, solution, whereas is now the known,
but approximate, solution.

We can use the point as a new starting point to find an approximate solu-
tion at , and using an identical argument this is 

The process is repeated using the general formula . The
result is a sequence of values, , which approximates the true solution y(x) at the
points where x = xn.

yn

yn + 1 = yn + hf (xn, yn)
y2 = y1 + hf (x1, y1).x2 = x1 + h

(x1, y1)

y1y(x1)
f (x, y)x0, y0

y1 = y0 + hf (x0, y0)

y1 - y0

h
=  f (x0, y0)

y1 - y0

h

y(x1)y1y(x1)
y(x1)x = x1

(x1, y1)x1x1 = x0 + h
(x1, y1)

(x0, y0)

Note that to use this method we need to be given an initial condition 

When solving this equation numerically we use the fact that is the gradient of the

tangent to y(x). We know from the given equation that the point lies on

the graph of the solution. We also know that the gradient of the solution is , that is

f (x, y). So, at the point the graph of the solution has a tangent line with gradi-
ent . This is illustrated in Figure 4.1.f (x0, y0)

(x0, y0)

dy

dx

(x0, y0)

dy

dx

y(x0) = y0.

Key point Euler’s method

An approximate solution of , subject to the initial condition

where h is the step-size, or increment, in x.

yn + 1 = yn + h f  (xn, yn), y0 = y (x0)

y(x0) = y0, is given by

dy

dx
= f  (x, y)
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Example 4.4

Use three steps of Euler’s method to obtain an approximate solution of , subject

to the initial condition , at the points where , 1.2 and 1.3. Compare
the results with the exact solution.

Solution
We start from the given initial condition, Then 

applying Euler’s method with , and , we find

So, at the point the solution is approximated by . These values
are recorded in Table 4.1.

Applying the formula again:

So, at the point the solution is approximated by .
Applying the formula one more time:

These results and the true solutions, for comparison, are given in Table 4.1. Note that
the true solution can be obtained by separation of variables and is .y = 2x2

+ 3

2.160702y3 = y2 + hf(x2, y2 ) = y2 + h a x2

y2
b =

y2 = 2.103659x2 = 1.2

 = 2.103659 (6 d.p.)

 = 2.05 + 0.1 a 1.1

2.05
b

 = y1 + h a x1

y1
b

 y2 = y1 + hf   (x1, y1 )

y1 = 2.05x1 = 1.1

 = 2.05

 =  2 + 0.1 a1

2
b

 = y0 + h a x0

y0
b

 y1 = y0 + h   f  (x0, y0)

f(x, y) =

x

y
h = 0.1

x0 = 1, y0 = y(x0) = y(1) = 2.

x = 1.1y(1) = 2

dy

dx
=

x

y

1016 Block 4 Computational approaches to differential equations

True: (to 6 d.p.)

2
2.051828
2.107131
2.165641y3 = 2.160702x3 = 1.3

y2 = 2.103659x2 = 1.2
y1 = 2.05x1 = 1.1
y0 = 2x0 = 1

y(xn)ynxn
Table 4.1
For Example 4.4.
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204.4 Use of software to find numerical solutions of differential equations 1017

Clearly this rather crude approach can be improved by taking a smaller
increment in x, but the price we pay is an increase in the number of calculations
required.

We have provided details of the simplest numerical method for solving a first-order
differential equation. More sophisticated formulae exist, but for a detailed treatment
you should refer to a textbook on numerical methods for engineers.

Exercises

Use five steps of Euler’s method to find an
approximate solution of the initial value

problem , using ,

for . Work throughout to six decimal
places. Hence approximate y(1).

0 … x … 1

h = 0.2y(0) = 2
dy

dx
= x sin y

1 Use five steps of Euler’s method to find an
approximate solution of the initial value 

problem using

. Work throughout to six decimal
places. Hence approximate x(1.05).
h = 0.01

dx

dt
=

x + x2

t
, x(1) = -5

2

Solutions to exercises

y(1) L 2.3392821 x(1.05) L -4.1691322

4.4 Use of software to find numerical solutions of differential equations

As we stated in the previous section, symbolic algebra packages use sophisticated
techniques to find accurate, approximate solutions of initial value problems. For full
details of the underlying algorithms you will need to consult the documentation
accompanying your package. We shall be content to illustrate their application in a
simple example.

Example 4.5 Finding a numerical solution of a first-order equation

Find a numerical solution of the differential equation of Example 4.3, ,
subject to the initial condition .

Solution
A numerical solution produces a sequence of values of the dependent variable, at
values of the independent variable specified by the user. For example, suppose we
wish to know the value of y when , 0.2, 0.4, 0.6, 0.8 and 1.x = 0

y(0) = 3

dy

dx
- x2y = 0
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Maple

dsolve({diff(y(x),x)-x^2*y(x)=0,y(0)=3},
type=numeric,output=array([0,0.2,0.4,0.6,0.8,1]));

and Maple outputs an array containing the x and y values:

You will find that producing a graph of the output using the software is straightforward.

 1  4.18683969904184
 .8  3.55828609702334
 .6  3.22396357678057
 .4  3.06469041449842
 .2  3.00801944725338
 0  3.

 [x  y(x)]

Matlab

Using Matlab, it is first necessary to write and save a file, known as an m.file, to store the 

right-hand side of the differential equation . The second line below represents

the right-hand side of the equation .

function ode1=example1(x,y)
ode1=x^2*y

After saving this m.file the following command will obtain the numerical solution,
subject to the initial condition :

[x,y]=ode45('example1',[0,0.2,0.4,0.6,0.8,1],3)

resulting in

y = F
3.0000

3.0080

3.0647

3.2240

3.5583

4.1868

 V

y(0) = 3

dy

dx
= x2 y

dy

dx
= f  (x, y)

1018 Block 4 Computational approaches to differential equations
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204.4 Use of software to find numerical solutions of differential equations 1019

Computer and calculator exercises

Use a computer algebra package to find an
approximate numerical solution of the
following initial value problems at the values
of the independent variable specified:

(a) , , 

at , 0.1, 0.2, . . ., 0.5.x = 0

y(0) = 2
dy

dx
-

1

ln y
= 0

1 (b) , , at 

, 0.25, 0.5, 0.75, 1.t = 0

x(0) = 1
dx

dt
= sin(x2)

Solutions to exercises

[x, y(x)]

(a) F
0  2.

.1  2.13759470217855

.2  2.26437308827318

.3  2.38299104649312

.4  2.49515771401761

.5  2.60205536137248

 V

1 [t, x(t)]

(b) E
0  1.

.25  1.23412636541130

.5  1.47072990280928

.75  1.63173824177242

1  1.71208213688752

 U

End of block exercises

Using software, obtain a symbolic solution of

when .

Using software, obtain a symbolic solution of

where R, L and E are constants

subject to the initial condition .

Use a package to find the general solution of

where and K are constants.

Use Euler’s method to find a numerical

solution of , , fory(0) = 1
dy

dx
= -2y

4

m
dT

du
= m(T - K)

3

i(0) = 0

iR + L 
di

dt
= E

2

i(0) = i0L
di

dt
+ Ri = 10(1 - e-0.1t)

1 . First take , then
, and compare your answers at

with the exact solution obtained by
separating the variables. Work throughout to
six decimal places.

Use Euler’s method to find a numerical solution

of subject to . Take

and hence approximate y(1.5). Obtain
the true solution using the method of
separation of variables. Work throughout to 
six decimal places.

h = 0.1

y(1) = 3
dy

dx
=

xy

x2
+ 2

5

x = 0.5
h = 0.05

h = 0.10 … x … 0.5
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Solutions to exercises

T(u) = K + Aemu3

i(t) =

E

R
 (1 - e-Rt>L)2

+ a i0 +

10L

R(10R - L)
b  e-Rt>L

i(t) =

10

R
- a 100

10R - L
be-0.1t1

. True solution 

3, 3.1, 3.206231, 3.318076, 3.434973,
. True solution:

y = 23(x2
+ 2)1>2 , y(1.5) = 3.570714

y(1.5) L 3.556411
5

y = e-2x: y(0.5) = 0.367879
h = 0.05: y(0.5) L 0.348678
h = 0.1: y(0.5) L 0.327680.4

1020 Block 4 Computational approaches to differential equations
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BLOCK 5
Second-order linear constant-coefficient equations I

5.1 Introduction

In this block we start to learn how to solve second-order differential equations of a
particular type – those that are linear and which have constant coefficients. Such
equations are used widely in the modelling of physical phenomena – for example, in
the analysis of vibrating systems, and the analysis of electric circuits.

The solution of these equations is achieved in stages. The first stage is to find what
is called a complementary function, and is the subject of this block. The second
stage is to find a particular integral. This is dealt with in the following block.
Finally, the sum of the complementary function and the particular integral forms the
general solution of a second-order linear differential equation. It is important that
you understand and use this terminology. A knowledge of complex numbers, and
particularly the exponential form, is essential.

Key point Solving a second-order linear equation

1 Find the complementary function, .
2 Find a particular integral, 
3 The general solution is the sum of the complementary function and the particular

integral:
y = ycf + ypi

ypi.
ycf

5.2 Homogeneous equations and the complementary function, ycf

The general form of a second-order linear equation that has constant coefficients is

(1)

where a, b, c are constants. An example of such an equation is

When is not identically zero, the equation is said to be inhomogeneous. An
important relative of this equation is found by replacing the function with zero
to give

(2)a 
d2y

dx2 + b 
dy

dx
+ cy = 0

f (x)
f (x)

3 
d2y

dx2 - 2 
dy

dx
+ 4y = e-x  sin x

a 
d2y

dx2 + b 
dy

dx
+ cy = f   (x)
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This is the homogeneous form of equation (1). The homogeneous form is found by
ignoring the term that is independent of y, or its derivatives.

To find the general solution of equation (1), it is first necessary to solve equation
(2). The general solution of (2) is called the complementary function and will
always contain two arbitrary constants. We shall denote this solution by .

The technique for finding the complementary function is described in this block.

Example 5.1
Which of the following are constant-coefficient equations? Which are homo-
geneous?

(a) (b)

(c) (d)

Solution

(a)

(b)

(c)

(d)

Example 5.2
What is a complementary function?

Solution

Example 5.3
The complementary function for the equation

is for any constants A and B. Verify that this is indeed a
solution.

Solution
The given equation is homogeneous, linear and constant coefficient. By differentiat-
ing twice and substituting into the equation it is easy to verify
that this is a solution.

y = A cos x + B sin x

y = A cos x + B sin x

d2y

dx2 + y = 0

A complementary function is the

general solution of a homogeneous,

linear differential equation.

 

const. coeff. and homogeneous

const. coeff. and homogeneous

not const. coeff., homogeneous

const. coeff., not homogeneous

d2y

dx2 + 4 
dy

dx
+ 4y = 0

d2x

dt2
+ 3 

dx

dt
+ 7x = 0

x 
d2y

dx2 + 2y = 0
d2y

dx2 + 4 
dy

dx
 + 3y = e-2x

ycf

1022 Block 5 Second-order linear constant-coefficient equations I
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Find and .

Substitute the expressions for y and into the left-hand side of the differential
equation and simplify your answer.

So the left-hand side simplifies to zero. The right-hand side of the differential
equation is zero. Hence is a solution.

Note that contains two arbitrary constants. It is the general
solution and therefore the complementary function for this homogeneous equation.

y = A  cos x + B  sin x
y = A  cos x + B  sin x

-A cos x - B sin x + A cos x + B sin x = 0

y–

y¿ = -A sin x + B cos x, y– = -A cos x - B sin x

d2y

dx2 
dy

dx
 

Exercises

Write down the homogeneous form of the
following equations:

(a)

(b)
d2x

dt2
+ 7x - et  cos t = 0

d2y

dx2
+ 3 

dy

dx
- 2y = sin x

1 (c) where is a constant.

State what is meant by the term ‘complementary
function’.

2

v
d2x

dt2
 = -v2x,

Solutions to exercises

(a) (b) 
d2x

dt2
+ 7x = 0

d2y

dx2
+ 3 

dy

dx
- 2y = 01 (c) is already homogeneous

5.3 Finding the complementary function

To find the complementary function we must make use of the following property.
If and are any two (linearly independent) solutions of a linear, homo-

geneous second-order differential equation then the general solution is

where A and B are constants.

ycf (x) = Ay1(x) + By2(x)

ycf 
(x)

y2(x)y1(x)

5.3 Finding the complementary function 1023

M20_CROF5939_04_SE_C20.QXD  9/27/18  12:45 PM  Page 1023



20 1024 Block 5 Second-order linear constant-coefficient equations I

We see that the second-order linear ordinary differential equation has two
arbitrary constants in its general solution. The functions and are linearly
independent if one is not simply a multiple of the other.

This property gives us a method for constructing the complementary function. If
we can find two independent solutions of a homogeneous differential equation, we
can form the complementary function by simply adding constant multiples of the
two solutions.

Example 5.4
(a) Verify that and both satisfy the constant-coefficient

homogeneous equation

(3)

(b) Write down the general solution of this equation and so form the
complementary function.

Solution
(a) If , differentiation yields

and similarly,

Substitution into the left-hand side of equation (3) gives

which simplifies to zero. The right-hand side is zero. So is indeed a
solution. Similarly if , then

Substitution into the left-hand side of equation (3) gives

which simplifies to zero, so is also a solution of equation (3).
(b) So we know two independent solutions of the equation: these are and .

They are linearly independent because is not a multiple of . From the
property stated above we have

as the general solution of equation (3). This is the complementary function.

ycf   

(x) = Ae4x
+ Be2x

e4xe2x
e4xe2x

y2 = e2x

4e2x
- 6(2e2x ) + 8e2x

dy2

dx
= 2e2x  and  

d2y2

dx2 = 4e2x

y2 = e2x
y1 = e4x

16e4x
- 6(4e4x ) + 8e4x

d2y1

dx2 = 16e4x

dy1

dx
= 4e4x

y1 = e4x

d2y

dx2 - 6 
dy

dx
 + 8y = 0

y2 = e2xy1 = e4x

y2(x)y1(x)
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Example 5.5
Substitute , where k is a constant, into the equation

in order to find the values of k that make a solution. Hence state the general
solution.

Solution
As suggested we substitute . Differentiating we find

Substitution into the given equation yields

that is

Since the function can never be zero it follows that

(4)

that is

so that or . That is to say, if is to be a solution of the differen-
tial equation k must be either 3 or . We therefore have found two solutions:

These two functions are linearly independent because is not a multiple of ,
and therefore the general solution is

This is the complementary function for the given differential equation. Equation (4)
for determining k is called the auxiliary equation.

ycf  

(x) = Ae3x
+ Be-2x

e3xe-2x

y1(x) = e3x and y2(x) = e-2x

-2
y = ekxk = -2k = 3

(k - 3)(k + 2) =  0

k2
- k - 6 = 0

ekx

(k2
- k - 6)ekx

= 0

k2ekx
- kekx

- 6ekx
= 0

dy

dx
= kekx and 

d2y

dx2 = k2ekx

y = ekx

y = ekx

d2y

dx2 -

dy

dx
- 6y = 0

y = ekx

Key point Finding a complementary function

If two independent solutions, and , of a homogeneous second-order linear equation
can be found, the complementary function is found by adding constant multiples of
them:

where A and B are arbitrary constants.

ycf(x) = Ay1(x) + By2(x)

y2y1

5.3 Finding the complementary function 1025
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20 1026 Block 5 Second-order linear constant-coefficient equations I

Example 5.6
By substituting , find values of k so that y is a solution of

Hence write down two solutions and the general solution of this equation. Hence
state the complementary function.

Solution
By substituting find the auxiliary equation:

This can be factorised:

So the required values of k are 1 and 2. Write down the two solutions:

Finally write down the general solution:

The complementary function is therefore .

Example 5.7
Find the auxiliary equation of the differential equation

where a, b and c are constants.

Solution
We try a solution of the form so that

Substitution into the given differential equation yields

that is

Because cannot be zero it follows that

This is the required auxiliary equation.

ak2
+ bk + c =  0

ekx

(ak2
+ bk + c)ekx

= 0

ak2ekx
+ bkekx

+ cekx
= 0

dy

dx
= kekx  and  

d2y

dx2 = k2ekx

y = ekx

a 

d2y

dx2 + b 

dy

dx
+ cy = 0

ycf 
(x) = Aex

+ Be2x

ycf   

(x) = Aex
+ Be2x

y = ex and y = e2x

(k - 1)(k - 2) = 0

k2
- 3k + 2 = 0

y = ekx

d2y

dx2 - 3 
dy

dx
 + 2y = 0

y = ekx
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Example 5.8
Write down, but do not solve, the auxiliary equations of the following differential
equations:

(a) (b) 

(c) (d) 

Solution

(a)

(b)

(c)

(d)

Solution of the auxiliary equation gives the values of k that we seek. Note that the
auxiliary equation is a quadratic equation and so has two roots. Clearly the nature of
the roots will depend upon the values of a, b and c. If the roots will be real
and distinct. The two values of k thus obtained, and , will allow us to write down
two independent solutions:

and so the general solution of the differential equation will be

y(x) = Aek1x
+ Bek2x

y1(x) = ek1x,   y2(x) = ek2x

k2k1

b2 7 4ac

k2
+ k = 0

4k2
+ 7 = 0

2k2
+ 7k - 3 = 0

k2
+ k + 1 = 0

d2y

dx2 +

dy

dx
= 04 

d2y

dx2 + 7y = 0

2 
d2y

dx2 + 7 
dy

dx
- 3y = 0

d2y

dx2 +

dy

dx
+ y = 0

Key point The auxiliary equation of

is . The solutions of the auxiliary equation give values of k that make
a solution of the differential equation.y = ekx

ak2
+ bk + c = 0

a 
d2y

dx2
+ b 

dy

dx
+ cy = 0

Key point If the auxiliary equation has real, distinct roots and , the complementary function
will be

ycf (x) = Aek1x
+ Bek2x

k2k1

On the other hand, if the two roots of the auxiliary equation will be equal
and this method will therefore yield only one independent solution. In this case,
special treatment is required. If the two roots of the auxiliary equation will
be complex: that is, and will be complex numbers. The procedure for dealing
with such cases will become apparent in the following examples.

k2k1

b2
6 4ac

b2
= 4ac

5.3 Finding the complementary function 1027
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20 1028 Block 5 Second-order linear constant-coefficient equations I

Example 5.9
Find the general solution of

Solution
Write down the auxiliary equation:

Factorise to find the solutions:

Thus there exist two solutions and . We can write the general
solution as

This is the complementary function.

Example 5.10
Find the general solution of

Solution
Write down the auxiliary equation:

It follows that

so that

that is, we have complex roots. The two independent solutions of the equation are
thus

so that the general solution can be written in the form

However, in cases such as this, it is usual to rewrite the solution in the following way.
Recall that Euler’s relations (Chapter 11, Block 3) give

e2jx
= cos 2x + j sin 2x and e-2jx

= cos 2x - j sin 2x

y(x) = Ae2jx
+ Be-2jx

y1(x) = e2jx,   y2(x) = e-2jx

k = ;2j

k2
= -4

k2
+ 4 = 0

d2y

dx2 + 4y = 0

y(x) = Ae2x
+ Be-5x

y2 = e-5xy1 = e2x

1k - 221k + 52 = 0, k = 2 and k = -5

k2
+ 3k - 10 = 0

d2y

dx2 + 3 
dy

dx
- 10y = 0
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so that

If we now relabel the constants such that

we can write the general solution in the form

This is the complementary function.

Example 5.11

Given , write down the auxiliary equation. If the roots of the

auxiliary equation are complex (one root will always be the complex conjugate of
the other) and are denoted by

show that the general solution can be written as

where C and D are arbitrary constants.

Solution
Write down the auxiliary equation:

If then the general solution is

where A and B are arbitrary constants. Using the laws of indices this is rewritten as

Then, using Euler’s relations, we obtain

Writing and , we find

This is the required solution.

y = eax(C cos bx + D sin bx)

D = Aj - BjC = A + B

 = eax[(A + B) cos bx + (Aj - Bj) sin bx]

  y = eax(A cos bx + Aj sin bx + B cos bx - Bj sin bx)

 = eax(Aebjx
+ Be-bjx )

  y = Aeax ebjx
+ Beax e-bjx

y = Ae(a+bj)x
+ Be(a-bj)x

k1 = a + bj, k2 = a -  bj

ak2
+ bk + c = 0

y(x) = eax(C cos bx + D sin bx)

k1 = a + bj,  k2 = a - bj

a 
d2y

dx2 + b 
dy

dx
+ cy = 0

y(x) = C cos 2x + D sin 2x

A + B = C and  Aj - Bj = D

 = (A + B) cos 2x + (Aj - Bj) sin 2x

  y(x) = A(cos 2x + j sin 2x) + B(cos 2x - j sin 2x)

Key point If the auxiliary equation has complex roots, and , then the
complementary function is

ycf = eax(C cos bx + D sin bx)

a - bja + bj

5.3 Finding the complementary function 1029
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20 1030 Block 5 Second-order linear constant-coefficient equations I

Example 5.12
Find the general solution of .

Solution
The auxiliary equation is

This equation has complex roots. Find them.

Using the Key point above with and write down the general solution.

Example 5.13 Mechanical Engineering – Simple harmonic motion
The behaviour of a wide range of oscillating and vibrating mechanical and electrical
systems is described by a differential equation of the form

where is a constant. This is known as the simple harmonic motion equation. Find
its general solution.

Solution
Writing the equation in the form we recognise it as second order,

constant coefficient and homogeneous. Write down the auxiliary equation.

This has solutions . So there are complex roots with real part 0 and imagi-
nary parts . From the previous Key point write down the general solution.

The fact that the solution consists of a sine and a cosine wave is indicative of the fact
that the differential equation describes an oscillating or vibrating system.

x = C cos vt + D sin vt

;  v

k = ;  vj

k2
+ v2

= 0

d2x

dt2
+ v2 x = 0

v

d2x

dt2
= -v2x

y = e-x(C cos23 x + D sin23 x)

b = 23a = -1

k = -1 ; 23j

k2
+ 2k + 4 = 0

d2y

dx2 + 2 
dy

dx
 + 4y = 0

Key point The simple harmonic motion equation and its solution are, respectively,

and

x = C cos vt + D sin vt

d2x

dt2
= -v2x

It is often sufficient simply to quote this solution when faced with solving a simple
harmonic motion problem.
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When the auxiliary equation has equal roots special treatment is required. This is
because the auxiliary equation provides only one independent solution, and we seek
two to construct the general solution of any second-order differential equation. The
second solution is found by multiplying the first by x, as shown in the following
example.

Example 5.14
The auxiliary equation of is . Suppose

this equation has equal roots . Verify that is a solution of the differ-
ential equation. Hence state the general solution.

Solution
We must check that is a solution. Using the product rule find and .

Substitution into the left-hand side of the differential equation yields

that is

which can be rewritten as

(5)

But since satisfies the auxiliary equation. Also,

but since the roots are equal, then and hence So

and the expression (5) simplifies to zero. We conclude that is a solution

of when the roots of the auxiliary equation are equal.

Since is a root of the auxiliary equation, is a solution of the differential
equation. The second independent solution is . So the general solution is

 = (A + Bx)ek1x

 y = Aek1x
+ Bxek1x

y = xek1x
y = ek1xk1

a 
d2y

dx2 + b 
dy

dx
+ cy = 0

y = xek1xb = 0,

2ak1 +k1 = -

b

2a
.b2

- 4ac = 0

k1 =

-b ; 2b2
- 4ac

2a

k1ak1
2

+ bk1 + c = 0

ek1x[(ak2
1 + bk1 + c)x + 2ak1 + b]

ek1x[a(k2
1 x + 2k1) + b(1 + k1x) + cx]

a(k2
1 x + 2k1)e

k1x
+ b(1 + k1x)ek1x

+ cxek1x

11 + k1x2k1e
k1 x

+ ek1 x k1 = ek1x1k2
1x + 2k12

 
d2y

dx2 =

ek1x
+ xk1e

k1x
= ek1x(1 + k1x) 

dy

dx
=

d2y

dx2

dy

dx
y = xek1x

y = xek1xk = k1

ak2
+ bk + c = 0a 

d2y

dx2 + b 

dy

dx
+ cy = 0

Key point If the auxiliary equation has two equal roots, , the complementary function is

ycf = (A + Bx)ek1x 

k1

5.3 Finding the complementary function 1031
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Example 5.15
Obtain the general solution of the equation

Solution
As before, a trial solution of the form yields an auxiliary equation

This equation factorises so that

and we obtain equal roots, that is (twice). If we proceed as before, writing
and , it is clear that the two solutions are not independent.

We need to find a second independent solution. Using the result of the previous
example we conclude that, because the roots of the auxiliary equation are equal, the
second independent solution is . The general solution is then

This is the complementary function.

y(x) = (A + Bx)e-4x

y2 = xe-4x

y2(x) = e-4xy1(x) = e-4x
k = -4

(k + 4)(k + 4) = 0

k2
+ 8k + 16 = 0

y = ekx

d2y

dx2 + 8 
dy

dx
+ 16y = 0

Key points Summary

Second-order linear constant-coefficient homogeneous equation:

Auxiliary equation:

ak2
+ bk + c =  0

a 

d2y

dx2
+ b 

dy

dx
+ cy = 0

Roots of auxiliary equation Complementary function

, , both real and different

, complex conjugate pair

, equal roots y = (A + Bx)ekxk1 = k2 = k

y = eax(A cos bx + B sin bx)a ; jb

y = Ae k 1x + Be k 2x k2k1

Exercises

Obtain the general solutions, that is the
complementary functions, of the following
homogeneous equations:

(a)

(b)

(c)
d2x

dt2
+ 5 

dx

dt
+ 6x = 0

d2y

dx2
+ 7 

dy

dx
+ 6y = 0

d2y

dx2
- 3 

dy

dx
+ 2y = 0

1 (d)

(e)

(f)
d2y

dt2
+

dy

dt
+ 8y = 0

d2y

dx2 
- 4 

dy

dx
+ 4y = 0

d2y

dt2
+ 2 

dy

dt
 + y = 0
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Solutions to exercises

Find the auxiliary equation for the differential
equation

Hence write down the complementary function.

L 
d2i

dt2
+ R 

di

dt
+

1

C
 i = 0

2 Find the complementary function of the
equation

d2y

dx2
+

dy

dx
+ y = 0

3

Solutions to exercises

(a) (b) 

(c) (d) 

(e) 

(f) 

,

k1, k2 =

-R ;A
R2 C - 4L

C

2L

i(t) = Aek1 t
+ Bek2 t

Lk2
+ Rk +

1

C
= 0;2

y = e-0.5t(A cos 2.78t + B sin 2.78t)

y = Ae2x
+ Bxe2x

y = Ae-t
+ Bte-tx = Ae-2t

+ Be-3t

y = Ae-x
+ Be-6xy = Aex

+ Be2x1 e-x>2 aA cos
13 x

2
+ B sin

13 x

2
b3

End of block exercises

Obtain the general solutions, that is the
complementary functions, of the following
homogeneous equations:

(a)

(b)

(c)
d2y

dx2
+

dy

dx
- 2y = 0

d2y

dt2
+

dy

dt
+ 5y = 0

d2y

dx2
- 2 

dy

dx
+ y = 0

1 (d)

(e)

(f)

Solutions to Solutions

d2x

dt2
- 16x = 0

d2y

dx2
- 2 

dy

dx
= 0

d2y

dx2
+ 9y = 0

(a)

(b)

(c) y = Ae-2x
+ Bex

x = e-0.5t(A cos  2.18t + B  sin  2.18t)

y = Aex
+ Bxex1 (d)

(e)

(f) x = Ae4t
+ Be-4t

y = A + Be2x

y = A cos  3x + B sin 3x

5.3 Finding the complementary function 1033
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BLOCK 6
Second-order linear constant-coefficient equations II

6.1 Introduction

We stated in Block 5 that the general solution of an inhomogeneous equation is the
sum of the complementary function and a particular integral. We have seen how to
find the complementary function in the case of a constant-coefficient equation. We
shall now deal with the problem of finding a particular integral.

The particular integral is any solution of the inhomogeneous equation. The
remarkable thing is that we need only find any solution of the inhomogeneous equa-
tion, and from it, together with the complementary function, the general solution can
be constructed.

There are a number of advanced techniques available for finding particular inte-
grals but we shall adopt a simpler strategy. Since any solution will do we shall try to
find one by a combination of educated guesswork and trial and error.

6.2 A particular integral

Given a second-order inhomogeneous differential equation

(1)

a particular integral is any function, which we will denote by , which satisfies
the equation: that is, any function that, when substituted into the left-hand side and
simplified, results in the function on the right.

Example 6.1
Show that is a particular integral of

Solution
We substitute into the given equation to see whether it is a solution. First
do the differentiation: if then

-4 sin 2x 
d2y

dx2 =

2 cos 2x 
dy

dx
=

y = sin 2x
y = sin 2x

d2y

dx2 + 7y = 3 sin 2x

y = sin 2x

ypi(x)

a 
d2y

dx2 + b 
dy

dx
+ cy = f 1x2
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Now substitute the expressions for y and into the left-hand side of the differential

equation , and simplify the result:

which is the same as the right-hand side of the differential equation. So is
a solution of the inhomogeneous equation and so is a particular integral. We can
write .

Example 6.2
Show that

is a particular integral of

(2)

Solution

Starting with , find and :

Substitute the expressions for y, and into the left-hand side of (2) to show

that y satisfies the inhomogeneous equation.

Therefore is a particular integral and we can write .

Example 6.3
What is a particular integral?

Solution

A particular integral is any 

solution of an inhomogeneous

differential equation.

 

ypi(x) = -

1

4
 e2xy = -

1

4
 e2x

-e2x
- a -

1

2
 e2xb  

-6a -

1

4
 e2xb , which simplifies to e2x

d2y

dx2 
dy

dx
 

dy

dx
= -

1

2
 e2x, 

d2y

dx2 = -e2x

d2y

dx2 
dy

dx
 y = -

1

4
 e2x

d2y

dx2 -

dy

dx
- 6y = e2x

y = -

1

4
 e2x

ypi = sin 2x

y = sin 2x

-4 sin 2x + 7(sin 2x) = 3 sin 2x

d2y

dx2 + 7y

d2y

dx2
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1036 Block 6 Second-order linear constant-coefficient equations II20

6.3 Finding a particular integral

In the previous section we explained what is meant by a particular integral. Now we
look at how one is actually found. In fact our method is rather crude. It involves trial
and error and educated guesswork. We try solutions that are of the same general form
as the inhomogeneous term, f(x), on the right-hand side. As a guide, use Table 6.1.
The trial solutions all contain constants. These can be adjusted to force the trial solu-
tion to be an actual solution of the inhomogeneous equation.

Table 6.1
Trial solutions to
find the particular
integral.

Exercises

Show that is a particular integral of the

equation .

Explain what is meant by a particular integral.2

d2y

dx2
- 5 

dy

dx
+ 6y = 24

y = 41 Show that is a particular integral of

the equation .x
$

+ 4x
#

+ 3x = e2t

x =

1

15
 e2t3

Inhomogeneous term f(x) Trial solution

Constant Constant

a cosh kx + b sinh kxa sinh kx
a cosh kx + b sinh kxa cosh kx
aekxaekx
a cos kx + b sin kxa sin kx
a cos kx + b sin kxa cos kx
axr

+
. . .

+ bx + gaxr
+

. . .
+ bx + c

Example 6.4
In each case you are given the inhomogeneous term f (x). State the appropriate form
of solution to try when finding a particular integral.
(a)
(b)
(c)
(d)

Solution
Use Table 6.1 to select an appropriate trial solution.

(a)

(b)

(c)

(d) y = a cos 2x + b sin 2x

y = ax + b

y = C, constant

y = ae2x

f (x) =  cos 2x
f (x) = 7x - 3
f (x) = 5
f (x) = 7e2x
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Example 6.5
In each case you are given the inhomogeneous term f (x). State the appropriate form
of solution to try when finding a particular integral.
(a)
(b)
(c)

Solution

(a)

(b)

(c) This time the inhomogeneous term is a combination of an exponential and a
polynomial, so this is the form the trial solution should take.

Example 6.6
Find a particular integral of the equation

(3)

Solution
We shall attempt to find a solution of the inhomogeneous problem by trying a
function of the same form as that on the right-hand side. In particular, let us try

, where is a constant that we shall now determine. If then

Substitution in equation (3) gives

that is

so that y will be a solution if is chosen so that , that is .

Therefore the particular integral is .

Example 6.7
By trying a solution of the form find a particular integral of the equation

d2y

dx2 +

dy

dx
- 2y = 3e-x

y = ae-x

ypi(x) = -

1

4
 e2x

a = -

1

4
-4a = 1a

-4ae2x
= e2x

4ae2x
- 2ae2x

- 6ae2x
= e2x

dy

dx
= 2ae2x and 

d2y

dx2 = 4ae2x

y(x) = ae2xay(x) = ae2x

d2y

dx2 -

dy

dx
- 6y = e2x

y = ge2x
+ ax + b

y = ge2x

y = ax + b

f (x) = x + e2x
f (x) = e2x
f (x) = x

6.3 Finding a particular integral 1037
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Solution

If , write down expressions for and .

Substitute into the given equation to find , and hence the particular integral.

Example 6.8
Obtain a particular integral of the equation

Solution
In the last example, we found that a fruitful approach was to assume a solution in the
same form as that on the right-hand side. Suppose we assume a solution 
and proceed to determine . This approach will actually fail, but let us see why. If 

then and . Substitution into the differential equation yields

and ought now to be chosen so that this expression is true for all x. If we equate the
coefficients of x we find so that , but with this value of the constant
terms are inconsistent (i.e. on the left, but zero on the right). Clearly a particular
integral of the form is not possible. The problem arises because differentiation of
the term produces constant terms that are unbalanced on the right-hand side. So,
we try a solution of the form

with and constants. This is consistent with the recommendation in Table 6.1. 

Proceeding as before, . Substitution in the differential equation now

gives

Equating coefficients of x we find

(4)

and equating constant terms we find

(5)

From equation (4), and then from equation (5)

-6 a1

8
b + 8b = 0

a =

1

8

-6a + 8b = 0

8a = 1

0 - 6a + 8(ax + b) = x

dy

dx
= a, 

d2y

dx2 = 0

ba

y(x) = ax + b

ax

ax

-
6
8

aa =
1
88a = 1

a

0 - 6a + 8ax = x

d2y

dx2 = 0
dy

dx
= ay(x) = ax

a

y(x) = ax

d2y

dx2 - 6 
dy

dx
 + 8y = x

-2a = 3, a = -

3

2
; ypi(x) = -

3

2
 e-x

a

dy

dx
= -ae-x, 

d2y

dx2 = ae-x

d2y

dx2 
dy

dx
 y = ae-x
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so that

that is

The required particular integral is

Example 6.9
Find a particular integral for the equation

Solution
First try to decide on an appropriate form for the trial solution. Refer to Table 6.1 if
necessary.

We shall try a solution of the form

Differentiating, we find

Substitution into the differential equation gives

which simplifies to

Equating coefficients of sin x,

and equating coefficients of cos x, we find

7a - 6b = 3

7b + 6a = 0

7b + 6a, 7a - 6b

cos x = 3 cos xsin x +

(-a cos x - b sin x) - 6(-a sin x + b cos x) + 8(a cos x + b sin x) = 3 cos x

dy

dx
= -a sin x + b cos x, 

d2y

dx2 = -a cos x - b sin x

y(x) = a cos x + b sin x

y = a cos x + b sin x

d2y

dx2 - 6 
dy

dx
+ 8y = 3cos x

ypi(x) =

x

8
+

3

32

b =

3

32

8b =

3

4

6.3 Finding a particular integral 1039
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1040 Block 6 Second-order linear constant-coefficient equations II20

Solve these simultaneously to find and , and hence the particular integral.

The particular integral is

ypi(x) =

21

85
 cos x -

18

85
 sin x

a =

21

85
, b = -

18

85

ba

Find a particular integral for the equation

d2x

dt2
- 3 

dx

dt
+ 2x = 5e3t

1

Exercises

Find a particular integral for the equation

Find a particular integral for
.y– + y¿ + y = 2 + x + cos x

3

d2x

dt2
- x = 4e-2t

2

Solutions to exercises

xpi =

4

3
 e-2t2

xpi = 2.5e3t1 ypi = 1 + x + sin x3

6.4 Finding the general solution of a second-order 
inhomogeneous equation

The general solution of a second-order linear inhomogeneous equation is the sum of
its complementary function and a particular integral. In Block 5 you learnt how to
find a complementary function, and in the previous section you learnt how to find a
particular integral. We now put these together to find the general solution.

Key point The general solution of a constant-coefficient ordinary differential equation

is the sum of the particular integral and the complementary function:

contains no arbitrary constants; contains two arbitrary constants.ycfypi

y = ypi + ycf

a 
d2y

dx2
+ b 

dy

dx
+ cy = f (x)
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Example 6.10
Find the general solution of

Solution
The complementary function has already been found in Example 5.9 to be

By noting that is a polynomial of degree 2, the particular integral is found by
trying a solution of the form

Differentiate this trial solution twice:

Substitute into the inhomogeneous equation and by equating coefficients of , x and
constants, write down the equations satisfied by a, b and c.

Equate coefficients of :

Equate coefficients of x:

Equate constants:

Solve these to find a, b and c.

Hence write down the particular integral:

Thus the general solution is

 = -

3

10
 x2

-

9

50
 x -

57

500
+ Ae2x

+ Be-5x

  y = ypi(x) + ycf(x)

ypi (x) = -

3

10
 x2

-

9

50
 x -  

57

500

a = -

3

10
, b = -

9

50
, c = -

57

500

2a + 3b - 10c = 0

6a - 10b = 0

-10a = 3

x2

2a + 3(2ax + b) - 10(ax2
+ bx + c) = 3x2

x2

dy

dx
= 2ax + b, 

d2y

dx2 = 2a

y = ax2
+ bx + c

3x2

ycf = Ae2x
+ Be-5x

d2y

dx2 + 3 

dy

dx
- 10y = 3x2

6.4 Finding the general solution of a second-order inhomogeneous equation 1041
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1042 Block 6 Second-order linear constant-coefficient equations II20

Example 6.11
Find the particular solution of that satisfies and

.

Solution
The solution must be found in three parts:

1 Solve the homogeneous equation to find the complementary function.
2 Find a particular integral of the inhomogeneous equation, and add this to the

complementary function to find the general solution.
3 Apply the initial conditions to find the arbitrary constants.

First of all we find the complementary function. The homogeneous equation is 
and so the auxiliary equation is .

Therefore and and so the complementary function is

The particular integral is found by trying a solution of the form .
If , and . Substitute these expressions into the

differential equation

so that

from which , that is . The general solution is then

The particular solution is found by applying the initial conditions.
Apply the condition .

To apply the condition we must differentiate the general solution:

Now apply the condition .

Solve these simultaneous equations.

A =

32

7
 and B =

65

21

0 = 3A - 4B -  
4

3

y¿(0) = 0

3Ae3x -  4Be-4x -  
4

3
 e2xdy

dx
=

y¿(0) = 0

7 = A + B -

2

3

y(0) = 7

y = Ae3x
+ Be-4x

-

2

3
 e2x

a = -

2

3
-6a = 4

4a + 2a - 12a = 4

4ae2x
+ 2ae2x

- 12ae2x
= 4e2x

y– = 4ae2xy¿ = 2ae2xy = ae2x
y = ae2x

y = Ae3x
+ Be-4x

k = -4k = 3
k2

+ k - 12 = (k - 3)(k + 4) = 0y¿ - 12y = 0
y– +

y¿(0) = 0
y(0) = 7y– + y¿ - 12y = 4e2x
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Finally, the particular solution is

Example 6.12 Electrical Engineering – An LC circuit with 
sinusoidal input

The differential equation governing the flow of current in the series LC circuit shown
in Figure 6.1 when subject to an applied voltage is

Obtain its general solution.

L 
d2i

dt2
+

1

C
 i = vV0  cos vt

v(t) = V0 sin vt

y =

32

7
 e3x

+

65

21
 e-4x

-

2

3
 e2x

CL

V

i

Figure 6.1
A series LC circuit.

Solution
The homogeneous equation is

Letting we find the auxiliary equation is so that 

and so . Therefore the complementary function is

where A and B are arbitrary constants. To find a particular integral, try
, where E and F are constants. We find

Substitution into the inhomogeneous equation yields

which is simplified to

-v2 LF +

F

C
 , -v2 LE +

E

C

vV0  cos vtcos vt =sin vt +

L (-v2E cos vt - v2F sin vt) +

1

C
 (E cos vt + F sin vt) = vV0  cos vt

 
d2i

dt2
 = -v2E cos vt - v2F sin vt

 
di

dt
 = -vE sin vt + vF cos vt

i = E cos vt + F sin vt

icf = A cos 
t

2LC
+ B sin 

t

2LC

k = ;

j

2LC

k2
= -

1

LC
Lk2

+

1

C
= 0i = ekt

L
d2i

dt2
+

i

C
= 0

6.4 Finding the general solution of a second-order inhomogeneous equation 1043
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1044 Block 6 Second-order linear constant-coefficient equations II20

Equating coefficients of gives

from which .
Equating coefficients of gives

from which

Hence the particular integral is

Finally, the general solution is

 = A cos 
t

2LC
+ B sin 

t

2LC
+

CV0v

1 - v2LC
 cos vt

 i = icf + ipi

ipi =

CV0 v

1 - v2 LC
 cos vt

E =

CV0 v

1 - v2 LC

-v2LE +

E

C
= vV0

 cos vt
F = 0

-v2LF +

F

C
= 0

 sin vt

Exercises

Find the general solution of the following
equations:

(a)

(b)

(c)

(d)
d2x

dt2
 + 11 

dx

dt
 + 30x = 8t

d2y

dt2
 + 5 

dy

dt
 + 6y = 2t

d2y

dx2
 + 5 

dy

dx
+ 4y = 8

d2x

dt2
- 2 

dx

dt
- 3x = 6

1 Obtain the general solution of

Obtain the general solution of the equation

Find the particular solution satisfying

y(0) = 1, 
dy

dx
 (0) = 0

d2y

dx2
 + 3 

dy

dx
 + 2y = 10 cos 2x

3

y– - y¿ - 2y = 6

2

Solutions to exercises

(a) 
(b) 

(c)

(d) x = Ae-6t
+ Be-5t

+ 0.267t - 0.0978

y = Ae-2t
+ Be-3t

+

t

3
-

5

18

y = Ae-x
+ Be-4x

+ 2
x = Ae-t

+ Be3t
- 21

3
2 e- 2x

+
3
2 sin 2x -

1
2 cos 2x

y = Ae-2x
+ Be-x

+
3
2 sin 2x -

1
2 cos 2x;3

y = Ae2x
+ Be-x

- 32
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6.5 Inhomogeneous term appears in the complementary function

Occasionally you will come across a differential equation

for which the inhomogeneous term, f(x), forms part of the complementary function.
One such example is the equation

It is straightforward to check that the complementary function is .
Note that the first of these terms has the same form as the inhomogeneous term, ,
on the right-hand side of the differential equation.

You should verify for yourself that trying a particular integral of the form
will not work in a case like this. Can you see why?

Instead, try a particular integral of the form . Verify that

Substitute these expressions into the differential equation to find . Finally, the
particular integral is and so the general solution to the differential
equation is

In general, if f(x) is part of the complementary function we try for the
particular integral.

y = axf(x)

y = Ae3x
+ Be-2x

+

1

5
 xe3x

ypi(x) =
1
5 xe3x

a =
1
5

dy

dx
 = ae3x(3x + 1) and 

d2y

dx2 = ae3x(9x + 6)

y(x) = axe3x
y(x) = ae3x

e3x
ycf = Ae3x

+ Be-2x

d2y

dx2 -

dy

dx
- 6y = e3x

a 
d2y

dx2 + b 
dy

dx
 + cy = f (x)

End of block exercises

Find the general solution of the following
equations:

(a)

(b)

(c)

(d)
d2x

dt2
- 16x = 9e6t

d2y

dx2
+ 9y = 4e8x

d2y

dt2
+

dy

dt
+ y = 4 cos 3t

d2y

dx2
+ 2 

dy

dx
+ 3y = 2 sin 2x

1 Find a particular integral for the equation

Find the general solution of

(a)

(b)
d2x

dt2
- 2 

dx

dt
+ x = et

d2x

dt2
- 6 

dx

dt
+ 5x = 3

3

d2y

dx2
+

dy

dx
+ y = 1 + x

2

6.5 Inhomogeneous term appears in the complementary function 1045
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Solutions to exercises

(a)

(b) 

(c)

(d) x = Ae4t
+ Be-4t

+

9

20
 e6t

y = A cos 3x + B sin 3x + 0.0548e8x

-0.438 cos 3t + 0.164 sin 3t
y = e-0.5t(A cos 0.866t + B sin 0.866t)

-

8

17
 cos 2x -

2

17
 sin 2x

y = e-x(A sin 12x + B cos 12x)1

(a) 

(b) x = Aet
+ Btet

+

1

2
t2et

x = Aet
+ Be5t

+

3

5
3

ypi = x2

End of chapter exercises

Give one example each of a first-order linear
equation, first-order non-linear equation,
second-order linear equation, second-order
non-linear equation.

By integrating twice find the general solution
of .

Find a first-order equation satisfied by .

Classify the following equations, specifying
the order and type (linear or non-linear):

(a)

(b)

Find a second-order differential equation that
is satisfied by

Integrate twice the differential equation

where w and l are constants, to find a general
solution for y.

Integrate the equation subject to the

condition in order to find the particular 
solution.

y(1) = 4

dy

dx
 = 3x27

d2y

dx2
=

w

2
 (lx - x2)

6

y = A cosh 2x + B sinh 2x

5

dy

dt
+ cos y = 0

d2y

dx2
-

dy

dx
 = x2

4

x = Ae-2t3

y– = 12x2
2

1 Two tanks containing a liquid are placed in
series so that the first discharges into the
second and the second discharges into a waste
outlet. Let (t) and (t) be the flow rates out
of the two tanks respectively, and let the height
of liquid in each of the tanks be and 
respectively. The two tanks are identical and
each has a constant cross-sectional area A. The
outflow from each tank is proportional to the
height of liquid in the tank. At the height
of liquid in the first tank is and the second
tank is empty.
(a) Derive and solve the differential equation

for .
(b) Hence find .
(c) Derive and solve the differential equation

for .
(d) Hence find .

The charge, q, on a capacitor in an LCR series
circuit satisfies the second-order differential
equation

where L, R, C and E are constants. Show
that if the general solution of this
equation is

 e-t>(CR) aA cos 
1

CR
 t + B sin 

1

CR
 tb + CE

q =

2L = CR2

L 
d2q

dt2
+ R 

dq

dt
+

1

C
 q = E

9

q2(t)
h2(t)

q1(t)
h1(t)

h0

t = 0

h2(t)h1(t)

q2q1

8

1046 Block 6 Second-order linear constant-coefficient equations II
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If and when show

that the current in the circuit is

Obtain the general solution of the differential
equation

where and K are constants.m

dT

du
- mT = -mK

10

i =

2E

R
 e-t>(CR) sin

1

CR
 t

t = 0q = 0i =

dq

dt
 = 0

The equation governing the flow of current i
in a series LR circuit with applied constant
voltage E is

(a) Solve this equation subject to the condition
.

(b) State the final value of the current.
(c) Find the time taken for the current to reach

95% of its final value.

i(0) = 0

L 
di

dt
 + Ri = E

11

Solutions to exercises

(a) second-order linear
(b) first-order non-linear due to term cos y

y =

w

2
 a lx3

6
-

x4

12
b + Ax + B6

d2y

dx2
 = 4y5

4

x¿ = -2x3

y = x4
+ Ax + B2

(a) (b)

(c) (d) 

(a) (b)

(c) about 
3L

R

E

R
i =

E

R
 A1 - e-Rt>L B11

T = K + Aemu10

q2 =

k2h0t

A
 e-kt>Ah2 =

kh0t

A
 e-kt>A

q1 = kh0e
-kt>Ah1 = h0e

-kt>A8

y = x3
+ 37

End of chapter exercises 1047
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Chapter 21
Functions of more than one variable 
and partial differentiation

In many engineering applications a physical quantity depends upon
several other quantities that can vary independently. For example, the
temperature at a point in a kiln will vary both with time and with the
position of the point in the kiln. Such quantities are described
mathematically using functions of more than one variable. In this
chapter we explain the notation used to represent such functions. We
go on to explain two ways in which these functions can be visualised.
The techniques of calculus, previously applied to functions of one
variable, are now extended to functions of several variables.
Differentiation involving several variables is called partial
differentiation. Finally we illustrate an application of partial
differentiation to finding maximum, minimum and saddle points of a
function of two variables.
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Chapter 21 contents

Block 1 Functions of two independent variables, and their graphs

Block 2 Partial differentiation

Block 3 Higher-order derivatives

Block 4 Partial differential equations

Block 5 Stationary values of a function of two variables

End of chapter exercises
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BLOCK 1
Functions of two independent variables, 
and their graphs

1.1 Introduction

We have explained in Chapter 6 that a function is a mathematical rule that operates
upon an input to produce a single output. We saw that the input is referred to as the
independent variable because we are free, within reason, to choose its value. The
output is called the dependent variable because its value depends upon the value of
the input. Commonly we use the letter x to represent the input, y the output and f the

function, in which case we write . Examples include , , and so

on. In such cases, there is a single independent variable, x.
We now move on to consider examples in which there are two independent

variables. This means that there will be two inputs to a function, each of which can
be chosen independently. Once these values have been chosen, the function rule will
be used to process them in order to produce a single output called the dependent vari-
able. Notice that whilst there is now more than one input, there is still a single output.

We then illustrate how these functions can be visualised in the form of contour
plots and three-dimensional graphs. User-friendly computer software can be used for
such visualisation, and you should enquire about packages available for your use.

1.2 Functions of two variables

The block diagram in Figure 1.1 depicts the function . This func-
tion has two independent inputs, denoted by x and y. The function rule is ‘multiply
the input x by 3, multiply the input y by 4, and add the results’. There is a single
output .3x + 4y

f(x, y) = 3x + 4y

y =

1
x

y = 5x2y = f(x)

Figure 1.1
A block diagram
of the function
f (x, y) = 3x + 4y

Inputs
Function, f

Output
3 × x + 4 × y f(x, y) = 3x + 4y

x

y

The notation indicates that, with inputs x and y, the function, f,
produces an output of . The inputs to the function are placed in brackets,
after the f. The expression f(x, y) is read as ‘f is a function of x and y’. As before, the
inputs to a function are also known as the arguments of the function.

3x + 4y
f(x, y) = 3x + 4y

M21_CROF5939_04_SE_C21_pages1048-1079.QXD  9/28/18  10:52 AM  Page 1050



1.2 Functions of two variables 1051 21

Key point A function of two variables is a rule that produces a single output when values of two
independent variables are chosen.

Example 1.1
A function f is defined by . Calculate the output when the input
values are and .

Solution
Refer to the block diagram in Figure 1.1. When the input x takes the value 5, and the
input y takes the value 6, the output is . We could
write this as .

Example 1.2
A function f is defined by . Calculate the output when the
inputs are and .

Solution
In this example we are required to find . This can be calculated directly from
the expression for f(x, y), without reference to a block diagram. Substitution into the
function rule produces

Example 1.3

A function is defined by . Calculate the output when the inputs are 

and .

Solution

Example 1.4
A function is defined by .
(a) Calculate the output when the inputs are and .
(b) Show that this function can be written in the equivalent form .

Solution

(a)

(b) Using the first law of indices we can write as .

Note that in the previous examples both x and y are independent variables. We can
choose a value for y quite independently of the value we have chosen for x. This is
quite different from the case of a function of a single variable when, for example, if
we write , choosing x automatically determines y.y = 5x2

exeyex + y

e-1 + 2
= e1

= e = 2.718 (3 d.p.)f (-1, 2) =

f (x, y) = exey
y = 2x = -1

f (x, y) = ex + y

12

3
= 4f (12, 3) =

y = 3

x = 12f (x, y) =

x

y

f(-2, 3) = 11 * (-2)2
- 7 * (3) + 2 = 44 - 21 + 2 = 25

f(-2, 3)

y = 3x = -2
f(x, y) = 11x2

- 7y + 2

f (5, 6) = 39
3 * 5 + 4 * 6 = 15 + 24 = 39

y = 6x = 5
f(x, y) = 3x + 4y
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1052 Block 1 Functions of two independent variables, and their graphs21

It is common to introduce another symbol to stand for the output. So, in
Example 1.1 we may write or simply . In
Example 1.2 we can write simply . Here the value of z
depends upon the values chosen for x and y, and so z is referred to as the depen-
dent variable.

Functions of two variables are introduced because they arise naturally in engineer-
ing applications. Consider the following example, which illustrates this.

Example 1.5
The volume V of the cylinder shown in Figure 1.2 is given by the formula 
where r is the radius and h is the height of the cylinder. Suppose we choose a value
for the radius, and a value for the height. Note that we can choose these values inde-
pendently. We can then use the formula to determine the volume of the cylinder. 
We can regard V as depending upon the two independent variables r and h and write

. Here, the dependent variable is V since the value of the volume
depends upon the values chosen for the radius and the height.
V = f (r, h) = pr2h

V = pr2h,

z = 11x2
- 7y + 2

z = 3x + 4yz = f (x, y) = 3x + 4y

Figure 1.2
The volume, V,
depends upon the
two independent
variables r and h,
and is given by

.V = pr2h

V � πr2h

h

r

1.3 Contour plots of functions of two variables

By now you will be familiar with the way in which a function of one variable is rep-
resented graphically. For example, you have seen in Chapter 6 how the graph of the
function is drawn by plotting the independent variable x on the horizontal
axis, and the dependent variable y on the vertical axis. Given a value of x, the func-
tion rule enables us to calculate a value for y, and the point with coordinates (x, y) is
then plotted. Joining all such points produces a graph of the function.

When two independent variables are involved, as in , there are various
ways in which we can represent this graphically. One way is to use a contour plot,
as we shall show in Examples 1.6 and 1.7.

A contour plot is a two-dimensional visualisation of a function of two variables.
You may already be familiar with contour plots in the context of maps. Contours
are drawn on the map to show the location of points that are the same height above
sea level. In the example that follows, contours show the location of points that

z = f (x, y)

y = f (x)
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have the same temperature. This is analogous to the plotting of isotherms on a
weather map.

Example 1.6 Mechanical Engineering – Temperature distribution
in a metal plate

There are many occasions in the engineering design process when it is necessary
to analyse heat flow. For example, an engineer may be interested in the effect of
different insulation materials on heat losses through the roof of a building. In a
nuclear reactor heat is generated in the fuel rods, which are then often cooled by
water. It is critical to be able to calculate the rate of heat flow from the rods to the
water if a life-threatening situation such as meltdown of the reactor is to be
avoided. In applications like these an engineer will meet functions of more than
one variable.

As an example consider a two-dimensional metal plate, defined by the region
, , which contains no internal sources of heat. Suppose the

temperature is maintained at on three of the plate boundaries. Suppose it varies
with x along the fourth boundary at according to , as shown in
Figure 1.3.

T =  sin pxy = 1
0 °C

0 … y … 10 … x … 1

Figure 1.3
A metal plate with
temperatures
imposed on its
boundaries.

O

0.8

0.6

0.4

0.2

1

0.40.2 0.6 0.8 1

0.75

0.25

0.5

T � 0 °C

T � 0 °C

T � 0 °C

x

y T � sin p x

A typical problem is to use this information to determine the temperature at any
point in the plate. Knowing the equations for heat conduction, and some advanced
techniques in calculus, it is possible to show that the temperature, T, at any point (x, y)
is given by the function of two variables

The function sinh is a hyperbolic function, detailed in Chapter 8, Block 1. It is
straightforward, using a computer graphics package, to produce a contour plot
from this function that shows curves of constant temperature. In Figure 1.3 we
have plotted contours showing curves upon which the temperature is , 
and .0.75 °C

0.5 °C0.25 °C

py

T(x, y) =

sinh py sin px

sinh p
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Example 1.7 Fluid Dynamics – Fluid flow around a corner
The analysis of the ways in which fluids flow around objects is essential in fields
such as aeronautical and marine engineering, and the study of renewable energy sys-
tems. A useful quantity is the streamfunction, . Under particular conditions is a
function of the two spatial variables x and y: that is, (x, y). Plotting curves
upon which is constant gives a useful visual representation because fluid flows
along these curves.

For example, the streamfunction gives the streamlines for
flow around a corner. Curves along which is constant are illustrated in Figure 1.4.c

c(x, y) = 4(x2
- y2)

c

c = c

cc

Figure 1.4
The streamlines of
a flow around a
corner are
described by a
function of two
variables,

.c = 4(x2
- y2)

–3

–2

–1

O

1

2

3

0.5 1 1.5 2 32.5
x

y

y � 10

y � 20 

y � 30

y � 5
y � 0

Exercises

Given find the output
when and .

If find (a) f (2, 3),
(b) f (11, 1).

If find z(1, 1).

If find the value of the
dependent variable w when and

.y = -9
x = -3

w = g(x, y) = 7 - xy4

z = f (x, y) = 3ex
- 2ey

+ x2y33

z = f (x, y) = -11x + y2

y = 2x = 8
z = f (x, y) = 7x + 2y1 If find 

where the inputs are angles measured in degrees.

If find f (0.5, 3).

Using the temperature distribution function 

in Example 1.6, 

evaluate the temperature at the centre of the
plate.

T(x, y) =

sinh py sin px

sinh p

7

f (x, t) = e2xt6

f (20°, 30°)z = f (x, y) = sin(x + y)5
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Solutions to exercises

60

(a) (b) 

-204

e1
+ 1 = 3.718 (3 d.p.)3

-120-192

1 0.766 (3 d.p.)

20.086 (3 d.p.)

(3 d.p.)0.199 °C7

6

5

Computer and calculator exercises

Matlab code that can be used to generate the
contour plot in Figure 1.3 is

[x, y] meshgrid (0:0.1:1,
0:0.1:1);
z sinh (pi*y) *sin(pi*x) / 
sinh (pi);
contour (x, y, z, [0.25, 0.5,
0.75]);

If you have access to Matlab, reproduce this
figure and then modify the code to produce a
contour plot of the function 
shown in Figure 1.4. Note that will be
coded as

x. 2^

x2
c = 4(x2

- y2)

#
=

=

1 Maple code that can be used to generate
Figure 1.4 is

with (plots):
contourplot (4*(x 2 y 2),
x 0..3, y 3..3, 
contours [0, 5, 10, 20, 30]);

If you have access to Maple, reproduce this
figure and modify the code to produce the
contour plot in Figure 1.3.

The function 

represents the streamline pattern of fluid flow
past a cylinder. Investigate whether a computer
graph-plotting package to which you have
access can produce a contour plot of this flow.

c(x, y) = ya1 -

1

x2
+ y2
b3

=

= -=

^-^

2

1.4 Three-dimensional graphs

As an alternative to a contour plot, a graph can be drawn in three dimensions – a task
that is difficult to do in the two-dimensional plane of the paper. We now need two
axes for the independent variables and a third axis for the dependent variable. Com-
puter software is readily available for plotting graphs in three dimensions, so rather
than attempt this manually we shall be content with understanding the process
involved in producing the graph, and illustrating this with several examples.

Three axes are drawn at right angles and these are labelled x, y and z as shown in
Figure 1.5. There is more than one way of doing this, but the usual convention is
shown here. When labelled in this way the axes are said to form a right-handed set.
The axes intersect at the origin O.
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Example 1.8
Given the function of two variables calculate the value of the
function when x and y take the following values. Represent each point graphically.
(a) (b) (c) 

Solution
In each case we use the function rule to calculate the corre-
sponding value of z.
(a) (b) (c) 
It is conventional to write the coordinates of the points in the form (x, y, z) so that the
three points in this example are (3, 2, 17), (5, 0, 15) and (0, 5, 20).

Each of the points can then be drawn as shown in Figure 1.6, where they have
been labelled A, B and C respectively. Notice that the z coordinate of point A, which
is 17, gives the height of A above the point (3, 2) in the plane. Similar comments
apply to points B and C.

x–y

z = 3(0) + 4(5) = 20z = 3(5) + 4(0) = 15z = 3(3) + 4(2) = 17

z = f (x, y) = 3x + 4y

x = 0,  y = 5x = 5,  y = 0x = 3,  y = 2

z = f (x, y) = 3x + 4y

x

y

z

O

x

y

z

B

A

C20

15

1
1 2 3 4 5 6 7

4

2
3

5

17

Figure 1.5
Three
perpendicular axes,
labelled x, y and z.

Figure 1.6
Three points in
three-dimensional
space with
coordinates 
A(3, 2, 17), 
B(5, 0, 15) and
C(0, 5, 20).
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If we were to continue selecting more points and plotting them we would find
that all the points lie in a plane. This plane is shown in Figure 1.7. Notice that in
each case the z coordinate is the height of the plane above the point (x, y) in the 
plane.

For example, the point C is 20 units above the point (0, 5) in the plane.x–y

x–y

Figure 1.7
The plane

.z = 3x + 4y

Figure 1.8
The function

.z = x2
+ y2

x y

z

In the previous example we saw that when we drew a graph of the function of two
variables we obtained a plane. In more general cases the graph of

will be a curved surface, and the z coordinate is the height of the surface
above the point (x, y). Some more examples of functions of two variables and their
graphs are shown in Figures 1.8 and 1.9. It would be a useful exercise for you to try
to reproduce these graphs for yourself using computer software.

z = f (x, y)
z = 3x + 4y
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Example 1.9 Mechanical Engineering – Temperature distribution
in a metal plate

In Example 1.6 we saw that the function represents the

temperature distribution in a metal plate when three of its boundaries are maintained
at and the fourth has a temperature given by . A graph of this func-
tion is shown in Figure 1.10. Observe the temperature distribution along the line

, given by .T = sin pxy = 1

T = sin px0 °C

T(x, y) =

sinh py sin px

sinh p

Figure 1.9
The function

.z = sin(x2
+ y2)

Figure 1.10

The function

.T(x, y) =

sinh py sin px

sinh p

x y

z

Exercises

Given the function , find the z
coordinate corresponding to each of the
following points, which lie in the plane:
(a) (4, 4) (b) (0, 3) (c) (5, 0)

x–y

z = 3x - 6y1 Plot the points on a three-dimensional graph.

Solutions to exercises

(a) (b) (c) 15-18-121

x y

z

y � 1
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Computer and calculator exercises

The following Matlab code can be used to
generate a three-dimensional plot as shown in
Figure 1.10.

[x,y] meshgrid (0:0.1:1,
0:0.1:1);
z sinh(pi*y).*sin(pi*x)/
sinh(pi);
mesh(z);

If you have access to Matlab generate a plot
for yourself. Plot a graph of the surface

as shown in Figure 1.9.z = sin(x2
+ y2)

=

=

1 The Maple code

plot3d(x^2 + y^2,x -3..3,
y -3..3);

can be used to plot the graph of as
shown in Figure 1.8. Try to reproduce this
graph for yourself.

z = x2
+ y2

=

=

2

End of block exercises

Find the value of the function
when and .

If find f (2, 3).

If find the value of V when
and .

Functions of three (or more) independent
variables can be defined in an analogous way

4

y = 7x = 3
V = ln(x2

+ y2)3

f (x, y) = x2
+ 3xy2

y = 6x = 2f (x, y) = 2x2
+ y2

1 to functions of two variables. Suppose u(x, y, z)
is a function of the three independent variables
x, y and z, and is defined by

Find u when , and . Can the
value of u be determined when ?x = y = z = 0

z = 3y = 2x = 1

u =

1

2x2
+ y2

+ z2

Solutions to exercises

222

2401

. No, because division by 0

is not allowed.

u(1, 2, 3) =
1

214
4

V = ln 58 = 4 .060 (3 d.p.)3
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BLOCK 2
Partial differentiation

2.1 Introduction

Before attempting this section it is essential that you have a thorough understanding of
differentiation of functions of one variable, and you should revise Chapters 15 and 16
if necessary. In particular, you may need to refer frequently to Table 2.1 in Chapter 15,
which gives the derivatives of some common functions.

In Chapter 15 we introduced differentiation of a function of a single variable
and showed how the derivative of such a function can be calculated. Recall that
this gives useful information about the gradient of the graph of the function at dif-
ferent points. In this section we explain how functions of two variables are differ-
entiated.

Also in Chapter 15 we differentiated y, which was a function of x, to obtain the 

derivative . Note that the dependent variable (in this case y) is differentiated with 

respect to the independent variable (in this case x).
Consider now z, which depends upon two variables x and y. Recall that z is then

the dependent variable, and x and y are the independent variables. Hence z can be
differentiated with respect to x to produce a derivative, and it can also be differenti-
ated with respect to y to produce another, different, derivative. So for functions of
two variables there are two derivatives: we can no longer talk about the derivative of z.
This is a fundamental difference between functions of one variable and functions of
two variables.

When differentiating functions of two variables we refer to this process as 

partial differentiation, and instead of using a normal letter d as in , we use a 

curly d instead and write . Do not be put off by this notation – you will soon get
used to it. When we differentiate z with respect to (w.r.t.) x we denote the resulting 

derivative by . An alternative notation in common use is to write this derivative as 

. When we differentiate z w.r.t. y we denote the derivative produced by . An 

alternative notation is to write this derivative as .zy

0z

0y
zx

0z

0x

0

dy

dx

dy

dx

Key point If then

the (first) partial derivative of z with respect to x is denoted or ,

the (first) partial derivative of z with respect to y is denoted or .zy
0z

0y

zx
0z

0x

z = f (x,  y)

We now explain how these derivatives are calculated.
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2.2 Partial differentiation with respect to x

Suppose we have a function . You will recall that its derivative is 

Note that the derivative of the constant 11 is zero. Similarly if , 

Here the derivative of the constant 12 is zero. We are now ready to introduce partial
differentiation with respect to x.

Consider the function . When we differentiate with respect to x we
treat any occurrence of the variable y as though it were a constant. Hence in this case
the derivative of y is zero, and we write

Similarly,

If y is treated as a constant, then so too will be multiples of y, such as 7y and .
Furthermore, any functions of y, such as and , will also be regarded as constants.

Example 2.1

Calculate when .

Solution
We must differentiate with respect to x. This function is particularly
simple because y does not appear at all. The derivative of 9x is 9, and the derivative

of the constant 2 is zero. Hence .

Example 2.2

Calculate when .

Solution

To find we treat y as though it is a constant. Imagine it is just a number like

the ‘2’ in the previous example. Then .

Example 2.3

Calculate when .

Solution
Treat y as though it is a constant.

-19
0z

0x
=

z = y - 19x
0z

0x

0z

0x
= 9

0z

0x

z = 9x + y
0z

0x

0z

0x
= 9

z = 9x + 2

z = 9x + 2
0z

0x

eyy2
-3y

if z = 7x2
- y then 

0z

0x
= 14x - 0 = 14x

if z = 5x + y then 
0z

0x
= 5 + 0 = 5

z = 5x + y

dz

dx
= 6.z = 6x + 12

dz

dx
= 5.z = 5x + 11
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Example 2.4

Calculate when .

Solution
In this case 11 is a constant and we treat y, and hence 4y, as a constant.

Example 2.5

Calculate when .

Solution

. The quantity is treated as a constant.

Example 2.6

Calculate when .

Solution

y and hence are treated as a constant. When is differentiated with respect to x

the result will be zero. Hence if then .

Example 2.7

Calculate when .

Solution
y and hence are is treated as a constant.

Example 2.8

Calculate when .

Solution

If , then .

Recall that:

• if 4x is differentiated with respect to x the result is 4,
• if 5x is differentiated with respect to x the result is 5.

0z

0x
= 3z = 3x - 4y3

z = 3x - 4y30z

0x

-4x30z

0x
=

5y3

z = 5y3
- x40z

0x

0z

0x
= 2xz = x2

- y2

-y2y2

z = x2
- y20z

0x

-3y
0z

0x
= 8x - 0 = 8x

z = 4x2
- 3y

0z

0x

3
0z

0x
=

z = 3x + 4y + 11
0z

0x
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Extending this to the following function of two variables:

• if is differentiated with respect to x the result is y.

We see that because y is treated as if it is a constant then .

Example 2.9

Calculate when .

Solution

To find imagine that you were trying to differentiate say. The result would be

. Hence if then or simply 2xy.

Example 2.10

Calculate when .

Solution
Treating y as a constant we see that this function is of the form constant and so

.

Example 2.11

(a) Calculate when .

(b) Evaluate at the point .

(c) Evaluate at the point .

Solution

(a)

(b) When and , .

(c) When and 

Example 2.12

Calculate when (a) , (b) , (c) ,

(d) , (e) .z = 3x2
+ 4x  sin  yz = 3x2

+ cos  y

z = 3x2
  cos  yz = x2

+ eyz = x2ey0z

0x

42
0z

0x
=

y = -3x = 9

0z

0x
= 6(-2) + 4(5) = 8y = 5x = -2

6x + 4y
0z

0x
=

(x, y) = (9, -3)
0z

0x

(x, y) = (-2,  5)
0z

0x

z = 3x2
+ 4xy + 11

0z

0x

0z

0x
= (3y)(2x) = 6xy

* x2

z = 3yx20z

0x

0z

0x
= y(2x)z = yx23(2x) = 6x

3x20z

0x

z = yx20z

0x

0z

0x
= y

z = yx
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Solution

(a) y and hence is treated as a constant. Then .

(b)

(c) y and hence cos y is treated as a constant. Then .

(d)

(e)

Example 2.13

Calculate when (a) , (b) .

Solution

(a) If then .

(b) If then because y is treated as a constant. Compare

this result with that in part (a).

0z

0x
= y cos yxz = sin yx

0z

0x
= 3 cos 3xz = sin 3x

z = sin yxz = sin 3x
0z

0x

0z

0x
= 6x + 4 sin y

0z

0x
= 6x

0z

0x
= 6x cos y

0z

0x
= 2x

0z

0x
= 2xeyey

Key point The (first) partial derivative with respect to x of a function is denoted by 
and is calculated by differentiating the function with respect to x and treating y as
though it were a constant.

0z

0x
z = f (x, y)

We now seek . When differentiating partially w.r.t. we consider other variables x
0F

0x

Example 2.14

Find and given .

Solution
Note that is a function of one variable, . So

dF

dx
= 6x + 1

xF

F1x2 = 3x2
+ x

0F

0x

dF

dx

to be constant. In this case, however, there are no other variables and so 

We see that in this case

0F

0x
=

dF

dx

0F

0x
= 6x + 1
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2.3 Partial differentiation with respect to y

When we differentiate a function f(x, y) with respect to y we treat any occurrence of
the variable x as though it were a constant. The partial derivative with respect to y of

a function is denoted by . Consider the following examples.

Example 2.15

Find when .

Solution

When calculating we treat any occurrence of x as if it were a constant. So the term

is treated as a constant and its partial derivative with respect to y is zero. That is,

Example 2.16

Find when .

Solution
Because x is treated as a constant, we are dealing with a function of the form

. The derivative with respect to y will be simply the constant factor.
That is,

Example 2.17

(a) Find when .

(b) Evaluate when .(x, y) = (6, 11)
0z

0y

z = 4xy30z

0y

if  z = 3x2y then 0z

0y
= 3x2

z = constant * y

z = 3x2y
0z

0y

if z = 3y4
+ 4x2

+ 8  then   
0z

0y
= 12y3

+ 0 + 0 = 12y3

4x2

0z

0y

z = 3y4
+ 4x2

+ 8
0z

0y

0z

0y
z = f(x, y)

Key point If F is a function of x only, then

0F

0x
=

dF

dx
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Key point The (first) partial derivative with respect to y of a function is denoted by 
and is calculated by differentiating the function with respect to y and treating x as
though it were a constant.

0z

0y
z = f(x, y)

It will be necessary to work with symbols other than z, x and y. Consider the follow-
ing example.

Example 2.18

Consider the function . Find and when .

Solution
When differentiating with respect to p, any occurrence of t is treated as if it were a

constant. So .

When differentiating with respect to t, any occurrence of p is treated as if it were a

constant. So .
0w

0t
= 21t6 + 4p

0w

0p
= 4t + 2p

w = 3t7 + 4pt + p20w

0t

0w

0p
w = f ( p, t)

Solution
(a) Because 4x is treated as a constant, we are dealing with a function of the form

.

(b) When and , 12(6)(112) = 8712
0z

0y
=y = 11x = 6

 4x * (3y2) = 12xy20z

0y
=

z = constant * y3

Exercises

In each case, given , find and .

(a) (b) 
(c) (d) 
(e) (f) 
(g) (h) 
(i) ( j) 
(k) (l) 

In each case, given find and .
(a) (b) (c) 
(d) (e) (f) z = 8xy2z = 9x2yz = x2y

z = -9yxz = 3xyz = xy
zyzxz = f (x,  y)2

z = 9(x + y + 3)z = 9 - 9(x - y)
z = 9 - 3y3

+ 7xz = 2x2
- 7y

z = 8 - 3yz = 8
z = 17 - 3x + 2yz = 3x + 8y - 2

z = -5yz = 8x
z = -7y - 14xz = 5x + 11y

0z

0y

0z

0x
z = f (x,  y)1 If evaluate and at the point

.

Find and when

(a) (b) (c) 
(d)

If find and .
0y

0t

0y

0x
y = x  sin  t5

z = 4e2y
z = exyz = e5yz = e2x

0z

0y

0z

0x
4

(4, -2)

0z

0y

0z

0x
z = 9x + y23
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Solutions to exercises

(a) (b) 

(c) 8, 0 (d) (e) 3, 8 (f) 
(g) 0, 0 (h) (i)

(j) (k) (l) 

(a) (b) 3y, 3x (c) 

(d) (e) (f) 8y2, 16xy18xy,  9x22xy,  x2

-9y, -9xzx = y,  zy = x2

9, 9-9,  97, -9y2

4x, -70,  -3
-3,  20,  -5

-14, -7
0z

0x
= 5, 

0z

0y
= 111

(a) (b) 

(c) (d) 

0y

0x
= sin t, 

0y

0t
= x cos t5

0, 8e2yyexy,  xexy

0, 5e5y0z

0x
= 2e2x,  

0z

0y
= 04

9,  -43

2.4 Partial derivatives requiring the product, quotient and chain rules

Consider the following more demanding examples, which use the rules developed in
Chapter 16.

Example 2.19

Find and when .

Solution

To find we treat y as constant. We are dealing with a function of the form constant

. Note that this function itself contains a product of the functions x and 
and so we must use the product rule for differentiation. The derivative of is

. Hence

To find we treat x as constant. In turn, this means that is constant too. This

time the calculation is much simpler because we are dealing with a function of the
form . So,

Example 2.20

Find and when .z =

yex

x

0z

0y

0z

0x

if  z = yxe2x  then  
0z

0y
= xe2x

z = constant * y

xe2x0z

0y

if  z = yxe2x  then   
0z

0x
 = y(e2x(1 + 2x)) = ye2x(1 + 2x)

e2x(1) + x(2e2x) = e2x(1 + 2x)
xe2x

e2x
*  xe2x

0z

0x

z = yxe2x0z

0y

0z

0x
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Solution

To find we treat y as constant. We are dealing with a function of the form constant

. Note that this function itself contains a quotient of the functions and x and

so we must use the quotient rule for differentiation. The derivative of is

Hence 

To find we treat x as constant. In turn, this means that is constant too. This

calculation is simple because we are dealing with a function of the form
. So,

Example 2.21

Find (a) and (b)  given 

Solution
We use the chain rule. Let so that 
(a) Now

(b) 

0z

0y
=

d z

dV
  

0V

0y
= cos V (-2y) = -2y cos(3x - y2)

0z

0x
=

dz

dV
  

0V

0x
= cos V (3) = 3 cos(3x - y2)

z = sin VV = 3x - y2

z = sin (3x - y2).
0z

0y

0z

0x

if z =

yex

x
 then 

0z

0y
=

ex

x

z = constant * y

ex

x

0z

0y

if z =

yex

x
 then 

0z

0x
=

yex
 (x - 1)

x2

exx - ex(1)

x2 =

ex(x - 1)

x2

ex

x

ex
*  

ex

x

0z

0x

Exercises

Find and when

(a) (b) (c) 

(d) (e) 
(f) (g)

(h) z = 3xy3ex

z = x ln(xy)z = y  cos(xy)
z = x2

  sin(xy)z = yexy

z = xexyz = xyeyz = yxex

0z

0y

0z

0x
1 Find the first partial derivatives of .

Find the first partial derivatives of .u =

x

x2
+ y2

3

u =

1

x2
+ y2

2
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Solutions to exercises

(a) (b) 

(c) (d) 

(e)

(f)

(g) (h) 3exy3(x + 1), 9xy2ex1 + ln(xy),  

x

y

-y2
  sin(xy), -yx  sin(xy) + cos(xy)

x2y  cos(xy) + 2x  sin(xy),  x3
  cos(xy)

y2exy,  exy(xy + 1)exy(xy + 1),  x2exy

yey,  xe y(y + 1)yex(x + 1),  xex1

y2
- x2

(x2
+ y2)2

,  
-2xy

(x2
+ y2)2

3

-

2x

(x2
+ y2)2

, -
2y

(x2
+ y2)2

2

End of block exercises

The derivative of f (x) with respect to x is 

defined as 

(see Chapter 15, Block 1). In an analogous
manner we define the partial derivatives of 
f (x, y) by

0f

0y
= lim
dy:0

 
f (x, y + dy) - f (x, y)

dy

0f

0x
= lim
dx:0

 
f (x + dx, y) - f (x, y)

dx

df

dx
= limdx:0 

f (x + dx) - f (x)

dx

1 Use these definitions to find the first partial
derivatives of (a) , 

(b) , from first principles.

If find and .

The derivative of .

If find .
0f

0y
f = tan-1 

y

x

f (x) = tan-1 kx is  
k

1 + k2x2
3

0r

0y
 

0r

0x
  r = 2x2

+ y22

f (x, y) = x2
+ 3xy

f (x, y) = x2y

Solutions to exercises

(a) (b) 

x

(x2
+ y2)1>2,  

y

(x2
+ y2)1>22

2x + 3y, 3x2xy, x21 1>x
1 + (1>x)2y2

=

x

x2
+ y2

3
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BLOCK 3
Higher-order derivatives

3.1 Introduction

Just as a function of one variable has a second derivative found by differentiating the
first derivative, so too does a function of two variables. If the first partial 

derivatives are and . The second partial derivatives are found by differentiating 

the first partial derivatives. We can do this in various ways, as we show in the next
section.

3.2 Finding higher derivatives

We can differentiate first partial derivatives either with respect to x or with respect to
y to obtain various second partial derivatives, as summarised in the next Key point.

0z

0y
0z

0x

z = f(x, y)

Key point

The second partial derivatives of z are

These are sometimes written in the alternative, briefer form

respectively.

zxx, zxy, zyx, zyy

0
2z

0x2
, 

0
2z

0y0x
, 

0
2z

0x0y
, 

0
2z

0y2

 differentiating 
0z

0y
 w.r.t. y produces 

0

0y
a 0z

0y
b =

0
2z

0y2

 differentiating 
0z

0y
 w.r.t. x produces 

0

0x
a 0z

0y
b =

0
2z

0x0y

 differentiating 
0z

0x
 w.r.t. y produces 

0

0y
a 0z

0x
b =

0
2z

0y0x

 differentiating 
0z

0x
 w.r.t. x produces 

0

0x
a 0z

0x
b =

0
2z

0x2

M21_CROF5939_04_SE_C21_pages1048-1079.QXD  9/28/18  10:53 AM  Page 1070
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Example 3.1
Given find all the second partial derivatives of z.

Solution
First of all the first partial derivatives must be found.

Then each of these is differentiated with respect to x:

Now, each of the first partial derivatives must be differentiated with respect to y.

Note that . It is usually the case that the result is the same either way.

Example 3.2
Find all second partial derivatives of .

Solution
First of all the first partial derivatives are found.

Then each of these is differentiated with respect to x:

Note here the need to use the product rule to differentiate with respect to x.
Now, each of the first partial derivatives must be differentiated with respect to y.

 
0

2z

0y2 =

0

0y
a 0z

0y
b = -x2  sin(xy)

 
0

2z

0y0x
 =

0

0y
a 0z

0x
b = -xy sin(xy) + cos(xy)

x cos(xy)

 
0

2z

0x0y
 =

0

0x
a 0z

0y
b = -xy sin(xy) + cos(xy)

 
0

2z

0x2 =

0

0x
a 0z

0x
b = -y2  sin(xy)

0z

0y
= x cos(xy)

0z

0x
= y cos(xy),

z = sin(xy)

0
2z

0y0x
=

0
2z

0x0y

 
0

0y
 a 0z

0y
b =

0

0y
 (9xy2

- 2x) = 18xy. Thus 
0

2z

0y2 = 18xy.

 
0

0y
 a 0z

0x
b =

0

0y
 (3y3

- 2y) = 9y2
- 2. Thus 

0
2z

0y0x
= 9y2

- 2.

 
0

0x
 a 0z

0y
b =

0

0x
 (9xy2

- 2x) = 9y2
- 2. Thus 

0
2z

0x0y
= 9y2

- 2.

 
0

0x
 a 0z

0x
b =

0

0x
 (3y3

- 2y) = 0. Thus 
0

2z

0x2 = 0.

0z

0x
= 3y3

- 2y, 
0z

0y
= 9xy2

- 2x

z = 3xy3
- 2xy
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Example 3.3
Consider the function .

(a) Find and .

(b) Using the result of part (a) evaluate .

Solution

(a) , 

, 

(b)

Note from the last result that satisfies the equation . This

equation is a partial differential equation. It occurs in the modelling of heat con-
duction, fluid flow and electrostatics problems, and is known as Laplace’s equation.

Example 3.4

Given , find and .

Solution
Clearly is a function of one variable, . So

In Example 2.14 (Section 2.2) we found

Noting that is a function of only and differentiating partially w.r.t. we have

Hence, in this case

0
2F

0x2 =

d2F

 dx2

0
2F

0x2 = 6

xx
0F

0x

0F

0x
= 6x + 1

dF

dx
= 6x + 1,  d2F

dx2 = 6

xF

0
2F

0x2

d2F

dx2F1x2 = 3x2
+ x

0
2f

0x2
+

0
2f

0y2
= 0f = 2xy

0
0

2f

0x2 +

0
2f

0y2 =

00
0

2f

0y2 =

0
2f

0x2 =

2x2y
0f

0y
=

0f

0x
=

0
2f

0x2 +

0
2f

0y2

0
2f

0y2  
0f

0x
 , 

0f

0y
 , 

0
2f

0x2

f(x, y) = 2xy

1072 Block 3 Higher-order derivatives21

Key point If is a function of only, then

0
2F

0x2
=

d2F

 dx2

xF
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Example 3.5
Given where , and 

(a) find , , , 

(b) confirm that

where and .

Solution

(a) Given then

(b) Observe that and that and hence

as required.

0
2u

0x2 = F–1x2G1t2 and 0
2u

0t2
= F1x2G–1t2

G–1t2 =

d2G

 dt2
= 6tF–1x2 =

d2F

 dx2 = 6

0
2u

0t2
= 13x2

+x216t2

0
2u

0x2 = 61t3+5t2

0u

0t
= 13x2

+x213t2+52

0u

0x
= 16x+121t3+5t2

u1x, t2 = F1x2G1t2 = 13x2
+ x21t3 + 5t2

G–1t2 =

d2G

 dt2
F–1x2 =

d2F

 dx2

0
2u

0x2 = F–1x2 G1t2 and 0
2u

0t2
= F1x2G–1t2

0
2u

0t2
0

2u

0x2

0u

0t

0u

0x

G1t2 = t3 + 5tF1x2 = 3x2
+ xu1x,t2 = F1x2 G1t2

Exercises

Find all the second partial derivatives in each of
the following cases:
(a) (b) 
(c)
(d) (e) 
(f)

Find all the second partial derivatives in each of
the following cases:

(a) (b) 

(c) (d) z =

1

x
+

1

y
z =

x

y

z =

y

x
z =

1

x

2

z = x + y
z = -2y3x2z = 8y2x + 11

z = 8x + 9y + 10
z = 7xyz = xy

1 Find all the second partial derivatives in each
of the following cases:
(a) (b) 
(c) (d) 

Find all the second partial derivatives in each
of the following cases:
(a) (b) 
(c)

Find all the second partial derivatives in each
of the following cases:
(a) (b) (c) 
(d) (e) z = y ln xz = x ln y

z = ln xyz = ln yz = ln x

5

z = 4ey
 cos x

z = -3ex
 sin yz = 8exy

4

z = ye-xz = ye2x

z = y  cos xz = x  sin y

3
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1074 Block 3 Higher-order derivatives21

Solutions to exercises

(a)

(b) 0, 7, 0 (c) 0, 0, 0 (d) 0, 16y, 16x
(e) , , (f) 0, 0, 0

(a) , 0, 0 (b) , 0 (c) 0, 

(d) , 0, 

(a) 0, cos y, (b) , , 0
(c) , , 0 (d) , , 0-e-xye-x2e2x4ye2x

-sin x-y  cos x-x  sin y3

2

y3

2

x3

-

1

y2
, 

2x

y3

2y

x3
, -

1

x2

2

x3
2

-12yx2
-12y2x-4y3

0
2z

0x2
= 0, 

0
2z

0x0y
=

0
2z

0y0x
= 1, 

0
2z

0y2
= 01 (a) , , (b) ,

, (c) , 
, 

(a) , 0, 0 (b) 0, 0, (c) , 0, 

(d) 0, (e) , , 0
1

x
-

y

x2

1

y
, -

x

y2

-

1

y2
-

1

x2
-

1

y2
-

1

x2
5

4ey
 cos x-4ey

 sin x
-4ey

 cos x3ex
 sin y-3ex

 cos y
-3ex

 sin y8x2exy8exy(xy + 1)8y2exy4
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BLOCK 4
Partial differential equations

4.1 Introduction

Partial differential equations (p.d.e.s) are used in many areas of engineering to model
phenomena in which a single variable, u say, depends upon two or more independent
variables. The independent variables are often time, t, and space coordinates x, y and
z. The dependent variable could be, for example, temperature, electrostatic potential
or displacement, as we shall illustrate. To solve a p.d.e. means to find the dependent
variable, u, as a function of x, y, z and t, that is u = u(x, y, z, t).

The solution of p.d.e.s forms a vast subject of study in its own right. In practice,
numerical methods implemented with computer software are used to obtain and
provide visualisations of solutions. Here we provide an introduction to three main
types of equation met in engineering applications and one analytical technique –
separation of variables – that can be used to solve them.

The heat equation in one dimension

In the one-dimensional heat equation the independent variables are time t, and one
spatial dimension x:

The dependent variable, u(x, t), might represent the temperature at time t at a point
which is distance x from one end of a metal bar of length L, insulated along its length
(see Figure 4.1).

0u

0t
= c2

 
0

2u

0x2

xO L

u(L, t)u(0, t)

Figure 4.1
The heat transfer
along a metal bar,
insulated along its
length, can be
described by a p.d.e.

Clearly, the temperature can vary with position and with time, and so is described
by a p.d.e. The constant c depends upon the properties of the material. Typically a
boundary condition will be imposed at each end which specifies the temperature
there at all times so that u(0, t) and u(L, t) are known quantities. Other types of
boundary conditions are possible. Sometimes an initial condition is given. This
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1076 Block 4 Partial differential equations21

specifies the solution, that is the heat distribution, when t = 0. For example, we may
be told that . Note that the heat equation is also referred to as the dif-
fusion equation.

The wave equation in one dimension

As with the heat equation, in the one-dimensional wave equation the independent
variables are time , and one spatial dimension :

Here, might represent the displacement of a string (think of a guitar string as it is
plucked) which varies with position and time in the manner of a wave. The string is
fixed at both ends so the displacement is zero there, that is ,
but not necessarily elsewhere (see Figure 4.2). The constant, , depends upon the
material properties of the string and the tension in it.

c
u10, t2 = u1L, t2 = 0

u

0
2u

0t2
= c2

 
0

2u

0x2

xt

u1x, 02 = sin x

xO L

u

Figure 4.2
A wave on a
vibrating string
can be described
by a p.d.e.

Laplace’s equation – two dimensions

In Laplace’s equation there are two spatial dimensions, and . Time does not
appear; this equation is often found in steady-state applications where there is no
time dependence:

A typical problem might involve a rectangular region, for example a metal plate, and
might represent the steady-state temperature at the point with coordinates

(see Figure 4.3). The temperature would be specified on the boundaries and
the problem would be to find the temperature distribution throughout the plate.
Applications are wide-ranging and can also represent electrical, gravitational or
fluid potentials, for example.

Whatever the equation, boundary and initial conditions will usually be specified
by the physical circumstances under consideration and it is these that enable us to
find constants that arise in the solution process.

u

1x, y2
u1x, y2

0
2u

0x2 +

0
2u

0y2 = 0

tyx
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4.2 The solution of a p.d.e.

A solution of a p.d.e. is a function of several variables that satisfies the equation.
There will be many such functions. The heat, wave and Laplace’s equation are all
linear equations. This means that if two or more solutions are known, then sums
and constant multiples of these are also solutions. We use this property, known as
superposition, to construct the general solution.

Example 4.1 Temperature of fluid in a pipe
Laplace’s equation is often used in the modelling of the temperature of a fluid that is
flowing in an insulated pipe. If T is the temperature of the fluid then under some sim-
plifying assumptions T satisfies the equation

This is known as Laplace’s equation.
Show that

where k is a constant, is a solution.

Solution

using the chain rule

using the quotient rule

Similarly

0
2T

0y2 =

2y2
- 2x2

(x2
+ y2)2

 
0

2T

0x2 =

-2(x2
+ y2) + (2x)(2x)

(x2
+ y2)2 =

2x2
- 2y2

(x2
+ y2)2 

 
0T

0x
=

-2x

x2
+ y2, 

0T

0y
=

-2y

x2
+ y2 

T = k - ln(x2
+ y2)

0
2T

0x2 +

0
2T

0y2 = 0

4.2 The solution of a p.d.e. 1077 21

y

xx = aO

y = b

u = u(0, y) u = u(a, y)

u = u(x, b)

u = u(x, 0)

Figure 4.3
The steady-state
temperature
distribution in a
plate can be
described by a
p.d.e.
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So

Hence is a solution of Laplace’s equation as required.

4.3 Separation of variables: the one-dimensional heat equation 

This method involves seeking a solution, , in which the independent variables
are ‘separated’ by writing ; that is, we look to see if can be
written as a product of two functions, one a function of and the other a function of
. By doing this, it is possible to generate ordinary differential equations for and

. These are solved using the techniques of Chapter 20, and then the solutions are
combined to give . 

The study of heat transfer by conduction, convection and radiation forms an essen-
tial component of all chemical engineering degrees. Conduction through metal bars
(see Figure 4.1) can be analysed using the heat equation. In Examples 4.2–4.5 we
illustrate how this equation can be solved subject to specified boundary and initial
conditions. Consider the following example.

Example 4.2 Chemical Engineering – Heat transfer by conduction

By seeking a solution of in the form , obtain and

solve ordinary differential equations satisfied by and . Hence write down
possible solutions for 

Solution

In order to substitute into the heat equation we need to find 

and . Differentiating gives

where and (see Example 3.5 on page 1073). Substitution

into the heat equation gives

Rearranging, we can write this as follows:

Now here is the crux of the argument: the left-hand side is a function of only. The
right-hand side is a function of only. However, and are independent variables, so
the only way this is possible is if each side is equal to a constant. Thus we write

xtx
t

1

c2 
T¿1t2
T1t2 =

X–1x2
X1x2

X1x2T¿1t2 = c2 X–1x2T1t2

X–1x2 =

 d2X

 dx2T¿1t2 =

 dT

 dt

0u

0t
= X1x2T¿1t2, 0

2u

0x2 = X–1x2T1t2

u1x, t2 = X1x2 T1t20
2u

0x2

0u

0t
u1x, t2 = X1x2 T1t2

u1x, t2.
T1t2X1x2

u1x, t2 = X1x2 T1t20u

0t
= c2

 
0

2u

0x2

u1x, t2 = X1x2 T1t2
T1t2

X1x2t
x

uu1x, t2 = X1x2 T1t2
u1x, t2

0u

0t
= c20

2u

0x2

T = k - ln(x2
+ y2)

0
2T

0x2 +

0
2T

0y2 =

2x2
- 2y2

(x2
+ y2)2 +

2y2
- 2x2

(x2
+ y2)2 = 0
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4.3 Separation of variables: the one-dimensional heat equation 1079
0u

0t
= c2

 
0

2u

0x2
21

We write it like this because it is possible that the constant could be positive, nega-
tive or zero. The physical situation dictates which choice should be made, as we shall
see. For now, choose the case 

so we end up with two ordinary differential equations:

that is

The general solutions of these differential equations are

where and are constants, and thus we can write the solution of the heat
equation as 

The constant can be absorbed into the constants and , and so can now be dis-
carded and we write 

(1)

In a similar manner, you should verify that the solutions for the cases when the sep-
aration constant is or zero are

(2)

and

(3)

Applying the principle of superposition, further solutions can be obtained by adding
the solutions (1), (2) and (3). Values for the constants , and are determined
by the physical situation under consideration and the boundary and initial condi-
tions, as we shall see in the following example.

Example 4.3 Chemical Engineering – Heat transfer by conduction –
applying the boundary conditions 

For the heat equation in Example 4.2 suppose that both ends of the bar are main-
tained at zero temperature, that is the boundary conditions are 

as shown in Figure 4.4. Suppose also that initially there is a given tem-
perature profile along the length of the bar . Explore possible values of
the constants in the general solution. 

u(x, 0) = f (x)
u(L, t) = 0

u(0, t) = 0,

qpA, B

u(x, t) = X(x) T(t) = Ax + B

u(x, t) = X(x) T(t) = (Ae px + Be-px) ep2c2t

p2

u(x, t) = X(x) T(t) = (A cos qx + B sin qx)e-q2c2t

BAC

u(x, t) = X(x) T(t) = (A cos qx + B sin qx)C e-q2c2t

CA, B

X = A cos qx + B sin qx  and T = C e-q2c2t

d2X

 dx2 = -q2X and dT

 dt
= -q2c2T

X– = -q2X and T¿ = -q2c2T

1

c2 
T¿1t2
T1t2 =

X–1x2
X1x2 = -q2

1

c2 
T¿1t2
T1t2 =

X–1x2
X1x2 = constant = c p2 

-q2 where p, q 7 0

0 
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Solution
Observe that the solution in equation (2) can be discounted at this stage because the
exponential term grows without bounds as increases. The physical situation
tells us that this is impossible. Similarly, the solution in equation (3),

can be discounted because, as is easily verified, imposition of the
boundary conditions, leads to a solution which is zero for
all time, a so-called trivial solution. So we consider the solution given by equation
(1) and start to impose the boundary conditions.

u1x, t2 = 1A cos qx + B sin qx2e-q2c2t

u10, t2 = 0, u(L, t) = 0,
u1x, t2 = Ax + B,

t ep2c2t

1080 Block 4 Partial differential equations21

Imposing the first condition gives

and hence . Thus

(4)

Imposing the second condition, , gives

and so To avoid a trivial solution cannot be zero and hence

and so for from which

Thus there are an infinite number of possible values for that allow the boundary
condition to be satisfied. Note that we have specified and excluded the
case which also satisfies . However, this case can be discarded
because if then and this leads to a trivial solution from equation (4).
Furthermore, we have already stated . For each value of we can calculate
the value of . For each value of there is a corresponding value of . To show
there are many possible values of we attach a subscript and writeq

Bqq
nq 7 0

q = 0n = 0
sin np = 0n = 0

n = 1, 2, . . .
n

q =

np

L
,         n = 1, 2, . . .

n = 1, 2, . . .,qL = np

sin qL = 0

BB sin qL = 0.

0 = B sin qL   e-q2c2t for all t

u1L, t2 = 0

u1x, t2 = B sin qx e-q2c2t

A = 0

0 = 1A cos 0 + B sin 02e-q2c2t
= Ae-q2c2t for all t

u10, t2 = 0

The corresponding values of are written as .BnBqn =

np

L
, n = 1, 2, . . .

xO L

u(0, t) = 0 u(L, t) = 0
Figure 4.4
A metal bar,
insulated along its
length, with zero
temperature
maintained at both
ends.

Then

By the principle of superposition, all of these solutions can be added to generate the
solution

(5)u1x, t2 = a

q

n = 1
Bn sin 

npx

L
 e-anpc

L b2t

u1x, t2 = Bn sin 
npx

L
 e-anpc

L b2t,  n = 1, 2, . . .
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We see that the general solution is expressed as the sum of an infinite number of terms.
Some of these may not be needed. The specific values of required and the corre-
sponding values of are determined using the initial condition. See Example 4.4.

Example 4.4 Chemical Engineering – Heat transfer by conduction –
applying the initial conditions

For the heat equation in Examples 4.2 and 4.3, suppose that initially the temperature

profile is given by as shown in Figure 4.5. Obtain the particular

solution that satisfies this initial condition.

u1x, 02 = sin  
px

L

Bn

n

4.4 Separation of variables: the wave equation 1081 21

Solution
Imposing the initial condition on by setting 
gives

By observation, this can be satisfied by choosing and when so
only one term in the infinite series is necessary. Thus the final solution satisfying the
p.d.e., the boundary and initial conditions is

giving the temperature at any point, , at any time . When the initial condition is
more complicated it can be necessary to use an infinite number of terms in equation (5).
This requires knowledge of Fourier series, which are explored along with further
examples of the solution of p.d.e.s in Chapter 24.

4.4 Separation of variables: the wave equation

All mechanical systems exhibit vibrations or oscillations, and engineers need to take
these into account, for example when designing components that will safely dissi-
pate energy and avoid unwanted fluctations. A useful starting point is the equation
that models the oscillations of a string that is fixed at both ends. In Examples 4.5 and
4.6 we illustrate how this equation can be solved.

Example 4.5 Mechanical Engineering – The wave equation
Consider the solution of the one-dimensional wave equation:

Here is the displacement of a string of length that is fixed at both ends (see
Figure 4.2).

Lu1x, t2

0
2u

0t2
= c2

 
0

2u,

0x2 0 … x … L, t 7 0

t 7 0x

u1x, t2 = sin 
px

L
 e-apc

L b2t

n Z 1Bn = 0B1 = 1

sin 
px

L
= a

q

n = 1
Bn sin 

npx

L

t = 0u1x, t2 = a

q

n = 1
Bn sin 

npx

L
 e-anpc

L b2t

O

1

xL

u(x, 0) = sin
πx
L

Figure 4.5
The initial
temperature
distribution in the
bar, u1x, 02.
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(a) Seek a solution, of the form Obtain and solve the
ordinary differential equations for and and so deduce .

(b) Apply the boundary conditions for all .

Solution
(a) We seek a solution in the form . Differentiating and

substituting into the wave equation, , produces

Rearranging, we can write this as follows:

where and As before, and are independent variables, so

the only way this is possible is if each side is equal to a constant. Thus we write

As in the heat equation, at this stage, it is possible that the constant could be
negative, positive or zero. However, as we show below, we can discount the
possibilities that the constant is zero or positive by looking at the boundary
conditions . Hence we consider just 

from which we obtain the two ordinary differential equations

with general solutions

Combining these solutions gives

(b) With the boundary condition for all we find 

from which Imposing the second condition, for all t gives

from which . To avoid a trivial solution cannot be zero and hence

and thus for , from which

q =

np

L
,           n = 1, 2, . . .

n = 1, 2, . . .qL = np

sin qL = 0

BB sin qL = 0

0 = B sin qL1C cos cqt + D sin cqt2
u1L, t2 = 0A = 0.

0 = 1A cos 0 + B sin 021C cos cqt + D sin cqt2 = A1C cos cqt + D sin cqt2
tu10, t2 = 0

u1x, t2 = 1A cos qx + B sin qx21C cos cqt + D sin cqt2

X = A cos qx + B sin qx,  T = C cos cqt + D sin cqt

X– = -q2X and T– = -c2q2T

T–1t2
T1t2 =

X–1x2
X1x2 = -q21

c2

X102 = X1L2 = 0

T–1t2
T1t2 =

X–1x2
X1x2 = constant = c p2 

-q2 p, q 7 0

0 

 
1

c2

xtT– =

d2T

 dt2
.X– =

d2X

 dx2

T–1t2
T1t2 =

X–1x2
X1x2

1

c2

X1x2T–1t2 = c2 X–1x2T1t2

0
2u

0t2
= c2

 
0

2u

0x2

u1x, t2 = X1x2 T1t2

t Ú 0u10, t2 = u1L, t2 = 0
u1x, t2T1t2X1x2

u1x, t2 = X1x2 T1t2.u1x, t2,
1082 Block 4 Partial differential equations21
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We can exclude the case which leads to a trivial solution. For each value
of we can calculate the value of . And for each value of there is a corre-
sponding value of . To show there are many possible values of we attach aqB

qqn
n = 0

4.4 Separation of variables: the wave equation 1083 21

subscript and write . The corresponding values of areBqn =

np

L
, n = 1, 2, . . .

written as (and likewise for and ). Combining the solutions for and :

We can incorporate the constants into and and write

(6)

There are an infinite number of solutions of the original p.d.e., one for each value of
Each satisfies the wave equation and the boundary conditions.

Using the principle of superposition all of these solution can be added to give

(7)

To be able to find the constants and requires knowledge of Fourier series
(see Chapter 24, Block 4), except in some special cases. We consider one such
case in the following example.

Example 4.6 Mechanical Engineering – The wave equation – imposing
the initial conditions

Suppose the following initial conditions are imposed on the solution to Example 4.5:

So, initially there is a sinusoidal displacement profile and the string is released from
rest.

Solution
To impose the first condition, when , we must differentiate equation (7):

Applying the condition,

which implies for all values of . We thus have

Imposing the second condition,

3 sin 
2px

L
= a

q

n = 1
Cn sin  

npx

L

u1x, t2 = a

q

n = 1
 Cn cos anpct

L
b   sin  

npx

L

nDn = 0

0 = a  
q

n = 1

npc

L
 Dn  sin 

npx

L
  for all x

0u

0t
= a

q

n = 1
a -

npc

L
 Cn sinanpct

L
b +

npc

L
 Dn cosanpct

L
b ≤   sin 

npx

L

t = 0
0u

0t
= 0

0u

0t
= 0,  u = 3 sin 

2px

L
 when t = 0,  for all x

DnCn

u1x, t2 = a

q

n = 1
aCn cos a  

npct

L
b + Dn sin anpct

L
b b  sin 

npx

L

n = 1, 2, . . . .

u(x, t) = sin 
npx

L
 aCn cos anpct

L
b + Dn sin anpct

L
b b ,        n = 1, 2, . . .

DnCnBn

u(x, t) = Bn sin 
npx

L
 aCn cos anpct

L
b + Dn sin anpct

L
b b ,        n = 1, 2, . . .

TXDnCnBn
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which, by observation, can be satisfied by choosing and . No other
values of are required, so for . Finally, the solution satisfying the
wave equation and all the given conditions is

This gives the displacement of the string at any position , , at any time
.

4.5 Separation of variables: Laplace’s equation and steady-state 
heat conduction

In chemical engineering plants, heat exchangers are used to transfer heat, for exam-
ple from a solid to a fluid. This is frequently achieved using fins, which are plates of
metal having a large surface area. The analysis of the steady-state heat distribution
within a cross-section of the plate is a starting point for more complicated analysis.

Example 4.7 Chemical Engineering – Steady-state heat distribution
Figure 4.6 shows a cross-section of a metal plate. The temperature distribution

satisfies Laplace’s equation

Solve this equation subject to the boundary conditions , on , 
and , and (a given function of ).yu1d, y2 = f1y2y = b

y = 0x = 0u1x, y2 = 0

0
2u

0x2 +

0
2u

0y2 = 0 0 … x … d,  0 … y … b

u1x, y2

t 7 0
0 6 x 6 Lx

u1x, t2 = 3 cos a2pct

L
b   sin 

2px

L

n Z 2Cn = 0n
C2 = 3n = 2

1084 Block 4 Partial differential equations21

y

xx = dO

y = b

u = 0

u = 0

u = 0

u(d, y) = f(y)

Figure 4.6
A cross-section of
a metal plate with
temperature
distribution
u1x, y2.
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Solution
We let . Differentiating and substituting into 
gives

where and . Rearranging we can write this as follows:

As before, because and are independent variables the only way this is possible is
if each side is equal to a constant. Thus we write

The physical situation dictates which choice should be made, as we shall see. Con-
sider the boundary condition . It is left as an exercise to showu1x, 02 = u1x, b2 = 0

X–1x2
X1x2 = -  

Y–1y2
Y1y2 = constant = c p2 

-q2 p, q 7 0

0 

 

yx

X–1x2
X1x2 = -

Y–1y2
Y1y2

Y– =

d2Y

 dy2X– =

d2X

 dx2

X–1x2Y1y2 + X1x2Y–1y2 = 0

0
2u

0x2 +

0
2u

0y2 = 0u1x, y2 = X1x2 Y1y2

4.5 Separation of variables: Laplace’s equation and steady-state heat conduction 1085 21

that in order to satisfy these conditions the separation constant must be positive, 
say. Then

with solution

Combining the solutions for and gives

Application of the condition gives so that . Thus

Application of the condition gives . Application of u1x, b2 = 0A = 0u1x, 02 = 0

u1x, y2 = C1epx
- e-px21A cos py + B sin py2

D = -CC + D = 0u10, y2 = 0

u1x, y2 = 1Cepx
+ De-px21A cos py + B sin py2
YX

X = Cepx
+ De-px,  Y = A cos py + B sin py

X–1x2
X1x2 = p2, Y–1y2

Y1y2 = -p2

p2

gives , so that , , for . Combining these

results and superposing solutions gives

Finally, we need to impose :

To find the constants requires knowledge of Fourier series (see Chapter 24).Cn

f1y2 = a

q

n = 1
Cn1enpd

b -  e- npd
b 2 sin  

npy

b

u1d, y2 = f1y2
u1x, y2 = a

q

n = 1
Cn1enpx

b - e - npx
b 2 sin  

npy

b

n = 1, 2, . . .p =

np

b
pb = npB sin pb = 0
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If find and . Verify 

that satisfies the heat equation .

Verify that satisfies the wave u = x2
+ 4t22

0u

0t
= 2 

0
2u

0x2
u

0
2u

0x2

0u

0t
u1x, t2 =  e-2t cos x1

1086 Block 4 Partial differential equations21

Solve Laplace’s equation to
0

2u

0x2
+

0
2u

0y2
= 06

End of block exercises

Find the value(s) of such that 
is a solution of thesin1x - kt2 u1x, t2 =k3

one-dimensional wave equation 

Solve the one-dimensional wave equation

Assume that the boundary conditions are
and that the initial 

conditions are 
0u

0t
1x, 02 = 0.

3 sin 4px,u1x, 02 = 6 sin px -

u10, t2 = u12, t2 = 0

0
2u

0x2
=

1

16
 
0

2u

0t2
 for 0 … x … 2, t Ú 0.

4

0
2u

0t2
= 36 

0
2u

0x2
.

Use the method of separation of variables to 

obtain the solution of 

which is trigonometrical in , finite as 
and gives when for all .xy = 0f = 2 cos 5x

y : qx

0
2f

0x2
+

0
2f

0y2
= 0

5

Solutions to exercises

3 sin 4px cos 16pt
u1x, t2 = 6 sin px cos 4pt -4

k = ;63

0
2u

0x2
= -e-2t cos x

0u

0t
= -2e-2t cos x;1

V1x, t2 = a

q

n = 1

61-12n + 1

np
 e-12np/322t sin 

npx

3
7

u = 3 sin 2px  e-2py
- sin px  e-py6

f = 2e-5y cos 5x5

determine the steady-state temperature
distribution in the semi-infinite plate

, . Assume that the left and
right sides are kept at the constant temperature
of and assume that the solution is bounded.
The temperature along the bottom side is given
by 

Solve the diffusion equation 
0V

0t
= 4 

0
2V

0x2
,7

f1x2 = 3 sin 2px - sin px.

0°

y Ú 00 … x … 1
u1x, y2

, , subject to the conditions
and V1x, 02 =V10, t2 = V(3, t) = 0

t Ú  00 … x … 3

A square metal plate , 
has the edge maintained at an
unspecified non-zero temperature. The other
three edges have temperature . Show that
the steady-state temperature distribution,
which satisfies Laplace’s equation, 
can be expressed in the form 

0°

x = 0
0 … y … 10 … x … 18

(Refer to Chapter 24 for details
of how to complete the solution using Fourier
series.)

x, 0 … x … 3.

where are constants.An

a

q

n = 1
 An sin npy1enpx

- e2np e-npx2u1x, y2 =

equation .
0

2u

0t2
= 4 

0
2u

0x2
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BLOCK 5
Stationary values of a function of two variables

5.1 Introduction

When studying functions of a single variable we used differentiation to locate 
the positions of maximum and minimum points. We now extend this technique to
functions of two variables.

5.2 Maxima, minima and saddle points

Figure 5.1 shows a graph of the function . The point labelled
A is called a maximum point. If we were to move away from the maximum point in
any direction but remain on the surface, the value of the function would decrease.

z = f(x, y) = -x2
- y2

�3
�2

�1
0

1
2

3

�3
�2

�1
0

1
2

3
�18
�16
�14
�12
�10

�8
�6
�4
�2

0
z AFigure 5.1

Point A is a
maximum point. It
is the highest point
in its locality.

�3
�2

�1
0

1 2
3

�3
�2

�1
0

1
2

3
0
2
4
6
8

10
12
14
16
18

z

B

Figure 5.2
Point B is a
minimum point. It
is the lowest point
in its locality.

Figure 5.2 shows a graph of the function . The point labelled
B is called a minimum point. If we were to move away from the minimum point in
any direction but remain on the surface, the value of the function would increase.

z = f(x, y) = x2
+ y2
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�3
�2

�1
0 1

2
3

�3
�2

�1
0

1
23

C

�30
�20
�10

0
10
20
30
40

zFigure 5.3
Point C is a saddle
point.

Figure 5.3 shows a graph of the function . The point
labelled C is called a saddle point. When leaving a saddle point in one direction, the
value of the function increases; when leaving in the perpendicular direction, the
value of the function decreases.

z = f (x, y) = 3xy + x + y

Collectively, maximum points, minimum points and saddle points are known as
stationary points of the function f.

5.3 Finding the location of stationary points

To locate stationary points both first partial derivatives are equated to zero: that is,
we solve

0f

0x
= 0 and 

0f

0y
= 0

Key point

Example 5.1
Find the coordinates of any stationary points of the function .

Solution
We begin by noting that stationary points are located by solving and 

and so we find the first partial derivatives of f. If then and 

. Equating these to zero produces two simultaneous equations: and 

. Solving these we find and . These are the x and y coordinates of
the stationary point. The z coordinate is obtained using and so 
also. The graph of this function is shown in Figure 5.2, from which we note that the
stationary point is a minimum.

z = 0z = x2
+ y2

y = 0x = 02y = 0

2x = 0
0f

0y
= 2y

0f

0x
= 2xf = x2

+ y2

0f

0y
= 0

0f

0x
= 0

f(x, y) = x2
+ y2

1088 Block 5 Stationary values of a function of two variables21

Stationary points are located by solving

0f

0x
= 0 and 

0f

0y
= 0
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5.3 Finding the location of stationary points 1089 21

Example 5.2
Find the coordinates of any stationary points of the function .

Solution
First of all find the partial derivatives of f and equate both of these derivatives to
zero:

Solve the resulting simultaneous equations. From the second equation

Substitution in the first equation gives .
Therefore a stationary point occurs at (7, ). The z coordinate is found from

.

Example 5.3
Find the coordinates of any stationary points of .

Solution
First of all find the partial derivatives of f and equate these to zero.

Solving the simultaneous equations gives

, 

Therefore a stationary point occurs at . The z coordinate is found from
.

-4�17z =

z = 2x2
+ 3xy - y2

- 2x
A 4

17, 6
17 B

4
17, 6

17y =x =

3x - 2y = 0
0f

0y
= 0

4x + 3y - 2 = 0
0f

0x
= 0

f(x, y) = 2x2
+ 3xy - y2

- 2x

49z =

z = x2
+ xy - 7y

-14
y = -14

7x =

x - 7 = 0
0f

0y
=

2x + y = 0
0f

0x
=

f(x, y) = x2
+ xy - 7y

Exercises

Locate the position of any stationary points of the
following functions:

f (x, y) = 4xy - 2x2y2

f (x, y) = x2
+ y3

- 3y1

f (x, y) =

x3

3
+ 3x2

+ xy +

y2

2
+ 6y4

f (x, y) = -x - y33
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1090 Block 5 Stationary values of a function of two variables21

Solutions to exercises

(0, 1) and (0, )

(0, 0) and (2, 0)2

-11 none

(1, ) and ( , 0)-6-74

3

5.4 The nature of stationary points

Equating the first partial derivatives to zero locates the stationary points but does not
identify them as maximum points, minimum points or saddle points. To distinguish
between such points we can make use of a test that involves second partial deriva-
tives.

We consider the expression

We evaluate this expression at each of the stationary points:

• If the result is negative the stationary point is a saddle point.

• If the result is positive and if is positive we have a minimum point.

• If the result is positive and if is negative we have a maximum point.

• If the result is zero, this test fails and further tests are required that are beyond the
scope of this book.

In summary:

0
2f

0x2

0
2f

0x2

0
2f

0x2 
0

2 f

0y2 - a 0
2 f

0x0y
b2

Key point The nature of a stationary point is determined using the following test:

0
2f

0x2
 

0
2f

 0y2
- a 0

2f

0x0y
b2

7 0 and 
0

2f

0x2
6 0 maximum point

0
2f

0x2
 

0
2f

 0y2
- a 0

2f

0x0y
b2

7 0 and 
0

2f

0x2
7 0 minimum point

0
2f

0x2
 
0

2f

0y2
- a 0

2f

0x0y
b2

6 0 saddle point

Example 5.4
Locate and identify the nature of the stationary values of

Solution
This function has been discussed already in Example 5.2. We found that a stationary
point was located at (7, ).

We now determine its nature. For this we need to calculate the second derivatives. 

Recall that and .
0f

0y
= x - 7

0f

0x
= 2x + y

-14

f (x, y) = x2
+ xy - 7y

M21_CROF5939_04_SE_C21_pages1080-1093.QXD  10/16/18  7:47 AM  Page 1090



5.4 The nature of stationary points 1091 21

We then consider the quantity . In this case we have

Then, from the Key point immediately above we deduce that this stationary point is a

saddle point

0
2f

0x2 
0

2f

0y2 - a 0
2f

0x0y
b2

= (2)(0) - (1)2
= -1

0
2f

0x2 
0

2f

0y2 - a 0
2f

0x0y
b2

1
0

2f

0x0y
=

0
0

2f

0y2 =

2
0

2f

0x2 =

Exercises

Determine the position and nature of the stationary
points of the following functions:

f (x, y) = x2
+ y2

- 3xy3

f (x, y) = x2
+ y2

- 3y2

f (x, y) = 3xy + x + y1

f (x, y) = exy5

f (x, y) =

1

x
+

1

y
-

3

xy
4

Solutions to exercises

Saddle at ( , )

Minimum at (0, 3 2)

Saddle at (0, 0)3

>2

-1>3-1>31 Saddle at (3, 3)

Saddle at (0, 0)5

4

End of block exercises

Determine the position and nature of the stationary
points of the following functions:

f (x, y) = xy + x + y21 f (x, y) = -x2
- y2

- 3y2
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21

f (x, y) =

1

x
+

1

y
+

1

xy
4

f (x, y) = 7x - 2y2
- xy3 f (x, y) = e- x(y - 1)5

Solutions to exercises

Saddle at (2, )

Maximum at (0, )

Saddle at ( , 7)-283

-3>22

-11 Saddle at ( , )

Saddle at (0, 1)5

-1-14

End of chapter exercises

If state and .

If state and .

If find and .

If evaluate and at the

point (1, 2).

If find and .

If find and .

If find all first partial
derivatives of w at the point with coordinates
(1, 2, 3).

If find and .

If where R is a constant, find and 

.

Find and if .f = (x - y)20
2f

0x0y

0f

0x
, 

0f

0y
, 

0
2f

0x2
, 

0
2f

0y2
10

0p

0T

0p

0V
p =

RT

V
9

0V

0D

0V

0T
V = D1>4T -5>68

w = 3xy2
+ 2yz27

0y

0t

0y

0x
y = x cos t6

0z

0y

0z

0x
z = 4e5xy5

0z

0y

0z

0x
z = 14 - 4xy4

0
2z

0x0y

0
2z

0y0x
z = 3x2

+ 7xy - y23

0
2w

0y2

0
2w

0x2
w = 5y - 2x2

0z

0y

0z

0x
z = 14x - 13y1 Calculate when (a) 

(b) .

Calculate when .

If find and .

Given find , and 

.

Determine the stationary points of 
.

Consider the function .
(a) Evaluate this function and its first

partial derivatives at the point A(2, 3).
(b) Suppose we consider point A. Suppose

small changes, , , are made in the
values of x and y so that we move to a
nearby point B. It is possible to show that
the corresponding change in f is given 

approximately by , 

where the partial derivatives are evaluated
at the original point A. Use this result to find
the approximate change in the value of f if
x is increased to 2.1 and y is increased to 3.2.

(c) Compare your answer in (b) to the value of
f at (2.1, 3.2).

df L

0f
0x

 dx +

0f
0y

 dy

dydx

f (x, y) = 5x2y16

2x2
+ 3y2

+ 5x + 12y + 19
f (x, y) =15

0
2f

0x0y

0
2f

0y2

0
2f

0x2
f(x, y) = sin 4x cos 3y14

0T

0c

0T

0D
T =

pmÆhD3

4c
13

z =

x2
- 3y2

x2
+ y2

0z

0y
12

z = ex2
- 4xy

z =

y

x2
-

x

y2
,

0z

0x
11

1092 Block 5 Stationary values of a function of two variables
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End of chapter exercises 1093 21

Solutions to exercises

14, 

0, 0

7, 7

, 

, 

12, 30, 24

, , 2, 2, -2-2(x - y)2(x - y)10

-

RT

V2
, 

R

V
9

-
5
6 D1>4 T -11>6, 14 D-3>4 T -5>68

7

cos t, -x sin t6

20xe5xy20ye5xy5

-4-84

3

2

-131 (a) (b) 

, ,

Minimum at ( , )

(a) 60, 60, 20
(b)
(c) From part (b) the approximate value of f at

the new point is . The exact
value is .f (2.1, 3.2) = 70.56

60 + 10 = 70

df = (60)(0.1) + (20)(0.2) = 10
16

-2-5>415

-12 cos 4x sin 3y
-9 sin 4x cos 3y-16 sin 4x cos 3y14

3pmÆhD2

4c
, -
pmÆhD3

4c2
13

-

8yx2

(x2
+ y2)2

12

(2x - 4y)ex2
- 4xy

-

2y

x3
-

1

y2
11

Computer and calculator exercises

Investigate how to find the first partial
derivatives of the function 
using a computer algebra package.

Use a computer algebra package to find

when u(x, y, z) =

1

z
 e1- x2

+ y2

4z
20

2u

0x2
, 

0
2u

0y2
, 

0u

0z

2

f (x, y) = tan-1xy
1 From your results show that u is a solution of

the equation

0
2u

0x2
+

0
2u

0y2
=

0u

0z

Solutions to exercises

0
2u

0y2
= -

e
1- x2

+ y2

4z 2
2z2

+

y2e1- x2
+ y2

4z
2

4z3
,

0
2u

0 x2
= -

e1-x2
+ y2

4z 2
2z2

+

x2e1- x2
+ y2

4z
2

4z3
,2

y

1 + x2y2
, 

x

1 + x2y2
1

0u

0z
= -

e1- x2
+ y2

4z 2
z2

+

1x2
+ y22e1- x2

+ y2

4z
2

4z3
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Chapter 22
The Laplace transform

The Laplace transform is an integral transform: that is, it is defined by
an integral. Given a function, f(t), the Laplace transform of f(t) is a
function F(s) defined by

The original function, f(t), has been transformed into a new function,
F(s).

As with differentiation and integration, most Laplace transforms are
calculated from a table of standard functions. This is covered in
Block 1. Block 2 deals with the inverse Laplace transform. Here we
know the transformed function, F(s), and we seek the original
function, f(t).

The chapter closes with Block 3, which illustrates the application of
the transform to the solution of differential equations. Both first- and
second-order linear constant-coefficient equations can be solved using
the Laplace transform. This method has the advantage that initial
conditions are automatically incorporated into the solution.
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F (s) = �
q

0
e-st f (t) dt



Chapter 22 contents

Block 1 The Laplace transform

Block 2 The inverse Laplace transform

Block 3 Solving differential equations using the Laplace transform

End of chapter exercises
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BLOCK 1
The Laplace transform

1.1 Introduction

In mathematics the word ‘transform’ has the same meaning as in everyday language.
The Laplace transform is one of a number of integral transforms used by engineers.

The Laplace transform can be used to solve a linear constant-coefficient differen-
tial equation by transforming it into an algebraic equation. The resulting algebraic
equation is solved and then the transform is reversed to find the solution of the
differential equation in terms of the original variable.

The Laplace transform can also be used to calculate transfer functions. These
functions describe the elements of an engineering system and are particularly
important in the design of control systems.

1.2 Definition of the Laplace transform

Let f(t) be a function of time, t. In many engineering problems t has only non-negative
values, that is . Hence f(t) will be given for , and for , f(t) is assumed
to be zero.

t 6 0t Ú 0t Ú 0

Key point The Laplace transform of f(t) is F(s) and is defined by

F(s) = �
q

0
e-st f (t) dt

So, to find the Laplace transform of a function f(t), we multiply it by and then
integrate between the limits 0 and Because of the infinite limit of integration,
restrictions sometimes need to be placed on s to ensure that the integral exists.
Throughout this chapter it is assumed that s has a value such that this condition is
satisfied.

Note that although f is a function of t, the Laplace transform is a function of a new
variable, s. It is conventional to use a lowercase letter for the function of t, as in f(t),
but an uppercase letter for the function of s, as in F(s). In addition, we often write

to denote the Laplace transform of the function f(t).L5 f  1t26

q .
e-st
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1.2 Definition of the Laplace transform 1097 22

Example 1.1
Calculate the Laplace transform of .

Solution

Hence we may write L{3} =

3
s
.

 =

3
s

 = 3 c0 +

1
s
d

 = 3 c e-st

-s
d

0

q

 = 3�
q

0
e-st dt

 F(s) = �
q

0
 e-st 3 dt

f(t) = 3

Exercises

Write down the definition of the Laplace
transform of a function f(t).

Given a function f(t), write two ways in which
its Laplace transform might be expressed.

If x is a function of t, that is x(t), how would
you write its Laplace transform?

If y is a function of t, that is y(t), how would
you write its Laplace transform?

4

3

2

1 Use integration by parts to show that the

Laplace transform of is .

Show that .

(Hint: write as .)e(1-s)tete-st

L{et} =

1

s - 1
6

1

s2
f (t) = t

5

Solutions to exercises

or F(s)

or X(s)L{x(t)}3

L{ f (t)}2 or Y(s)L{y(t)}4
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1098 Block 1 The Laplace transform22

Table 1.1

1.3 Using a table of Laplace transforms

Although the Laplace transforms of most functions can be calculated from the defi-
nition, most engineers use a table. Table 1.1 lists some common functions and their
Laplace transforms.

Function, f(t)

1 sinh bt

t cosh bt

u(t), unit step

sin bt

cos bt 1

s + a

(s + a)2
+ b2

e-at
 cos bt

e-sdd(t - d)
b

(s + a)2
+ b2

e-at
 sin bt

d(t)
s

s2
+ b2

e-sd

s
u(t - d)

b

s2
+ b2

1
s

n!

(s + a)n + 1
tne-at

s2
- b2

(s2
+ b2)2

t cos bt
1

s + a
e-at

2bs

(s2
+ b2)2

t sin bt
1

s - a
eat

s + a

(s + a)2
- b2

e-at cosh bt
n!

sn + 1
tn

b

(s + a)2
- b2

e-at sinh bt
2

s3
t2

s

s2
- b2

1

s2

b

s2
- b2

1
s

Laplace transform,
L{f (t)} = F(s) Function, f(t)

Laplace transform,
L{f (t)} = F(s)

Example 1.2
Use Table 1.1 to find the Laplace transform of each of the following functions:
(a) (b) (c) (d) (e) (f ) (g) 

Solution
(a) We use the result for and put . The required Laplace transform

is then

 F(s) =

4!

s4 + 1

n = 4f (t) = tn

e-t
 sin t cos 5t sin 2tt2e3te-3te2tt4
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1.3 Using a table of Laplace transforms 1099 22

We may write

(b) Using the result for with we find

(c) Using the result for with we have

(d) We use the result for when and to obtain

(e)

(f)

(g)

Example 1.3
Find the Laplace transform of each of the following functions:
(a) (b) (c) 

Solution

(a) We use the result for and take 

(b) We use the result for . We take

, , 1-2 b =a =

e-at
 cos bt

1

s -
1
2

L{et>2} =

a =
1
2.eat

t3e2te2t
 cos tet>2

L{e- t sin t} =

1

(s + 1)2
+ 1

s

s2
+ 25

L{cos 5t} =

L{sin 2t} =

2

s2
+ 4

2!

(s -  3)3 =

2

(s -  3)3L{t2e3t} =

a = -3n = 2tne-at

L{e- 3t} =

1

s + 3

a = 3e-at

1

s - 2
L{e2t} =

a = 2eat

L{t4} =

24

s5

 =

24

s5

 =

4!

s5
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1100 Block 1 The Laplace transform22

so

(c) We use the result for 

We take

, , 

Hence

6

(s - 2)4L{t3e2t} =

-2 3a =n =

t ne-at

s -  2

(s -  2)2
+ 1

L{e2t cos t} =

Maple and Matlab have built-in commands for finding the Laplace, and other, trans-
forms.

Example 1.4
Use software to define and plot a graph of the pulse function
and find its Laplace transform, F(s).

Solution

f (t) = e1 0 … t 6 1

0 otherwise

Maple

The pulse function can be constructed using the unit step function as was shown in 
Chapter 6, Section 8.5. The Maple function Heaviside is the unit step function. The
required pulse function can be constructed by taking the unit step function and subtract-
ing a unit step function translated 1 unit to the right. The following Maple commands
construct this function and plot a graph.

> f:=t-> Heaviside(t) - Heaviside(t-1);
plot(f(t),t=-3..3);

The graph is shown in Figure 1.1. In order to find the Laplace transform, the ‘integral
transform’ package must first be loaded. The following commands do this and calculate
the required transform.

> with(inttrans):
laplace(f(t),t,s);

The output is

Thus L{f(t)} = F(s) =

1 - e- s

s
.

1 - e- s

s
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1.3 Using a table of Laplace transforms 1101 22

Exercises

Use Table 1.1 to find the Laplace transform of
the following:
(a) (b) cos 4t (c) (d) (e) sin 5t

Find the Laplace transform of each of the
following:
(a) (b) 

(c) (d) (e) t2e-5tt cos 
t

2
t sin 4t

e3t
 cos 2te-3t

 sin 5t

2

e-6te9tt5

1 Find the Laplace transform of each of the
following:

(a) (b) (c) (d) 

(e) e4t
 sin 

2t

3

et>2
 cos 

t

2

 sin 5t

e6t

t2

e4t
e2t>3

3

Matlab

In Matlab the required pulse function can be defined in terms of Heaviside functions
(heaviside( )) and plotted.
>> syms t s
fplot(heaviside(t)-heaviside(t-1),[-3,3])

Then the command

f= heaviside(t) - heaviside(t-1)
laplace(f,t,s)

calculates the transform producing

1/s - exp(-s)/s

Thus as before.L{f(t)} = F(s) =

1 - e- s

s

Figure 1.1
A graph of the pulse
function

1 2 3−1−2−3 O

1

t

f t( )

In the next block we study the inverse Laplace transform: that is, how to find the
original time-domain function if we know its Laplace transform. The inverse Laplace
transform can be found using the Maple command invlaplace(F(s),s,t), or
the Matlab command ilaplace(F(s),s,t). You should check this out using the
software to which you have access.
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1102 Block 1 The Laplace transform22

1.4 Properties of the Laplace transform

Since the Laplace transform is defined in terms of an integral it comes as no surprise
that some of the properties of integrals are also properties of the Laplace transform.
We note two of these properties.

Key point
if k is a constantL{kf} = kL{f}

L{f + g} = L{f} + L{g}

Solutions to exercises

(a) (b) (c) (d) 

(e)

(a) (b) 

(c) (d) 

(e)
2!

(s + 5)3

s2
- 0.25

(s2
+ 0.25)2

8s

(s2
+ 16)2

s - 3

(s - 3)2
+ 4

5

(s + 3)2
+ 25

2

5

s2
+ 25

1

s + 6

1

s - 9

s

s2
+ 16

5!

s6
1 (a) (b) (c) 

(d) (e) 
6

9(s - 4)2
+ 4

s - 0.5

(s - 0.5)2
+ 0.25

5

(s + 6)2
+ 25

2

(s + 4)3

3

3s - 2
3

The first property states that to find the Laplace transform of two functions added
together we simply find the transform of each individual function and then add
together these transforms.

The second property states that when a function, f, is multiplied by a constant, k,
the corresponding transform is also multiplied by the same constant.

Together, these properties mean that the Laplace transform is what is known as a
linear transform.

Example 1.5
Find the Laplace transform of each of the following functions:
(a) 3 (b) (c) 3 + 2t - 5t23 + 2t
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1.4 Properties of the Laplace transform 1103 22

Solution
(a) We think of 3 as 3(1). From Table 1.1

and so, by the second property,

(b) We note that

and so, using the second property,

Finally, using the first property,

(c)

Example 1.6

Find the Laplace transform of (a) , (b) .

Solution
(a) From Table 1.1

and so

1

2(s - 3)
Le e3t

2
f =

L{e3t} =

1

s - 3

1

3
 cos 6t - 2e-t

 sin t
e3t

2
- 6 sin 2t

 
3
s

+

2

s2 -

10

s3=

 L{3 + 2t - 5t2} = L{3} + L{2t} - L{5t2}

 =

3
s

+

2

s2

 L{3 + 2t} = L{3} + L{2t}

2

s2L{2t} =

L{t} =

1

s2

 =

3
s

 L{3} = 3a1
s
b

L{1} =

1
s
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1104 Block 1 The Laplace transform22

Similarly

and so

Finally

(b) We know from Table 1.1 that

and hence

Similarly

and so

So

Le 1

3
   cos 6t - 2e-t   sin t f =

s

3(s2
+ 36)

-

2

(s + 1)2
+ 1

2

(s + 1)2
+ 1

L{2e-t    sin t} =

1

(s + 1)2
+ 1

L{e-t sin t} =

s

3(s2
+ 36)

Le 1

3
     cos 6t f =

s

s2
+ 36

L{cos 6t} =

Le e3t

2
- 6 sin 2t f =

1

2(s - 3)
-

12

s2
+ 4

12

s2
+ 4

L{6   sin 2t} =

2

s2
+ 4

L{sin 2t} =
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1.4 Properties of the Laplace transform 1105 22

Exercises

Explain what is meant by stating that the
Laplace transform is a linear transform. Write
down the two linearity properties.

Find the Laplace transform of

(a) (b) (c) 

(d) (e)

Find the Laplace transform of

(a) (b)
e3t

2
+ 4et

- 5e-t4e2t
+ 3e-2t

3

2 - 4t3 + 5t52t3
- 3t2 + 5t - 6

t2

2
- 62t2 - 32 + 3t

2

1 (c) (d) 

(e)

Find the Laplace transform of each of the
following:
(a)
(b)

(c)

(d)
(e) 3e-2t

 sin 3t - 2e-2t
 cos 3t

2et
 cos 2t - 4et

 sin 2t

2 - 3 cos 
2t

3
+ 2t cos 2t

5 cos 3t + 3 sin 3t
3 sin 2t - 4t sin 3t

4

2t - 3te-t
+ 4

2tet
- 3t2e-t1 - 3e-t

+

2et

3

Solutions to exercises

, 
if k is a constant.

(a) (b) (c) 

(d) (e) 

(a)

(b)

(c)
1

s
-

3

s + 1
+

2

3(s - 1)

1

2(s - 3)
+

4

s - 1
-

5

s + 1

4

s - 2
+

3

s + 2
3

2

s
-

24

s4
+

600

s6

12

s4
-

6

s3
+

5

s2
-

6

s

1

s3
-

6

s

4

s3
-

3

s

2

s
+

3

s2
2

L{kf} = kL{f}L{f + g} = L{f} + L{g}1 (d)

(e)

(a) (b) 

(c)

(d)

(e)
9

(s + 2)2
+ 9

-

2(s + 2)

(s + 2)2
+ 9

2(s - 1)

(s - 1)2
+ 4

-

8

(s - 1)2
+ 4

2

s
-

3s

s2
+

4
9

+

2(s2
- 4)

(s2
+ 4)2

5s

s2
+ 9

+

9

s2
+ 9

6

s2
+ 4

-

24s

(s2
+ 9)2

4

2

s2
-

3

(s + 1)2
+

4

s

2

(s - 1)2
-

6

(s + 1)3
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1106 Block 1 The Laplace transform22

End of block exercises

Find the Laplace transform of each of the
following:

(a) 7 (b) (c) (d) (e) 

Find the Laplace transform of the following:
(a) 0.6t (b) (c) 
(d) (e) 3t4 - 2(t + 1)(t - 1)

2(t + 1)6 - 6t
2

2t - 1

3
t - 2-0.25

2

3

1 Find the Laplace transform of the following:
(a) (b) 
(c) (d) 
(e) cos 2t(e-t

+ t - 2)
3e2t(1 - t + et)2t(sin 3t - 2  cos 3t)

t(2 - 3t + 4et)2 - 3t2e-3t
3

Solutions to exercises

(a) (b) (c) (d) 

(e)

(a) (b) (c) 

(d) (e) 
72

s5
-

2

s

2

s3
-

1

s

2a 1

s2
+

1

s
b6

s
-

6

s2

0.6

s2
2

2

3s2
-

1

3s

1

s2
-

2

s
-

1

4s

2

3s

7

s
1 (a) (b) 

(c)

(d)

(e)
s + 1

(s + 1)2
+ 4

+

s2
- 4

(s2
+ 4)2

-

2s

s2
+ 4

3a 1

s - 2
-

1

(s - 2)2
+

1

s - 3
b

2a 6s

(s2
+ 9)2

- 2
(s2

- 9)

(s2
+ 9)2

b

2

s2
-

6

s3
+

4

(s - 1)2

2

s
-

6

(s + 3)3
3

M22_CROF5939_04_SE_C22.QXD  9/29/18  10:31 AM  Page 1106



BLOCK 2
The inverse Laplace transform

2.1 Introduction

In Block 1 we saw how to use Table 1.1 to find the Laplace transform of a variety of
functions. Often, however, we know the Laplace transform of a function without
knowing the actual function. In such cases we need to calculate the original function
from knowledge of its Laplace transform: that is, we seek the inverse Laplace
transform. This is the subject of this block.

2.2 Using Table 1.1 to find inverse Laplace transforms

To find the inverse Laplace transform we use Table 1.1 in Block 1. We write any
given Laplace transform as the sum of standard expressions given in Table 1.1 and
then find the inverse from the table. We use the notation to denote an inverse
Laplace transform, so that

In addition we shall make use of the following linearity properties:

if L{ f (t)} = F(s), then L-1{F(s)} = f (t)

L
-1

Key point
if k is a constantL

-1{kF} = kL-1{F}

L
-1{F + G} = L

-1{F} + L
-1{G}

The first property states that to find the inverse Laplace transform of two functions
added together we simply find the inverse transform of each individual function and
then add together these inverse transforms.

The second property states that when a function, F(s), is multiplied by a constant,
k, the corresponding inverse transform is also multiplied by the same constant.

The technique is illustrated by examples.

Example 2.1
Find the inverse Laplace transform of

(a) (b) (c) 

Solution
(a) From Table 1.1 we note that

L{1} =

1
s

1

2s

4
s

1
s
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1108 Block 2 The inverse Laplace transform22

Hence the inverse Laplace transform of is 1. We may write this compactly as

Thus the function, f(t), whose Laplace transform is , is . 

(b) We write as From (a) we know and so

Here we have made use of the second linearity property.

(c) We write as and so

Example 2.2
Find the inverse Laplace transform of

(a) (b) (c) 

Solution
(a) From Table 1.1 we note that and so

The inverse Laplace transform of is t.

(b)

(c) First note that . Then using the first linearity property we can
write

 = 3t - 7

 L-1e 3

s2 -

7
s
f = L

-1e 3

s2 f - L
-1e 7

s
f

L
-1e 7

s
f = 7

 = 3t

 L-1e 3

s2 f = 3L-1e 1

s2 f

1

s2

L
-1e 1

s2 f = t

L{t} =

1

s2

3

s2 -

7
s

3

s2

1

s2

L
-1e 1

2s
f =

1

2

1

2
 a1

s
b1

2s

 = 4 

 = 4(1)

 L-1e 4
s
f = 4L-1e 1

s
f

L
-1e 1

s
f = 14a1

s
b .

4
s

f(t) = 1
1
s

L
-1e 1

s
f = 1

1
s
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2.2 Using Table 1.1 to find inverse Laplace transforms 1109 22

Example 2.3
Find the inverse Laplace transform of

(a) (b) 

Solution
(a) Using Table 1.1 we see that

and so

Similarly

Hence

(b) We note that

Noting that , then

Sometimes it is necessary to carry out some preliminary rewriting of a transform in
order to be able to use Table 1.1. The best way to proceed is not always obvious, but
doing plenty of practice exercises will help. Consider Example 2.4.

Example 2.4
Find the inverse Laplace transform of

(a) (b) (c) 

Solution
(a) From Table 1.1 we see that

so that

L
-1e 3

(s + 2)2
+ 9

f = e-2t sin 3t

3

(s + 2)2
+ 9L{e-2t sin 3t} =

s + 7

(s + 2)2
+ 9

s + 2

(s + 2)2
+ 9

5

(s + 2)2
+ 9

t5e-t

40
 L

-1e 3

(s + 1)6 f =

5! = 120

t5e-t
L

-1e 5!

(s + 1)6 f =

2e-t
- 4e2t

L
-1e 2

s + 1
-

4

s - 2
f =

 4e2t
L

-1e 4

s - 2
f =

 2e-t
L

-1e 2

s + 1
f =

L
-1e 1

s + 1
f = e-t

3

(s + 1)6

2

s + 1
-

4

s - 2
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Hence

(b)

(c) We think of as

So

5

3
 e-2t sin 3t + e-2tcos 3tL

-1e s + 7

(s + 2)2
+ 9

f =

5

(s + 2)2
+ 9

+

s + 2

(s + 2)2
+ 9

s + 7

(s + 2)2
+ 9

e-2t cos 3tL
-1e s + 2

(s + 2)2
+ 9

f =

5

3
 e-2t sin 3tL

-1e 5

(s + 2)2
+ 9

f =

1110 Block 2 The inverse Laplace transform22

Exercises

Find the inverse Laplace transform of each of
the following:

(a) (b) (c) (d) 

(e) 

Find the inverse Laplace transform of

(a) (b) (c) 

(d) (e) 
1

(s - 3)2
+

1

(s - 3)3

1

s
+

1

s + 1

2

(s + 2)3

-2

s - 1

3

s + 2

2

1

3s5
-

2

3s2

3

s5
-

2

s4

5

s3
-

3

s

4

s2

1 Find the inverse Laplace transform of

(a) (b) (c)

(d) (e)

Find the inverse Laplace transform of

(a) (b) 

(c) (d) 

(e)
s + 5

(s + 3)2
+ 4

s + 5

(s + 2)2
+ 9

-1

(s - 1)2
+ 4

3

(s + 2)2
+ 9

s - 1

(s - 1)2
+ 36

4

s + 2

s2
+ 4

-6

s2
+ 9

3s

s2
+ 1

1

2s + 3

1

2(s + 3)

3

Solutions to exercises

(a) 4t (b) (c) (d) 

(e)

(a) (b) (c) (d) 

(e) te3t
+

t2e3t

2

1 + e-tt2e-2t
-2et3e-2t2

t4

72
-

2t

3

t4

8
-

t3

3

5t2

2
-31 (a) (b) (c) 3 cos t (d) 

(e)

(a) (b) (c) 

(d)

(e) e-3t
 cos 2t + e-3t

 sin 2t

e-2t
 cos 3t + e-2t

 sin 3t

-

et
 sin 2t

2
e-2t

 sin 3tet
 cos 6t4

 cos 2t + sin 2t

-2 sin 3t
e-1.5t

2

e-3t

2
3
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2.3 Inversions requiring completing the square 1111 22

2.3 Inversions requiring completing the square

The technique of completing the square, which was described in Chapter 7, Block 2,
is often used to rewrite Laplace transforms in alternative forms so that they can be
inverted. Consider the following examples.

Example 2.5
Find the inverse Laplace transform of .

Solution
By completing the square we write , which is the same
as . From Table 1.1

and so

Example 2.6

Find the inverse Laplace transform of .

Solution
By completing the square we see that

From Table 1.1, the results with in the denominator are

,

We need to rewrite the given transform in terms of these two results.

Now

L
-1 e7

1

(s + 3)2
+ 12 f = 7e-3t sin tL

-1e2
s + 3

(s + 3)2
+ 12 f = 2e-3t cos t, 

 = 2
s + 3

(s + 3)2
+ 12 - 7

1

(s + 3)2
+ 12

 =

2s + 6

(s + 3)2
+ 12 -

7

(s + 3)2
+ 12

 =

2s + 6 - 7

(s + 3)2
+ 12

 
2s - 1

s2
+ 6s + 10

=

2s - 1

(s + 3)2
+ 12

L{e-3t cos t} =

s + 3

(s + 3)2
+ 12L{e-3t sin t} =

1

(s + 3)2
+ 12

(s + 3)2
+ 12

s2
+ 6s + 10 = (s + 3)2

+ 12

2s - 1

s2
+ 6s + 10

L
-1e 1

(s - 1)2
+ 22 f =

1

2  

   et sin 2t

L{et sin 2t} =

2

(s - 1)2
+ 22

(s - 1)2
+ 22

s2
- 2s + 5 as (s - 1)2

+ 4

1

s2
- 2s + 5
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1112 Block 2 The inverse Laplace transform22

and so

Example 2.7

Find the inverse Laplace transform of .

Solution

We write and then complete the square to obtain

The relevant parts of Table 1.1 are

The given transform is rewritten so that these results can be used.

Now

and

Hence

L
-1e 9 - 4s

2s2
+ 8s + 40

f = 2.125e-2t sin 4t - 2e-2t cos 4t

 2e-2t cos 4tL
-1e2

s + 2

(s + 2)2
+ 42 f =

2.125e-2t sin 4tL
-1e 8.5

(s + 2)2
+ 42 f =

 =

8.5

(s + 2)2
+ 42 - 2

s + 2

(s + 2)2
+ 42

 =

8.5 - 2(s + 2)

(s + 2)2
+ 42

 =

17 - 4(s + 2)

2[(s + 2)2
+ 42]

 
9 - 4s

2s2
+ 8s + 40

 =

9 - 4s

2[(s + 2)2
+ 42]

s + 2

(s + 2)2
+ 42L{e-2t cos 4t} =

4

(s + 2)2
+ 42L{e-2t sin 4t} =

2[(s + 2)2
+ 42]2(s2

+ 4s + 20) =

2s2
+ 8s + 40 as 2(s2

+ 4s + 20)

9 - 4s

2s2
+ 8s + 40

L
-1e 2s - 1

s2
+ 6s + 10

f = 2e-3t cos t - 7e-3t sin t
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2.4 Using partial fractions to find an inverse Laplace transform 1113 22

2.4 Using partial fractions to find an inverse Laplace transform

The method of partial fractions was met in Chapter 7. It is a technique for expressing
an algebraic fraction as a sum of simpler fractions. It is also used as an intermediate
step when finding the inverse Laplace transform.

Example 2.8

Find the inverse Laplace transform of 

Solution
The algebraic fraction is expressed as a sum of partial fractions.

The inverse Laplace transform of each partial fraction is found.

and so

L
-1e 5s + 4

s2
+ 2s

f = 2 + 3e-2t

L
-1e 2

s
f = 2, L

-1e 3

s + 2
f = 3e-2t

5s + 4

s2
+ 2s

=

2
s

+

3

s + 2

5s + 4

s2
+ 2s

.

Exercises

Find the inverse Laplace transform of each of
the following:

(a) (b) (c) 

(d) (e) 
1

s2
- 6s + 9

1 - 2s

s2
+ 4

3 - 2s

s2
- 4s + 8

3s - 5

s2
+ 1

1

s2
+ 4s + 5

1 Find the inverse Laplace transform of

(a) (b) (c) 

(d) (e)
2s - 5

s2
+ 4s + 13

3s + 7

9 + 3s2

1 + s

s2

s

2s2
+ 0.5

6 + s

2s2
- 4s + 4

2

Solutions to exercises

(a) (b) 

(c)

(d) (e) te3t1

2
 sin 2t - 2 cos 2t

-2e2t cos 2t -

1

2
 e2t sin 2t

3 cos t - 5 sin te- 2t sin t1 (a) (b) (c) 

(d)

(e) 2e- 2t cos 3t - 3e- 2t sin 3t

cos23t +

7

323
 sin 23t

t + 11
2 cos 

t

2
1
2 et cos t +

7
2 et sin t2
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1114 Block 2 The inverse Laplace transform22

Example 2.9
Find the inverse Laplace transform of

Solution
The algebraic fraction is expressed as its partial fractions.

The inverse Laplace transform of each partial fraction can now be found.

and so

Example 2.10
Find the inverse Laplace transform of

Solution
The fraction is expressed as its partial fractions.

The inverse Laplace transform of each partial fraction is found.

, ,

and so

1 + 4te-t
L

-1e s2
+ 6s + 1

s3
+ 2s2

+ s
 f =

1, 4te-t L
-1e 4

(s + 1)2 f =L
-1e 1

s
 f =

1
s

+

4

(s + 1)2

s2
+ 6s + 1

s3
+ 2s2

+ s
=

s2
+ 6s + 1

s3
+ 2s2

+ s

L
-1e s + 7

s2
+ 4s + 3

f = 3e-t
- 2e-3t

L
-1e 3

s + 1
f = 3e-t, L

-1e 2

s + 3
f = 2e-3t

s + 7

s2
+ 4s + 3

=

3

s + 1
-

2

s + 3

s + 7

s2
+ 4s + 3

Exercises

Find the inverse Laplace transform of the
following:

(a) (b) (c) 

(d) (e) 
3s2

+ 2s + 5

(s + 1)(s2
+ 1)

s + 4

s2
+ 4s + 4

3s + 2

s2

7s + 11

s2
+ s - 6

3s + 1

s2
- 1

1 Find the inverse Laplace transform of each of
the following:

(a) (b) 

(c) (d) 

(e)
5s2

- 1

s4
- 1

s2
+ 3s + 2

s3
+ 2s2

+ 2s

-8s - 2

s3
- s2

- 2s

-(s + 6)

2(s2
+ 6s + 8)

2s2
- 3s + 1

(s - 3)(s2
+ 1)

2
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2.4 Using partial fractions to find an inverse Laplace transform 1115 22

Solutions to exercises

(a) (b) (c) 

(d) (e) 2 sin t + 3e- te-2t
+ 2te-2t

3 + 2t5e2t
+ 2e-3t2et

+ e-t1 (a) (b) 

(c) (d) 
(e) 2 sinh t + 3 sin t

1 + e- t sin t1 + 2e- t
- 3e2t

1
2e-4t

- e-2te3t
+ cos t2

End of block exercises

Find the inverse Laplace transform of the
following:

(a) (b) (c) 

(d)

(e)

Find the inverse Laplace transform of the
following:

(a)

(b)

(c)

(d)

(e)
1

s
+

1

s + 1
-

2

s + 2

2

(s - 2)4
+

1

(s + 2)3

4

(s + 1)3
+

1

(s + 2)2

1

s - 1
+

1

s - 2
-

1

s - 3

3

s + 1
+

5

s + 2

2

6a

s4
-

2b

s3
+

g

s2
,            a, b, g constants

1

5
 a18

s4
-

8

s3
+

2

s
b

12

s4
-

6

s3

2

s3
+

1

s2
-

2

s

3

s2
-

4

s

1 Find the inverse Laplace transform of the
following:

(a) (b) 

(c)

(d)

(e)

Find the inverse Laplace transform of the
following:

(a) (b) (c) 

(d) (e)
4s + 5

2s2
+ 5s + 2

4s2
+ 7s + 6

2s3
+ 4s2

3s + 5

s2
+ 2s + 5

5s + 6

s2
+ 9

3s - 3

s2
- s - 2

4

s - 2

(s - 2)2
+ 16

1

23(s + 2)2
+ 0.254 +

2

s3

3

(s + 1)2
+ 9

-

2(s + 1)

(s + 1)2
+ 9

2

(s + 4)2
+ 4

6

s2
+ 9

-

s

2(s2
+ 9)

3

Solutions to exercises

(a) (b) (c) 

(d) (e) 

(a) (b) 

(c) (d)

(e)

(a) (b) e- 4t sin 2t2 sin 3t -

cos 3t

2
3

1 + e-t
- 2e-2t

t3e2t

3
+

t2e-2t

2
2t2e-t

+ te-2t

et
+ e2t

- e3t3e-t
+ 5e-2t2

at3
- bt2

+ gt
3t3

- 4t2
+ 2

5

2t3
- 3t2t2

+ t - 23t - 41 (c) (d)

(e)

(a) (b) 

(c)

(d)

(e) e-t>2
+ e-2t

1 +

3t

2
+ e-2t

e- t(sin 2t + 3 cos 2t)

2 sin 3t + 5 cos 3te2t
+ 2e- t4

e2t cos 4t

e- 2t sin 
t

2
+ t2e- t sin 3t - 2e- t cos 3t
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BLOCK 3
Solving differential equations using 
the Laplace transform

3.1 Introduction

In Blocks 1 and 2 we have seen how to find the Laplace transform and its inverse.
These techniques are now applied to finding the solution to differential equations.

Linear constant-coefficient differential equations may be solved using the Laplace
transform. By applying the transform, the differential equation is converted into an
algebraic equation. This algebraic equation is solved and then the inverse Laplace
transform is applied to yield the solution to the differential equation. One advantage
of using the Laplace transform is that initial conditions are automatically incorpor-
ated into the solution.

3.2 The Laplace transform of a derivative

Let f (t) be a function of t and let F(s) be the Laplace transform of f. The value of f
and its derivatives when are denoted by , and so on. The nth
derivative of f is denoted by . Then it can be shown that the Laplace transform
of is given byf (n)(t)

f (n)(t)
f (0), f ¿(0), f –(0)t = 0

L{ f (n)(t)} = snF(s) - sn - 1 f (0) - sn - 2 f ¿(0) -
Á

- f (n - 1) (0)Key point

Two common cases are given when and . In these casesn = 2n = 1

L{ f –(t)} = s2F(s) - sf (0) - f ¿(0)
L{ f ¿(t)} = sF(s) - f (0)Key point

Example 3.1

The Laplace transform of f(t) is F(s). Given and write expres-
sions for the Laplace transform of
(a) (b) (c)

Solution
(a)

(b)
 = s2 F(s) - 3s + 2

 L{ f ¿¿(t)} = s2 F(s) - sf(0) - f ¿(0)
 = sF (s) - 3

L{ f ¿(t)} = sF(s) - f (0)

2 f – - 3f ¿ + ff –(t)f ¿(t)

f ¿(0) = -2f(0) = 3
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3.2 The Laplace transform of a derivative 1117 22

(c)

Example 3.2
Obtain an expression for the Laplace transform of where

Solution

so

(3s2
+ 2s - 2)X + 12s - 1

=

 = 3(s2X + 4s - 3) + 2(sX + 4) - 2X

 L{3x– + 2x¿ - 2x} = 3L{x–} + 2L{x¿} - 2L{x}

s2X(s) + 4s - 3L{x–(t)} =

sX(s) + 4L{x¿(t)} =

L{x(t)} = X(s), x(0) = -4 and x¿(0) = 3.
3x–(t) + 2x¿(t) - 2x(t)

 = (2s2
- 3s + 1) F(s) - 6s + 13

 = 2[s2F(s) - 3s + 2] - 3[sF(s) - 3] + F(s)
 L{2f – - 3f ¿ + f} = 2L{ f –} - 3L{f ¿} + L{ f}

Exercises

The Laplace transform of y(t) is Y (s), 
and . Find the Laplace transform of
the following expressions:
(a) (b) (c)
(d)

(e)

The Laplace transform of x(t) is X(s),
. Find the

Laplace transform of
(a) (b) (c) x‡x–  -  2x¿ + 3x2x¿ - 3x

x(0) = 2, x¿(0) = 3, x–(0) = -1
2

y–

2
+ 3y¿  -  y

-y–  +  4y¿  -  6y
2y– -  y¿  +  3yy–y¿

y¿(0) = -1
y(0) = 21 (d)

(e)

From the definition of the Laplace transform,
and using integration by parts, show that

From the definition of the Laplace transform,
and using integration by parts, show that

L{  f –(t)} = s2F(s) - sf (0) - f ¿(0)

4

L{  f ¿(t)} = sF(s) - f(0)

3

2x‡ - 3x– - 7x¿ + 6x
x‡ + 2x– + 3x¿ - 4x

Solutions to exercises

(a)

(b)

(c)

(d)

(e) as2

2
+ 3s - 1bY - s -

11

2

(-s2
+ 4s - 6)Y + 2s - 9

(2s2
- s + 3)Y - 4s + 4

s2Y - 2s + 1

sY-21 (a)

(b)

(c)

(d)

(e) (2s3
- 3s2

- 7s + 6)X - 4s2
+ 25

(s3
+ 2s2

+ 3s - 4)X - 2s2
- 7s - 11

s3X - 2s2
- 3s + 1

(s2
- 2s + 3)X - 2s + 1

(2s - 3)X - 42
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1118 Block 3 Solving differential equations using the Laplace transform22

3.3 Solving differential equations

We are now in a position to solve linear constant-coefficient differential equations
using the Laplace transform method. The method consists of three distinct phases:

1 Take the Laplace transform of the given differential equation.
2 Make the transformed variable (usually X or Y) the subject.
3 Apply the inverse Laplace transform to find x(t) (or y(t)).

Example 3.3
Solve

Solution
The Laplace transform of every term is found, noting that the transform of x(t) is X(s).
In what follows we write X(s) as simply X in the knowledge that X is a function of s.

So, by taking the Laplace transform of each term, the differential equation becomes

Note that this is no longer a differential equation but an algebraic equation for X.
This equation is rearranged so that X is made the subject.

 =

2

s - 3

 =

2s - 4

(s - 3)(s - 2)

 =

2 + 2(s - 3)

(s - 3)(s - 2)

  X =

2

(s - 3)(s - 2)
+

2

s - 2

 (s - 2)X =

2

s - 3
+ 2

 (s - 2)X - 2 =

2

s - 3

sX - 2 - 2X =

2

s - 3

 L{2e3t} =

2

s - 3

 L{2x} = 2X

 = sX - 2

Le dx

dt
f = sX - x(0)

dx

dt
- 2x = 2e3t, x(0) = 2
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The inverse Laplace transform is now found.

so

Thus is the solution to the given differential equation. Note that the
initial condition, , is automatically incorporated into the solution.

Example 3.4 Dynamics – Change in pressure
The pressure, p, of a gas varies with altitude, x, according to

where K is a constant. The pressure at ground level (i.e. ) is known to be .
Solve the equation to find p in terms of x.

Note that, in this example, the independent variable is x ; the dependent variable is p.

Solution
We are given

Let the Laplace transform of p be P(s).

Taking the Laplace transform of :

Taking the Laplace transform of :

So taking the Laplace transform of the entire equation gives

This equation is rearranged to make P the subject.

We now apply the inverse Laplace transform to find p (x).

 = p0e
-Kx

 p(x) = p0L a 1

s + K
b

 L- 1(P) = L
- 1 a p0

s + K
b

P =

p0

s + K

P(s + K ) = p0

sP + KP = p0

sP - p0 = -KP

L(Kp) = KL(p) = KP

Kp

= sP - p0

Ladp

dx
b = sP - p(0)

dp

dx

dp

dx
= -Kp,  p(0) = p0

p0x = 0

dp

dx
= -Kp

x(0) = 2
x(t) = 2e3t

x(t) = 2e3t

L
-1e 2

s - 3
f = 2e3t
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The pressure exhibits an exponential decay as height, x, is increased.
Note that the differential equation has the same form as those in Examples 2.6 and

2.7 in Chapter 20 (Differential equations) which were solved using a separation of
variables method. They could equally well have been solved using the Laplace
transform method.

Example 3.5
Solve

Solution
Write and take the Laplace transform of each term. We write Y(s)
concisely as Y.

The differential equation then becomes

from which

Expressing Y as partial fractions yields

Taking the inverse Laplace transform produces

Example 3.6
Solve

y– - y¿ + y = t, y(0) = y¿(0) = 1

et
+ e-t

- 2y(t) =

1

s - 1
+

1

s + 1
-

2
s

Y =

2

s(s2
- 1)

=

2

s(s + 1)(s - 1)
Y =

(s2
- 1)Y =

2
s

2
s

 L{2} =

Y L{y} =

s2Y Le d2y

dt2
f =

L{y} = Y(s)

d2y

dt2 - y = 2, y(0) = y¿(0) = 0
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3.3 Solving differential equations 1121 22

Solution
We take the Laplace transform of all the terms.

Hence the equation becomes

So, cancelling from both sides we obtain

Written as partial fractions we have

from which

Example 3.7 Electrical Engineering – Current in a circuit
The current, i(t), in a circuit is given by

where L, R and E are constants and the initial current is 0 (i.e. ). Find i(t).

Solution
Taking the Laplace transform of each component of the equation gives

L{E sin t} = EL{sin t} = Ea 1

s2
+ 1

b =

E

s2
+ 1

L{Ri} = RI

LeL
di

dt
f = LLe di

dt
f = L(sI - i(0)) = LsI

i(0) = 0

L
di

dt
+ Ri = E sin t

 1 + ty(t) =

1
s

+

1

s2Y =

Y =

s + 1

s2

(s2
- s + 1)

 Y(s2
- s + 1) =

(s + 1)(s2
- s + 1)

s2

 =

s3
+ 1

s2

 Y(s2
- s + 1) = s +

1

s2

 s2Y - s - 1 - (sY - 1) + Y =

1

s2

1

s2 L5t6 =

s2Y - s - 1 L5y–6 =

 sY - 1 L5y¿6 =

 L5y6 = Y
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So

Rearranging for I yields

The right-hand side of this equation must now be written, using partial fractions, in a
form suitable for taking the inverse Laplace transform.

The constants A, B and C can be found to be

The expression is further written in a form suitable for inversion.

Note that the inverse Laplace transform of each expression in brackets can be found
using Table 1.1 in Block 1. Taking the inverse Laplace transform yields

With the previously calculated values of A, B and C, i(t) could also be written as

Example 3.8
Solve

d2x

dt2
-

dx

dt
+ 2x = cos 3t - 17 sin 3t, x (0) = -1, x¿(0) = 6

i(t) =

E

R2
+ L2 aR sin t - L cos t + Le-Rt>Lb

i(t) =

EA

L
 cos t +

EB

L
 sin t +

EC

L
 e-Rt>L

 =

EA

L
 a s

s2
+ 1
b +

EB

L
 a 1

s2
+ 1
b +

EC

L
 a 1

s + R>L b

 =

E

L
 a As

s2
+ 1

+

B

s2
+ 1

+

C

s + R>L b

I =

E

L
 aAs + B

s2
+ 1

+

C

s + R>L b

A =

-L2

R2
+ L2, B =

RL

R2
+ L2, C =

L2

R2
+ L2

 =

E

L
 aAs + B

s2
+ 1

+

C

s + R>L b

E

(s2
+ 1)(Ls + R)

=

E

L
 a 1

(s2
+ 1)(s + R>L)

b

I =

E

(s2
+ 1)(Ls + R)

I(Ls + R) =

E

s2
+ 1

LsI + RI =

E

s2
+ 1
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3.3 Solving differential equations 1123 22

Solution

Hence on taking the Laplace transform of the differential equation we have

So, on cancelling we obtain

Hence

Example 3.9 Mechanical vibration – Mass–spring–damper system
In this example we establish a model of a mass–spring–damper system. Such sys-
tems are common in machines where vibration occurs.

A mass, M, is attached to a solid wall by a spring and damper. Figure 3.1 illus-
trates this.

2 sin 3t - cos 3tx(t) =

 =

6

s2
+ 9

-

s

s2
+ 9

  X =

6 - s

s2
+ 9

(s2
- s + 2)

 =

(s2
- s + 2)(6 - s)

s2
+ 9

-s3
+ 7s2 -  8s + 12

 =

-s3
+ 7 - 8 s + 12

 s2
+ 9

 (s2
- s + 2)X =

s - 51

s2
+ 9

- s + 7

 (s2
- s + 2)X + s - 7 =

s - 51

s2
+ 9

 =

s - 51

s2
+ 9

 L{cos 3t - 17 sin 3t} =

s

s2
+ 9

-

51

s2
+ 9

(s2 -  s + 2)X + s -  7 Le d2x

dt2
-

dx

dt
 + 2x f =

 s2X + s - 6 Le d2x

dt2
f =

sX + 1 Le dx

dt
 f =

 L{x} = X
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Figure 3.1
A mass–spring–damper
system.

Spring Damper

Displacement
x

Mass

The force FS in the spring obeys Hooke’s law: that is, the force is proportional to
the spring extension. Note that this is an assumption about the spring. For many
springs which operate within their limits of elasticity this assumption is accepted as
being reasonable.

When the mass is at rest let the spring extension be e. This position is known as
the equilibrium position. Then the force in the spring is ke (where k is a constant of
proportionality known as the spring stiffness) and this exactly equals the force on the
mass due to gravity, Mg, that is

ke = Mg

In subsequent motion we measure all distances, x, from the equilibrium position.

The force, Fd, due to the damper is proportional to the velocity, , of the mass.

where B is a constant of proportionality known as the damping coefficient. Again,
we are making another assumption: that the restraining force in the damper is pro-
portional to the velocity of the mass.

If the mass is pulled from its equilibrium position and then released, the move-
ment of the mass is governed by Newton’s second law of motion: that is,
force mass acceleration. This is expressed mathematically as 

from which

As assumptions have been made, this differential equation will provide an approxi-
mate description of the actual situation.

Given that M � 1, B � 4, k � 8, x (0) � 1 and , find the displacement

of the mass in terms of time t.

dx

dt
 (0) = 0

M 

d2x

dt2
+ B 

dx

dt
+ kx = 0

Mg - ke -  kx - B 

dx

dt
= M 

d2x

dt2

*=

Fd = B 
dx

dt

Fd r

dx

dt

dx

dt

FS = k(x + e)

FS r (x + e)
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3.3 Solving differential equations 1125 22

Solution
The equation and initial conditions are

Taking the Laplace transform of the equation produces

from which

Completing the square and expressing X in a form suitable for taking the inverse
Laplace transform yields

Taking the inverse Laplace transform produces

x(t) = e-2t
 cos 2t + e-2t

 sin 2t = e-2t(cos 2t + sin  2t)

X =

s + 2

(s + 2)2
+ 22 +

2

(s + 2)2
+ 22

X =

s + 4

s2
+ 4s + 8

s2X - s + 4(sX - 1) + 8X = 0

d2x

dt2
+ 4 

dx

dt
+ 8x = 0, x(0) = 1, 

dx(0)

dt
= 0

Solve the following differential equations
using the Laplace transform technique:
(a)
(b)
(c)
(d)
(e) y¿ - y = 2 - t2, y(0) = 0

y¿ + y = 2 cos t, y(0) = 1
y¿ + 4y = 3e2t, y(0) = 0 .5
y¿ + y = 2et,  y(0) = 2
y¿ - y = 0,  y(0) = 3

1 Solve the following equations using the
Laplace transform method:
(a)
(b)

(c)

(d)

(e) x– + 2x¿ + x = 2e-t, x(0) = x¿(0) = 0

+  3t cos 3t), y(0) = y¿(0) = 0
y– + 2y¿ + 9y = 2(3 cos 3t + sin 3t
y(0) = 0, y¿(0) = 2
y– + y¿ + 4y = 4t2 + 2t + 2 + 2 cos 2t,

x– - 4x¿ + 5x = 0, x(0) = 0, x¿(0) = 1
x– + 3x¿ - 4x = 5et, x(0) = 0, x¿(0) = 1

2

Figure 3.2
Sine wave with
exponentially decaying
amplitude and
exponential envelope.

O t

1
x(t)

Note that cos 2t � sin 2t may be expressed in the form (see Chap-
ter 9, Section 7.8) and so

x(t) = 22e-2t sin a2t +

p

4
b

22 sin12t +
p

4  2

This is a sine wave with an amplitude of that is decaying exponentially with 
time. A typical graph showing a sine wave with exponentially decaying amplitude is
shown in Figure 3.2.

22e-2t

Exercises
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End of block exercises

Given write
expressions for the Laplace transform of the
following:
(a) (b) (c) (d)
(e)

Given 
write down the Laplace transform of the
following expressions:
(a) (b) (c) (d)
(e)

Use the Laplace transform technique to solve
(a) x¿ - 2x = 1 - 2t2, x(0) = (0)

3

-x‡ - 2x– + 3x¿ + 7x
2x‡ + 3x– - x¿ + 2xx‡x–x¿

L{x} = X, x(0) = x¿(0) = 2, x–(0) = -12

2y– - y¿ + 3y
y– + 3y¿ - 2yy– + y¿y–y¿

L{y} = Y, y(0) = 2, y¿(0) = -31 (b)
(c)
(d)
(e)

Solve using the Laplace transform method:
(a)
(b)
(c) ,

(d)

(e) y– + 2y¿ + 5y = 0, y(0) = 1, y¿(0) = -1
y¿(0) = 1
y– + y = 2 (cos t - sin t), y(0) = 0,
y¿(0) = 0, y–(0) = 1
y–¿ + y– + y¿ + y = 1 + t, y(0) = 1
y– - 2y¿ = 2e2t, y(0) = 0, y¿(0) = 1
y– + y = 2 cos t, y(0) = 0, y¿(0) = 1

4

x¿(0) = -3
x– + x¿ - 2x = cos t - 3 sin t, x(0) = 2,
x– + 4x = 0, x(0) = 2, x¿(0) = 0
4x– + x = 3, x(0) = 3, x¿(0) = -0.5
x¿ + x = 1 + t + 2 cos t, x(0) = 1

Solutions to exercises

(a)
(b)
(c)
(d)
(e)

(a) (b) 
(c) s3X - 2s2

- 2s + 1
s2X - 2s - 2sX - 22

(2s2
- s + 3)Y - 4s + 8

(s2
+ 3s - 2)Y - 2s - 3

(s2
+ s)Y - 2s + 1

s2Y - 2s + 3
sY - 21 (d)

(e)

(a) (b) (c)
(d) (e)

(a) (b) (c)
(d) (e) e-t

 cos 2tt cos t + t sin t
e-t

+ tte2tsin t + t sin t4

2e-2t
+ sin t2 cos 2t

3 - sin 
t

2
t +  sin t +  cos tt 2

+ t3

(-s3
- 2s2

+ 3s + 7)X + 2s2
+ 6s - 3

(2s3
+ 3s2

- s + 2)X - 4s2
- 10s - 2

End of chapter exercises

Find the Laplace transform of each of the
following expressions:
(a) (b) (c)
(d) (e)  cos t + tsin 2t + 2 sin t

7 - 3t 42t 3
+ 5tt - 3

1 Find the Laplace transform of each of the
following expressions:
(a) (b)
(c) (d)
(e) t(cos 2t - 3 sin 2t)

e-2t(sin 3t + 2 cos 3t)et(1 + sin t)
1 - t 3e3t2te2t

2

Solutions to exercises

(a) (b) (c)

(d) (e) y = 2t + t 2y = sin t + cos t 

y = 0.5e2ty = et
+ e-ty = 3et1 (a) (b) (c)

(d) (e) x = t 2e-ty = t sin 3t
y = t 2 + sin 2tx = e2t sin tx = tet2
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Find the Laplace transform of each of the
following expressions:

(a) (b) (c)

(d) (e)

The first shift theorem states that if
then

where a is a constant.
(a) From the definition of the Laplace

transform show that

and hence prove the first shift theorem.
(b) Use Table 1.1 in Block 1 and the first shift

theorem to find where
u(t) is the unit step function.

Given

use the result from question 4 to find the
Laplace transform of
(a) (b) (c)

The second shift theorem states that if
then

where u(t) is the unit step function.
(a) Prove this theorem.
(b) Find the Laplace transform of

.
(c) Find the inverse Laplace transform of

Find the inverse Laplace transform of each of
the following expressions:

(a) (b) (c)

(d) (e)
10

1s + 2)3

s + 3

1s + 322 + 1

3s

s2
+ 9

16

s4

3

s
-

2

s2

7

e-4s 4!

s5

u(t - 3)(t - 3)5

L{u(t - d ) f (t - d )} = e-sdF(s), d 7 0

L{f(t)} = F(s)
6

e2tg(t)2e-2tg(t)e-tg(t)

L{g(t)} =

s + 6

s2
+ 3

5

L{u(t - 3)e- 7t}

L{e-at f(t)} = �
q

0
 e-(s + a)t f(t) dt

L{e-at f(t)} = F(s + a)

L{f(t)} = F(s),
4

2t2

3e2t
2 sin t cos t

 sin 4t

2e3t
(et

+ t)2(t + 1)2

3 Find the inverse Laplace transform of each of
the following expressions:

(a) (b)

(c) (d) 

(e)

Find the inverse Laplace transform of the
following expressions:

(a) (b)

(c)

(d)

(e)

Given find the
Laplace transform of each of the following
expressions:
(a) (b) (c) (d)
(e)

Given 
, write an expression for

.

Solve the following differential equations
using the Laplace transform method:
(a) , 
(b) , ,

(c) ,

(d) , 
(e) , x(0) = x¿(0) = 0x– + x = 2 sin t

x(0) = x¿(0) = 1x– - 4x = 4t
x(0) = x¿(0) = 0
x– + x¿ - 6x = 1 + 7t - 6t3
x¿(0) = 2

x(0) = -1x– + x¿ + 2x = 4 cos 2t
x(0) = 0x¿ - x = et

12

L{y(4) (t)}
y‡(0) = 2y–(0) = -1

L{y} = Y, y(0) = 1, y¿(0) = 0,11

-2x– + x¿ + 3x
3x– + 2x¿ - x2x¿ - xx–x¿

L{x} = X, x(0) = 2, x¿(0) = 310

6s2
- 12s + 2

1s2
- 4s + 1321s2

+ 12

2s3
- 3s2

+ 8s - 3

1s2
+ 121s2

+ 42

s2
- s + 4

1s - 121s2
- 2s + 52

s + 2

s2
+ s

3s + 5

s2
+ 4s + 3

9

1

4s2
+ 4s + 1

s2
+ 6s - 4

1s2
+ 422

2s - 3

s2
+ 6s + 10

s + 5

s2
+ 10s + 29

4

s2
+ 4s + 5

8
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Solutions to exercises

(a) (b) (c)

(d) (e)

(a) (b)

(c) (d)

(e)

(a) (b)

(c) (d) (e)

(b) 

(a) (b)

(c)
s + 4

(s - 2)2
+ 3

2(s + 8)

(s + 2)2
+ 3

s + 7

(s + 1)2
+ 3

5

e-3(s + 7)

s + 7
4

4

3(s + 2)3

2

s2
+ 4

2

(s + 3)2
+ 16

1

s - 2
+

2

(s - 1)2
+

2

s3

2

s3
+

2

s2
+

1

s
3

s2
- 12s - 4

(s2
+ 4)2

2s + 7

(s + 2)2
+ 9

1

s - 1
+

1

(s - 1)2
+ 1

1

s
-

6

(s - 3)4

2

(s - 2)2
2

s

s2
+ 1

+

1

s2

2

s2
+ 4

+

2

s2
+ 1

7

s
-

72

s5

12

s4
+

5

s2

1

s2
-

3

s
1 (b) (c) 

(a) (b) (c) (d)

(e)

(a) (b)
(c)
(d) (e)

(a) (b) (c)
(d)

(e)

(a) (b)
(c)
(d)
(e)

(a) (b)

(c) (d)

(e) x =  sin t - t cos t

x = e2t
- tx =

t2

2
+ t 3

x = sin 2t - cos 2tx = tet12

s4X - s3
+ s - 211

(-2s2
+ s + 3)X + 4s + 4

(3s2
+ 2s - 1)X - 6s - 13

(2s - 1)X - 4
s2X - 2s - 3sX - 210

e2t
 cos 3t +

4

3
e2t

 sin 3t - cos t

2 cos t - 1.5 sin 2t
0.5et

 sin 2t + et2 - e-te-t
+ 2e-3t9

0.25te-0.5tt cos 2t + 1.5t sin 2t
2e-3t

 cos t - 9e-3t
 sin t

e-5t
 cos 2t4e-2t

 sin t8

5t2e- 2t

e-3t
 cos t3 cos 3t

8t3

3
3 - 2t7

u(t - 4)(t - 4)4e- 3s 5!

s6
6

1128 Block 3 Solving differential equations using the Laplace transform
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Chapter 23
Statistics and probability

Most experimental work in engineering involves the use of statistics
and probability. When an experiment is carried out, data are collected
and analysed. Data may be classified as either discrete or continuous.
This distinction is explained in Block 1. Two key parameters, the centre
and the variation, are useful in describing a set of data, and comparing
it with other sets. Various ways in which these parameters can be
calculated are covered in Blocks 2 and 3.

The second part of the chapter focuses on probability. The probability
of an event is the likelihood of its occurring, measured on a scale from 
0 to 1, where 0 represents impossibility and 1 represents certainty. In
any particular trial or experiment there are usually several possible
outcomes, each with a different probability. It is useful to think of the
total probability, that is 1, being spread out or distributed amongst the
various possibilities. This idea gives rise to probability distributions for
discrete data and probability density functions for continuous data. The
common probability distributions and density functions – binomial,
Poisson and normal – are covered in Blocks 7, 8 and 9.
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Chapter 23 contents

Block 1 Data

Block 2 Data averages

Block 3 Variation of data

Block 4 Elementary probability

Block 5 Laws of probability

Block 6 Probability distributions

Block 7 The binomial distribution

Block 8 The Poisson distribution

Block 9 The normal distribution

End of chapter exercises
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BLOCK 1
Data

1.1 Introduction

When a new engineering component is developed, there will be extensive testing at
each stage. Much data will be gathered and analysed. It is useful to classify data as
either discrete or continuous.

1.2 Discrete data

Sometimes a variable must take on a value from a set of individually specified values
and no other values are possible. Such a variable is then called a discrete variable.
Consider a quality control engineer who selects five silicon chips at random and tests
each one to see whether it works or not. The engineer is interested in the number of
chips that work. Let this variable be n. Then n must be a number from the set {0, 1,
2, 3, 4, 5}. It is impossible for n to have any other values.

As another example, consider the number of people living in a household. This
could be 0, 1, 2, 3, . . ., and so on. It is impossible to have 2.3 or 1.7 people living in
a household.

These are just two examples of variables that are discrete. When a discrete variable
is measured several times, the data so generated are called discrete data. Discrete
data can have only a limited number of values. Other examples of discrete data are

• the number of cars produced in a factory in a week;
• the shoe sizes of people in an office block;
• the number of times a machine breaks down in 1 year.

1.3 Continuous data

Sometimes a variable can take on any value within a specified range. Such a variable
is called continuous. For example, consider the weight of a pack of butter produced
in a factory. A pack could have any weight between, say, 230 g and 270 g. The
weight will be recorded to a particular accuracy, which depends upon the measuring
device and the use to which the data will be put. However, the actual weight could be
any value in the given range. When a continuous variable is measured several times
the data generated are continuous data.
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1132 Block 1 Data23

Examples of continuous data are

• the diameters of pistons produced in a factory;
• the volume of gas produced in a chemical reaction;
• the current in a branch of a circuit.

Exercises

Explain what is meant by (a) discrete data,
(b) continuous data.

Give two examples of (a) discrete data,
(b) continuous data.

Classify the following variables as discrete or
continuous:
(a) the number of times a machine breaks

down in 12 months

3

2

1 (b) the time between breakdowns of a machine
(c) the capacitance of a capacitor
(d) the amount of money in your pocket
(e) the number of hairs on your head.

Solutions to exercises

(a) number of employees of a firm, the number
of cars passing a given point in 12 hours

(b) the length of a metal bar, the volume of
petrol used on a journey

2 (a) discrete (b) continuous (c) continuous
(d) discrete (e) discrete

3

End of block exercises

Classify the following variables as discrete or
continuous:
(a) the distance travelled before a set of tyres

needs replacing
(b) the intensity of light in a room
(c) the force needed to extend a spring by a set

amount
(d) the number of bearings in a machine
(e) the percentage mark obtained in an

examination.

1 Classify each of the following as discrete or
continuous:
(a) the number of pages in a book
(b) the weight of a book
(c) the area of paper needed to make the pages

of a book
(d) the price of a book
(e) the number of copies of a book that are

sold.

2

Solutions to exercises

(a) continuous (b) continuous
(c) continuous (d) discrete (e) discrete

1 (a) discrete (b) continuous (c) continuous
(d) discrete (e) discrete

2

M23_CROF5939_04_SE_C23.QXD  9/28/18  11:57 AM  Page 1132



BLOCK 2
Data averages

2.1 Introduction

We are often presented with a large amount of data. It may be useful if we can look
at a single number that typifies the data. For example, we measure the force at which
a certain gauge of wire breaks. If this experiment is repeated many times the force
required for breaking will vary: some values will be low, some will be high, and of
course there will be some in between. We aim to find a single force that in some way
summarises or typifies the measurements that we have made.

A value that typifies a set of data is called an average. In statistics there are three
important averages: the arithmetic mean, the median and the mode.

2.2 The arithmetic mean

The arithmetic mean is also referred to simply as the mean. The mean is found by
adding up all the data values and then dividing this total by the number of values:

Key point
mean =

sum of values

number of values

Example 2.1 Mechanical Engineering – Breaking force
The force, in newtons, needed to break a wire was measured and the experiment
repeated 10 times. The breaking forces are

Find the mean breaking force.

Solution
The sum of the values is 212. The number of values is 10. Thus

To the nearest whole number, the mean breaking force is 21 newtons.

 = 21.2

 =

212

10

 mean =

sum of values

number of values

26 19 17 23 25 20 23 18 20 21
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Example 2.2
The temperature, in °C, at which a liquid boils is measured several times. The results
are

Find the mean temperature.

Solution

A special notation is often used when calculating a mean. Suppose we have n values
and we label these . The sum of these values is denoted by , or
more simply as . The mean is denoted by , pronounced ‘x bar’. Hencexa x

a
n
i = 1xix1, x2, x3, . . . , xn

563.4

6
= 93.9 Mean temperature =

6 Number of values =

563.4 Sum of values =

93.7 91.4 95.3 94.9 92.3 95.8

1134 Block 2 Data averages23

Key point
mean = x =

a i = 1
n      xi

n

Exercises

The diameters in mm of some ball bearings
were measured; the results are

Calculate the mean diameter, giving your
answer to 1 d.p.

The current, in amps, in a wire was measured
several times and the results noted as follows:

Calculate the mean current, giving your
answer to 1 d.p.

13.1 12.9 13.1 12.8 12.7 12.6 13.2 13.1

2

5.1 4.9 5.0 5.2 5.1 4.8 5.2

1 The temperature, in °C, at which a liquid froze
was recorded several times. The results are

Calculate the mean temperature at which the
liquid freezes. Give your answer to the nearest
integer.

-7 -4 -1 -6 -3 -2 -3 -4

3

Solutions to exercises

5.0 mm

12.9 amps2

1 -4 °C3
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2.3 Calculating the mean of a frequency distribution 1135 23

2.3 Calculating the mean of a frequency distribution

The frequency of a value is the number of times it occurs. A set of numbers, together
with their frequency, is called a frequency distribution. For example, suppose the
force, in newtons, needed to break a wire is measured and the experiment repeated
several times. The results are recorded in Table 2.1.

Force (N) Frequency, f

17 3
18 4
19 9
20 11
21 6
22 2

Table 2.1

Table 2.2

Thus a force of 17 N was recorded three times, a force of 18 N was recorded four
times, and so on. Table 2.1 is an example of a frequency distribution. Note that the
sum of the frequencies gives the total number of measurements made.

When data are presented in the form of a frequency distribution, the mean can still
be calculated. Example 2.3 illustrates the method.

Example 2.3
Table 2.2 is a frequency distribution for the variable x.

x Frequency, f

5 2
6 3
7 4
8 2
9 1

Calculate the mean of x: that is, .

Solution
The value 5 occurs twice and so contributes to the sum of the x values. The
value 6 occurs three times and so this contributes to the sum of the x values.
The remaining contributions are and . Hence

 = 81
 = 10 + 18 + 28 + 16 + 9

 sum of values = (5 * 2) + (6 * 3) + (7 * 4) + (8 * 2) + (9 * 1)

9 * 17 * 4, 8 * 2
6 * 3

5 * 2

x
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The number of values is , that is the sum of the frequencies.
Finally

The mean of the frequency distribution is 6.75.

By referring to Example 2.3 we see that the sum of the values is found by adding the
products . The number of values is found by adding up all the frequencies.
If the values are denoted by and the corresponding frequencies
by then we see that

These are often written respectively in the more compact form as and , where
the limits are assumed.

The mean can now be stated:

g fgxf

number of values =a i = 1

n
 fi

 sum of values =a i = 1

n
xi fi

f1, f2, . . . , fn

x1, x2, . . . , xn

x * f

 = 6.75

 =

81

12

 mean = x =

sum of values

number of values

2 + 3 + 4 + 2 + 1 = 12

1136 Block 2 Data averages23

x f xf

5 2 10
6 3 18
7 4 28
8 2 16
9 1 9

gxf = 81g f = 12

Key point

 =

a  x f

a f

 mean =

a
n
i = 1 xi fi

a
n
i = 1 fi

Example 2.4
Find the mean of the data given in Table 2.1.

When calculating the mean of the frequency distribution as given in Table 2.2
usually we would extend the table as follows:
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2.3 Calculating the mean of a frequency distribution 1137 23

Solution
The table is extended.

Force, x (N) Frequency, f xf

17 3 51
18 4 72
19 9 171
20 11 220
21 6 126
22 2 44

gxf = 684g f = 35

x f

17 4
18 11
19 14
20 9
21 5

 = 19.54

 =

684

35

 mean = x =

©xf

©f

Exercises

Calculate the mean of the frequency
distribution

1 Calculate the mean value of the resistance,
giving your answer to 1 d.p.

The lifetimes of a set of components are
measured to the nearest 100 hours. The
results are

3

The resistance, in ohms, of a certain type of
resistor is measured many times. The
results are

2

Calculate the mean lifetime.

Resistance ( ) Frequency

4.7 6
4.8 11
4.9 4
5.0 8
5.1 3
5.2 7

Æ

Lifetime (h) Frequency

0 1
100 1
200 4
300 10
400 17
500 3
600 2
700 10
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Temperature (°C) Frequency

170 2
180 11
190 10
200 6
210 1
220 2
230 1

2.4 The median

The median of a set of numbers is found by listing all the numbers in ascending
order and selecting the number that is half-way along the list.

Example 2.5
Find the median of the numbers

Solution
The numbers are arranged in ascending order.

There are nine numbers in the list. The middle number is the fifth one, that is 8.
Therefore, the median is 8.

When there is an even number of values in the list, the median is the mean of the two
middle values.

Example 2.6
Find the median of the following temperatures:

Solution
The numbers are arranged in ascending order:

38 40 41 49 50 52 56 57

49 50 40 38 41 57 56 52

3 6 7 7 8 9 10 11 12

6 8 3 11 10 12 7 9 7

1138 Block 2 Data averages23

The temperature of ignition of a certain
mixture of gases is recorded to the nearest 
10 °C as follows:

4

Calculate the mean temperature of ignition.

Solutions to exercises

19

4.9 ohms2

1 425 hours

190 °C to the nearest 10 °C4

3

M23_CROF5939_04_SE_C23.QXD  9/28/18  11:57 AM  Page 1138



2.5 The mode 1139 23

There are eight numbers in the list. The middle two values are 49 and 50. The mean 
of these is and so the median temperature is 49.5.49 + 50

2 = 49.5

Exercises

Calculate the median of each of the following
sets of numbers:
(a) 63 47 51 59 56 50 61 55 58 61
(b) 10 12 16 11 14 11 10 7 13

1 (c) 0 2 3 2 
(d) 76 79 81 70 64 62 75 70 71 63 69

-1-3-1-4

Solutions to exercises

(a) 57 (b) 11 (c) (d) 70-0.51

2.5 The mode

The mode of a set of values is the value that occurs most often.

Example 2.7
Find the mode of the set of numbers

Solution
The number 6 occurs three times; this is more than any other number. Hence the
mode is 6.

Example 2.8
Find the mode of the set of numbers

Solution
In this example there is no single number that occurs most frequently. The numbers
2 and 14 both occur three times. There are two modes. The data are said to be
bimodal.

2 2 2 3 3 5 6 11 14 14 14 16

2 3 3 4 5 5 6 6 6 8 11
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1140 Block 2 Data averages23

Resistance ( ) Frequency

5.0 3
5.5 4
6.0 9
6.5 17
7.0 11
7.5 1

Æ

Force Frequency

2.00 4
2.25 1
2.50 2
2.75 5
3.00 2
3.25 2

(*103 N)

Exercises

State the mode of each of the following sets of
data:
(a) 5 5 5 6 6 7 7 7 7 9 9 9 11 11

1 (b) 4 1 3 6 4 5 1 4 5 3 2
(c) 4 0 1 3 2 0 2 0 1 3 0 2

Solutions to exercises

(a) 7 (b) 4 (c) 01

End of block exercises

Find the mean, median and mode of each of
the following sets of values:
(a) 6 9 5 7 6 8 10
(b) 0 0 1 2 0
(c) 2 3 1 5 2 5 1 4 3 1 6

The resistance of several resistors was
measured. The results are

2

-2-1-2-2-3

1 Find the mean of the data set

Explain why the mean does not represent the
data adequately. Which average would have
been more appropriate to use?

The force needed to buckle a support beam is
measured several times. The results are
tabulated thus

5

2 2 2 2 2 2 20

4

(a) Calculate the mean resistance.
(b) Calculate the median.
(c) Calculate the mode.

The mean of the set of values

is 8.3. Find X.

5 3 X 10 2 11

3 Calculate the mean buckling force.

Solutions to exercises

(a) 7.29, 7, 6 (b) , , and 0
(bimodal) (c) 3, 3, 1

(a) 6.36 (b) 6.5 (c) 6.5 

18.83

ÆÆÆ2

-2-0.5-0.71 . Mode would be more
appropriate.

2.59 * 103 N5

Mean = 4.574
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BLOCK 3
Variation of data

3.1 Introduction

Block 2 illustrated different ways of describing the central location of a data set. We
now look at the variation in a data set.

Consider the mean of the two sets of data: 4 4 4 and 1 3 8. The means are

Both data sets have the same mean although the values in the first data set are all the
same whereas those in the second set are spread widely. Clearly the mean value does
not reflect the variability of the values in a data set. We need additional parameters to
describe variability of data. These additional parameters are the variance and the
standard deviation.

3.2 Variance and standard deviation

Both the variance and the standard deviation quantify the variation of a set of data
values.

Suppose we have a set of n values: . The mean of these values is
found and labelled as . Then the variance is given byx

x1, x2, x3, . . . , xn

4 + 4 + 4

3
= 4 and 

1 + 3 + 8

3
= 4

Key point
variance =

a
n
i = 1 (xi - x )2

n

Example 3.1
Find the variance of
(a) 4 4 4
(b) 1 3 8

Solution
(a) We have . The mean, , is calculated to be 4. So

and so

variance =

a
3
i = 1 (xi - x )2

3

x1 - x = 0, x2 - x = 0, x3 - x = 0

xx1 = 4, x2 = 4, x3 = 4
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1142 Block 3 Variation of data23

The variance is zero. Since there is no variation in the data values it is not
surprising that the variance is zero.

(b) Here we have . Then

and so

The variance is 8.67.

The standard deviation is found from

 = 8.67

 =

26

3

 =

(-3)2
+ (-1)2

+ 42

3

variance =

a
3
i = 1(xi - x)2

3

x1 - x = -3, x2 - x = -1, x3 - x = 4

x1 = 1, x2 = 3, x3 = 8 and x = 4

 = 0

 =

02
+ 02

+ 02

3

Key point
standard deviation = 2variance

Note that the standard deviation has the same units as the given data, and as such is a
useful measure of variation.

From Example 3.1 we see that the standard deviation of 4, 4, 4 is . The 
standard deviation of 1, 3, 8 is .

Example 3.2
Calculate the variance and standard deviation of

Solution

The calculation of the variance is given in Table 3.1.

 = 9.2

 mean =

11 + 6 + 9.6 + 10.2

4

11  6  9.6  10.2

28.67 = 2.94
20 = 0

11
6
9.6

10.2
g (xi -  x )2

= 14.64
1.02

= 1.0010.2 - 9.2 = 1.0
(0.4)2

= 0.169.6 - 9.2 = 0.4
(-3.2)2

= 10.246 - 9.2 = -3.2
(1.8)2

= 3.2411 - 9.2 = 1.8

(xi - x )2xi - xxi
Table 3.1
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3.2 Variance and standard deviation 1143 23

Example 3.3
Calculate the variance and standard deviation of

Solution

Complete the calculation started in Table 3.2.

4.5mean =

0 2 3 6 6 10

 = 1.91

 = 23.66

standard deviation = 2variance

 = 3.66

 =

14.64

 4

variance =

a (xi - x)2

n

-4.5, 20.25

-2.5, 6.25

-1.5, 2.25

1.5, 2.25

1.5, 2.25

5.5, 30.25

0

2

3

6

6

10

(xi - x )2xi - xxi

When data are presented in the form of a frequency distribution the variance and
standard deviation can still be found. Example 3.4 illustrates this.

Example 3.4
The number of hardware faults for each computer in a laboratory containing 30 com-
puters is recorded over a 12-month period. The results, in the form of a frequency
distribution, are given in Table 3.3.

210.58 = 3.25standard deviation =

63.5

 6
 = 10.58variance =

63.5a (xi - x)2
=

Table 3.2
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1144 Block 3 Variation of data23

So 11 of the computers had no faults during the 12-month period, 4 had one fault,
3 had two faults, and so on. Note that the sum of the frequencies gives the total
number of computers, that is 30.

Calculate the variance and standard deviation.

Solution
The mean, , is found to be 1.7. The remainder of the calculation is set out in Table 3.4.x

Number of faults, x Frequency, f

0 11
1 4
2 3
3 7
4 5

0 11 �1.7 2.89 31.79
1 4 �0.7 0.49 1.96
2 3 0.3 0.09 0.27
3 7 1.3 1.69 11.83
4 5 2.3 5.29 26.45

a fi(xi - x )2
= 72.3a fi =  30

fi(xi - x )2(xi - x)2xi - xfixi

Table 3.3

Table 3.4

Then

and

Example 3.4 illustrates the formula for calculating the variance of a frequency
distribution.

 = 1.55 

standard deviation = 2variance

 = 2.41

 =

72.3

 30

variance =

a fi (xi - x)2

n

Key point
variance =

a  fi (xi - x)2

n
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3.2 Variance and standard deviation 1145 23

x f

6 7
7 3
8 2
9 4

10 2

Frequency

5.0 17
5.5 12
6.0 10
6.5 6
7.0 5

Resistance (Æ)

End of block exercises

Find the variance and standard deviation of the
following sets of data:
(a) 6 11 10 9 7 8 9
(b) 5.3 7.2 9.1 8.6 5.9 7.3
(c) 0 2 1 0 
Which set has the greatest variation?

Find the variance and standard deviation of the
following frequency distribution:

2

-2-1-5-6-6

1 The resistances of 50 resistors are measured
and the results recorded as follows:

3

Calculate the standard deviation of the
measurements.

The standard deviation of the values
is . Calculate the standard

deviation of the values 
where k is a constant.

Calculate the variance and standard deviation
of the values

-6 -11 4 0 1 -5 6 3

5

kx1, kx2, kx3, . . . , kxn

sx1, x2, x3, . . . , xn 
4

Solutions to exercises

(a)
(b) 1.81, 1.35 (c) 8.32, 2.88. Set (c) has the
greatest variation.

variance = 0.44, standard deviation = 0.663

variance = 2.14, standard deviation = 1.462

variance = 2.53, standard deviation = 1.591

variance = 29.50, standard deviation = 5.435

ks4
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BLOCK 4
Elementary probability

4.1 Introduction

When an event is impossible we say the probability of its happening is 0. When an event
is certain, we say the probability of its happening is 1. For example, it is impossible for
us to live without oxygen and so the probability of doing this is 0. It is certain that a
metal bar will sink when placed in water and so the probability of this happening is 1.

Most events are neither impossible nor certain. They have varying degrees of
likelihood. The probability of such events lies between 0 and 1. Events that are likely
to happen have probabilities close to 1; events that are unlikely to happen have
probabilities close to 0. An event that is as likely to happen as not has a probability
of 0.5. For example, the probability of throwing a head with a fair coin is 0.5.

4.2 Experimental and theoretical probabilities

We introduce the notation used in probability theory and calculations.
We let E denote an event and P(E) denote the probability of the event E happening.

For example, suppose E is the event ‘A 4 is obtained on throwing a die’. The
probability of this is . We would write this as .

Since all probabilities lie between 0 and 1 we know that for any event,
.E, 0 … P(E) … 1

P(E) =
1
6

1
6

Key point For any event, E,

0 … P(E) … 1

There are two ways in which we ascertain the probability of a particular event:
theoretically and experimentally.

To calculate a theoretical probability we need to have knowledge of the event. For
example, suppose we toss a fair coin and let H be the event that it lands with the head
facing uppermost. Clearly . Similarly suppose we roll a fair die and E is
the event that a 4 is obtained; then . These probabilities have been calcu-
lated from knowledge of the physical situation. When any experiment is carried out
there are usually several possible outcomes, or events as we call them. For example,
when throwing a coin there are two possible events: the coin lands with the tail

P(E) =
1
6

P(H) = 0.5
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234.2 Experimental and theoretical probabilities 1147

uppermost or lands with the head uppermost. Often the possible events have equal
probabilities. In the case of throwing a coin, there are two equally likely events. So if

then clearly

Example 4.1
A die is rolled. Calculate the probability that a 4 is uppermost.

Solution
When a die is rolled there are six possible events: a 1 is uppermost, a 2 is uppermost,
and so on. Each of the six events is equally likely to happen and so the probability of
each event is . In particular, the probability that a 4 is uppermost is .

In some circumstances we do not have sufficient information to calculate a
theoretical probability. We know that if a coin is unbiased the probability of obtain-
ing a head is . However, suppose the coin is biased so that it is more likely to land
with the head uppermost than with its tail uppermost. We can experiment by tossing
the coin a large number of times and counting the number of heads obtained.
Suppose we toss the coin 1000 times and obtain 650 heads. We can estimate the
probability of obtaining a head as . Such a probability is known as an
experimental probability. It is accurate only if a large number of experiments have
been performed.

Example 4.2
A biased die is thrown 1000 times and a 6 is obtained on 330 occasions. Calculate
the probability of obtaining a 6 on a single throw of the die.

Solution

 = 0.33

 probability of throwing a 6 =

330

1000
 

650
1000 = 0.65

1
2

1
6

1
6

P(H) = P(T) = 0.5

 T: the coin lands with the tail uppermost
 H: the coin lands with the head uppermost

Exercises

A company manufactures precision bearings.
On an inspection 3 batches out of 500 were
rejected. Calculate the probability that a batch
is rejected.

1 A pack of 52 cards is shuffled and a single
card is drawn. Calculate the probability that it
is the queen of hearts.

2
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23 1148 Block 4 Elementary probability

A television manufacturer sold 36000 TV sets
of which 297 were returned within 12 months
with faults.
(a) Calculate the probability that a TV set,

chosen at random, is returned within
12 months.

3 (b) A store buys 500 TV sets from the
manufacturer. How many can be expected
to develop faults within 12 months?

Solutions to exercises

0.006

1

52
2

1 (a) 0.00825 (b) 4.125, that is four sets.3

4.3 Compound events

Suppose we roll a fair die and we wish to calculate the probability that the number
showing is 3 or higher. To obtain a score of 3 or more, we could throw a 3, 4, 5 or 6:
that is, there are four ways of obtaining such a score. When the die is rolled there are
six possible outcomes, of which four result in a score of 3 or more. So

An event such as ‘score 3 or higher’ is an example of a compound event. When all
the outcomes of an experiment are equally likely then we can calculate the probabil-
ity of a compound event, E, using

 =

2

3

 P(obtaining a score of 3 or more) =

4

6

Key point
P(E) =

number of ways that E can happen

total number of possible outcomes
 

Example 4.3
A fair die is rolled. Calculate the probability of obtaining an odd score.

Solution
The chosen event is throwing an odd score: that is, a 1, 3 or 5. Thus there are three
ways in which the chosen event can occur out of a total of six equally likely
outcomes. So

 =

1

2

  P(odd score) =

3

6
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234.3 Compound events 1149

Example 4.4
Two fair coins are tossed.
(a) Write down all the possible outcomes.
(b) Calculate the probability of obtaining one or more heads.

Solution
(a) Letting H stand for head and T for tail, the possible outcomes are

All outcomes are equally likely.

(b)

3

4
 probability of obtaining one or more heads =

4 total number of possible outcomes =

3 number of ways of obtaining one or more heads =

HH HT TH TT

Exercises

A pack of 52 cards is shuffled and a card is
selected. Calculate the probability that the
card is
(a) black
(b) red
(c) a club
(d) a jack
(e) a red queen

Three fair coins are tossed.
(a) List the eight possible outcomes.
(b) Calculate the probability of obtaining

(i) exactly two heads, (ii) at least two 
heads, (iii) no heads.

2

1 A fair die is rolled. Calculate the probability
that the number showing is
(a) odd
(b) 2 or more
(c) less than 4

Two fair dice are thrown. Calculate the
probability that the total is
(a) 6 (b) 8 (c) more than 10

4

3

Solutions to exercises

(a) (b) (c) (d) (e) 

(a) HHH, HHT, HTH, HTT, THH, THT, 
TTH, TTT

(b) (i) (ii) (iii) 
1

8

1

2

3

8

2

1

26

1

13

1

4

1

2

1

2
1 (a) (b) (c) 

(a) (b) (c) 
1

12

5

36

5

36
4

1

2

5

6

1

2
3
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23 1150 Block 4 Elementary probability

4.4 Complementary events

Consider the following situation. A component is tested. Either it works or it does
not work, so there are two possible events. When the component is tested one of
these events must happen. In addition, each event excludes the other. We say that the
two events are complementary.

In general, two events are complementary if one of them must happen and, when
it does, the other event cannot happen. If A is an event, then the corresponding com-
plementary event is denoted by . The sum of probabilities of two complementary
events is always one. For example, if the probability that the component works is
0.92, then the probability that it does not work is .

Example 4.5
The events A and B are defined by

State the complementary events, and .

Solution
is the event: a score other than 5 is obtained when the die is rolled.
is the event: the box contains 10 or fewer components.B

A

BA

 B: the box contains more than 10 components
 A: a score of 5 is rolled with a fair die

1 -  0.92 = 0.08

A

Exercises

State the complement of the following events:
(a) the component is reliable
(b) the digit is greater than 7
(c) the volume is less than or equal to 1 litre

1 (d) the machine is not working
(e) all components have been tested
(f) at least four components from the batch

are unreliable.

Solutions to exercises

(a) the component is not reliable
(b) the digit is 7 or less
(c) the volume is more than 1 litre
(d) the machine is working

1
(e) some components have not been tested
(f) three or fewer components from the batch

are unreliable.
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234.5 Use of tree diagrams to calculate probabilities 1151

4.5 Use of tree diagrams to calculate probabilities

When a problem involving probabilities is complex, it is sometimes useful to
introduce a tree diagram. Tree diagrams enable information to be presented in a
clear way and aid understanding.

Example 4.6 Reliability Engineering
Machines A and B make components. Of those made by machine A, 95% are
reliable; of those made by machine B, 92% are reliable. Machine A makes 70% of
the components with machine B making the rest. Calculate the probability that a
component picked at random is
(a) made by machine B
(b) made by machine A and is reliable
(c) made by machine B and is unreliable
(d) reliable.

Solution
(a) Since machine A makes 70% of the components then machine B makes the

remaining 30%. Hence the probability that a component is made by machine B
is 0.3.

To answer (b), (c) and (d) we introduce the tree diagram.
Consider 100 components: 70 are made by machine A and 30 are made by

machine B. This is represented as in Figure 4.1.
Consider the 70 components made by machine A: 95% of these are reliable

and so 5% are unreliable. Now , and this
information is represented by Figure 4.2.

Similarly, of the 30 components made by machine B, 92% are reliable and
so 8% are unreliable. We know that .
This information is represented by Figure 4.3.

Putting together Figures 4.1, 4.2 and 4.3 we obtain the tree diagram shown
in Figure 4.4.

We use Figure 4.4 to answer (b), (c) and (d).

92% of 30 = 27.6 and 8% of 30 = 2.4

95% of 70 = 66.5, 5% of 70 = 3.5

100

70

30

A

B

Figure 4.1

70

66.5 (reliable)

3.5   (unreliable)

Figure 4.2

30

27.6 (reliable)

2.4   (unreliable)

Figure 4.3

100

B

A 70

30

66.5 (reliable)

3.5   (unreliable)

27.6 (reliable)

2.4   (unreliable)

Figure 4.4

M23_CROF5939_04_SE_C23.QXD  9/28/18  11:58 AM  Page 1151



23 1152 Block 4 Elementary probability

(b) We see that there are 66.5 components made by machine A that are reliable
from the original 100 components. So

(c) We see from Figure 4.4 that there are 2.4 components made by machine B that
are unreliable. So

(d) There are reliable components from the original 100. So

Example 4.7 Reliability Engineering
Machines A, B and C make components. Machine A makes 30% of the components,
machine B makes 50% of the components, and machine C makes the remainder. Of
those components made by machine A, 93% are reliable, of those made by machine
B, 89% are reliable, and of those made by machine C, 96% are reliable.

A component is picked at random. Calculate the probability that it is
(a) made by machine C
(b) made by machine B and is unreliable
(c) made by either machine A or machine B
(d) reliable.

Solution
Consider 100 components. A tree diagram that illustrates the information is shown in
Figure 4.5.

 = 0.941

  P(component is reliable) =

94.1

100

66.5 + 27.6 = 94.1

 = 0.024

 P(component made by B and is unreliable) =

2.4

100

 = 0.665

 P(component is made by A and is reliable) =

66.5

100

100 B

A

C

30

50

27.9 (reliable)

2.1   (unreliable)

44.5 (reliable)

5.5   (unreliable)

20
19.2 (reliable)

0.8   (unreliable)

Figure 4.5

(a) Machine A makes 30% of the components, machine B makes 50% of the
components and so machine C makes of the
components. So

P(component is made by machine C) = 0.20

(100 - 30 - 50)% = 20%
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(b) From Figure 4.5, the number of components made by machine B that are
unreliable is

So

(c) Out of 100 components, machine A makes 30 and machine B makes 50. So

(d) Out of 100 components there are reliable ones.
So

91.6

100
 = 0.916P(component is reliable) =

91.6

30 + 50

100
 = 0.8P(component is made by either A or B) =

5.5

100
 = 0.055P(component is made by B and is unreliable) =

5.5

Exercises

Components are made by machines A and B.
Machine A makes twice as many components
as machine B. When made by machine A, 3%
of the components are faulty; when made by
machine B, 5% are faulty. Calculate the
probability that a component picked at
random is
(a) made by machine B
(b) made by machine A and is faulty
(c) made by machine B and is not faulty
(d) faulty.

Silicon chips are manufactured by four
machines, A, B, C and D. Machines A, B, C
and D manufacture 20%, 25%, 35% and 20%
of the components respectively. Of those
silicon chips manufactured by machine A,
2.1% are faulty. The respective figures for
machines B, C and D are 3%, 1.6% and 2.5%.

2

1 A silicon chip is selected at random. Calculate
the probability that it is
(a) made by machine C and is faulty
(b) made by machine A and is not faulty
(c) faulty.

Precision components are made by machines
A, B and C. Machines A and C each make
30% of the components with machine B
making the rest. The probability that a
component is acceptable is 0.91 when made by
machine A, 0.95 when made by machine B
and 0.88 when made by machine C.
(a) Calculate the probability that a component

selected at random is acceptable.
(b) A batch of 2000 components is examined.

Calculate the number of components you
expect are not acceptable.

3

Solutions to exercises

(a) 0.3333 (b) 0.02 (c) 0.3167 (d) 0.0367

(a) 0.0056 (b) 0.1958 (c) 0.02232

1 (a) 0.917 (b) 1663
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23 1154 Block 4 Elementary probability

End of block exercises

Which of the following numbers cannot
represent probabilities?

A company manufactures resistors. During a
quality control check, 36 out of 2500 resistors
failed to perform to the required standard.
(a) Calculate the probability that a resistor

picked at random will fail to perform to the
required standard.

(b) In a batch of 700 resistors how many
would you expect to fail?

Resistors are manufactured by machines A and
B. Machine A makes 60% of the resistors with
machine B making the rest. When made by
machine A, 3% of the resistors are faulty;
when made by machine B, 7% are faulty.

A resistor is picked at random. Calculate
the probability it is
(a) made by machine B
(b) made by machine A and is not faulty
(c) made by machine B and is faulty
(d) faulty.

3

2

 0.000, 1.010, 1

 
2

3
, 

1

11
, -

2

3
, 

3

7
, 

9

7
, 

7

9
,

1 The probability of throwing a ‘6’ with a fair
die is . A student makes the following
argument.

If I throw the die once, the probability of
obtaining a ‘6’ is . So if I throw the die twice,
then the probability of throwing a ‘6’ must be

. If I throw the die three times then
the probability of throwing a ‘6’ must be

, and so on.
Is the argument sound? If not, why not?

Components are made by machines A, B and
C. Machines A and B each make 36% of the
components with machine C making the rest.
For machine A, 2% of the components made
are faulty, for machine B, 6% are faulty, and
for machine C, 7% are faulty.

A component is picked at random.
Calculate the probability that it is
(a) faulty and made by machine C
(b) not faulty.

State the complement of the events:
(a) the machine is ready
(b) the assignment was delivered on time
(c) both printers are working
(d) at least one person is absent today.

6

5

3 *
1
6 =

1
2

2 *
1
6 =

1
3

1
6

1
6

4

Solutions to exercises

(a) 0.0144 (b) 10

(a) 0.4 (b) 0.582 (c) 0.028 (d) 0.046

The argument is unsound. Using this
argument, when the die is thrown seven times,
the probability of throwing a ‘6’ is ,
which is clearly nonsense.

7 *
1
6 =

7
6

4

3

2

-

2

3
, 

9

7
, 1.0101 (a) 0.0196 (b) 0.9516

(a) the machine is not ready
(b) the assignment was not delivered on time
(c) at least one of the printers is not working
(d) no one is absent today.

6

5
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BLOCK 5
Laws of probability

5.1 Introduction

In this block we extend the knowledge of probability gained in Block 4. The concept
of mutually exclusive events leads naturally to the addition law of probability.
The probability of an event happening depends upon the conditions that prevail at
the time. This gives rise to the idea of conditional probability. Finally, once we
understand the meaning of independent events we can see when to apply the
multiplication law of probability.

5.2 Mutually exclusive events

The quality control department of a manufacturing unit examines components and
places them into one of three categories:

A component can be placed in only one category. If it is placed in A then this
excludes the possibility of its being placed anywhere else. Similarly, if it is placed in
B, it cannot possibly belong to A or C. We say the categories are mutually
exclusive. The events ‘The component is placed in category A’, ‘The component is
placed in category B’ and ‘The component is placed in category C’ are mutually
exclusive events.

After examining many components, the quality control manager calculates the
experimental probabilities of a component belonging in category A, B or C as 0.85,
0.10 and 0.05 respectively. Since a component must be placed in one of the three
categories, then the three probabilities must add to 1.

If , , . . . , are n mutually exclusive events then the occurrence of any one
of these events excludes the occurrence of all other events.

Example 5.1
A fair die is rolled. Events , , , , are defined by

Which events are mutually exclusive?

 E5: the score is 3
 E4: the score is 1
 E3: the score is odd
 E2: the score is more than 3
 E1: the score is even

E5E4E3E2E1

EnE2E1

 C: reject quality
 B: substandard quality
 A: acceptable quality
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23 1156 Block 5 Laws of probability

Solution
and are mutually exclusive.
, and are mutually exclusive.
, and are mutually exclusive.E5E4E2

E5E4E1

E3E1

Exercises

Two fair coins are tossed. State the events that
are mutually exclusive.

A fair die is rolled. The events , , and
are given byE4

E3E2E12

 E4: there is at least one tail
 E3: there is one head and one tail
 E2: both show tails
 E1: both show heads

1

State which events are mutually exclusive.

 E4: the score is 5
 E3: the score is even
 E2: the score is divisible by 3
 E1: the score is less than 2

Solutions to exercises

, and are mutually exclusive. and 
are mutually exclusive.

E4E1E3E2E11 , and are mutually exclusive. , 
and are also mutually exclusive.E4

E3E1E4E2E12

5.3 Addition law of probability

Suppose and are mutually exclusive events with probabilities and .
We consider the event ‘ or ’.E2E1

P(E2)P(E1)E2E1

Key point Suppose and are two mutually exclusive events. The addition law of probability states

P(E1 or E2) = P(E1) + P(E2)

E2E1

This idea can be generalised.

Key point Suppose , , . . . , are n mutually exclusive events. Then the addition law of
probability states

P(E1  or E2 or Á or En) = P(E1) + P(E2) + . . . + P(En)

EnE2E1
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235.3 Addition law of probability 1157

Example 5.2 Reliability Engineering
A machine makes chips that are then classified as one of the following: top quality,
standard quality or substandard. An examination of 3000 chips showed 2700 were
top quality, 240 were standard quality and 60 were substandard. A chip is selected at
random. Calculate the experimental probability that it is
(a) (i) top quality, (ii) standard quality, (iii) substandard
(b) top quality or standard quality
(c) standard quality or substandard

Solution
Let the events , and be given by

These events are mutually exclusive.

(a) (i)

(ii)

(iii)

(b) The events are mutually exclusive and so the addition law of probability can be
applied.

(c)

Example 5.3 Reliability Engineering
The lifespan, L, of each of 4000 motors was measured and is given in Table 5.1.
A motor is randomly selected. Calculate the probability that it had a lifespan of
(a) between 1000 and 2000 hours
(b) between 2000 and 3000 hours
(c) between 1000 and 3000 hours
(d) less than or equal to 4000 hours.

 = 0.10
 = 0.08 + 0.02
 = P(E2) + P(E3)

probability chip is standard quality or substandard = P(E2 or E3)

 = 0.98
 = 0.90 + 0.08
 = P(E1) + P(E2)

probability chip is top or standard quality = P(E1 or E2)

 = 0.02

probability chip is substandard = P(E3) =

60

3000

 = 0.08

probability chip is standard quality = P(E2) =

240

3000

 = 0 .9

probability chip is top quality = P(E1) =

2700

3000

 E3: the chip selected is substandard
 E2: the chip selected is standard quality
 E1: the chip selected is top quality

E3E2E1
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23 1158 Block 5 Laws of probability

Table 5.1
The lifespan of
4000 motors.

Lifespan of motor (h) Number

20
75

100
420
585

2800L 7 5000
4000 6 L … 5000
3000 6 L … 4000
2000 6 L … 3000
1000 6 L … 2000

L … 1000

Solution
Let and be the events:

(a)

(b)

(c) The events and are mutually exclusive and so the addition law of
probability can be applied.

(d) If the lifespan, L, is less than or equal to 4000 hours then L lies between 3000
and 4000 hours, or between 2000 and 3000 hours, or between 1000 and 2000
hours, or is less than 1000 hours. So

  = 0.1538

420

4000
+

100

4000
+

75

4000
+

20

4000

 =

  + P(1000 6 L … 2000) + P(L … 1000)

P(L … 4000) = P(3000 6 L … 4000) + P(2000 6 L … 3000)

= P(E1) + P(E2) = 0.04375

 =

P(1000 6 L … 3000) = P(E1  or E2)

E2E1

100

4000
= 0.025P(E2) =

75

4000
= 0.01875P(E1) =

 E2: the lifespan is between 2000 and 3000 hours
 E1: the lifespan is between 1000 and 2000 hours

E2E1
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Exercises

Components are made by machines A, B, C and
D. Machine A makes 30% of the components,
machine B makes 17%, machine C makes 21%
and machine D makes the rest. Calculate the
probability that a component is made by
(a) machine A or machine B
(b) machine B or machine D
(c) machine A or machine B or machine D.

Components are made by machines A and B.
Machine A makes 75% of the components

2

1 with machine B making the rest. When made
by machine A, 6% of the components are
substandard, 2% are standard and the rest
are superior. When made by machine B,
3% are substandard, 1% are standard and the
rest are superior. A component is picked at
random. Calculate the probability it is
(a) substandard
(b) standard
(c) substandard or standard
(d) standard or superior.

Solutions to exercises

(a) 0.47 (b) 0.49 (c) 0.791 (a) 0.0525 (b) 0.0175 (c) 0.07 (d) 0.94752

5.4 Conditional probability

Consider components that are manufactured by two machines X and Y. When made
by machine X, 93% of the components are acceptable; when made by machine Y,
89% are acceptable. Let the event E be

If all the components are made by machine X then . If all the
components are made by machine Y then . Clearly the probability of
the event depends upon the prevailing conditions. This is intuitive and leads to the
idea of conditional probability.

Let the events A and B be

There is a notation for writing conditional probabilities. The probability that the
component is acceptable given it is manufactured by machine X is written .
Similarly, is the probability that the component is acceptable given it is
manufactured by machine Y: that is, the probability of event E happening given that
event B has already happened.

In general

P(E | B)
P(E | A)

 B: the component is manufactured by machine Y
 A: the component is manufactured by machine X

P(E) = 0.89
P(E) = 0.93

E: a component is acceptable

Key point is the probability of event R happening given that event S has already happened.
is the conditional probability of R given S.P(R | S)

P(R | S)

5.4 Conditional probability 1159
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23 1160 Block 5 Laws of probability

Example 5.4 Reliability Engineering
Machines X and Y manufacture components. Machine X makes 65% of the
components and machine Y makes the rest. When made by machine X, 95% of
the components are acceptable; when made by machine Y, 91% are acceptable. A
component is picked at random. Calculate the probability that it is
(a) acceptable, given that it is made by machine Y
(b) acceptable
(c) not acceptable, given that it is made by machine X
(d) made by machine X, given that it is acceptable.

Solution
Consider 100 components. The tree diagram in Figure 5.1 illustrates the given
information.

Let the events A, B, E and be defined by

E: the component is not acceptable
 E: the component is acceptable
 B: the component is made by machine Y
 A: the component is made by machine X

E

100

X

Y

65

61.75 acceptable

3.25   not acceptable

35

31.85 acceptable

3.15   not acceptable
93.6   acceptable, 6.4 not acceptable

Figure 5.1

(a) When made by machine Y, 91% of the components are acceptable. So

(b) From Figure 5.1 we see that there are 93.6 acceptable components from the
original 100. So

(c) When made by machine X, 95% of the components are acceptable and so 5%
are not acceptable. Hence

(d) From Figure 5.1 there are 93.6 acceptable components, of which 61.75 are
made by machine X. So

 = 0.6597

 =

61.75

93.6

   P(component is made by machine X given that it is acceptable) = P(A | E)

P(E | A) = 0.05

P(E) = 0.936

P(E | B) = 0.91
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235.4 Conditional probability 1161

Example 5.5 Reliability Engineering
A quality control manager records the lifespan, L, of 1000 components of a particular
kind. The results are shown in Table 5.2.

Table 5.2
Lifespan of 1000
components
(hours).

Lifespan (h) Number of components

69
113
516
201
101L Ú 4000

3000 … L 6 4000
2000 … L 6 3000
1000 … L 6 2000

L 6 1000 

A component is picked at random. Calculate the probability that it has
(a) a lifespan between 2000 and 3000 hours
(b) a lifespan of 3000 to 4000 hours, given that it is still working after 2000 hours.

Solution
A tree diagram representing the information is shown in Figure 5.2.

1000

L � 1000

1000 � L � 2000

L � 1000

69

113

2000 � L � 3000
516

3000 � L � 4000
201

931

L � 2000
818

L � 3000
302

L � 4000
101

Figure 5.2
Tree diagram
representing the
information of
Example 5.5.

(a) Out of 1000 components, 516 have a lifespan of between 2000 and 3000 hours.
So

(b) There are components still working after 2000 hours.

Of these, have a lifespan of between 3000 and 4000 hours. 201

516 + 201 + 101 = 818

516

1000
 = 0.516P(2000 … L 6 3000) =
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23 1162 Block 5 Laws of probability

The probability that the lifespan is between 3000 and 4000 hours, given that the

component is still working after 2000 hours, is 
201

818
= 0.2457

Exercises

Table 5.3 shows the lifespan, L, of 3958 car
batteries.

1 (d) faulty, given it is made by machine B
(e) made by machine B, given it is faulty
(f) made by machine A, given it is not faulty
(g) not made by machine B given it is not

faulty.

The lifespan, L, of 3000 components is shown
in Table 5.4.

3

Table 5.3

Lifespan (months) Number of batteries

56
219
436

1621
1319
307L Ú 60

48 … L 6 60
36 … L 6 48
24 … L 6 36
12 … L 6 24

L 6 12 

Calculate the probability that a battery picked
at random
(a) has a lifespan of between 24 and

36 months
(b) has a lifespan of between 12 and

48 months
(c) fails to work more than 48 months
(d) has a lifespan of between 36 and 48 months

given it is working after 24 months
(e) has a lifespan greater than 60 months given

it is working after 48 months
(f) fails to last more than 48 months given it

has lasted 36 months.

Resistors are manufactured by machines A, B
and C. Machine A manufactures 32% of the
production, machine B manufactures 28% of
the production and machine C makes the rest.
When made by machine A, 3% of the resistors
are faulty, when made by machine B, 4.5% are
faulty, and when made by machine C, 2.7% are
faulty. A resistor is picked at random.
Calculate the probability that it is
(a) made by machine C
(b) made by machine A or machine C
(c) faulty

2

Table 5.4

Lifespan (weeks) Frequency

93
317

1102
1376

112200 … L 6 250
150 … L 6 200
100 … L 6 150
50 … L 6 100
0 … L 6 50 

A component is chosen at random. Calculate
the probability that its lifespan is
(a) between 50 and 200 weeks
(b) more than 100 weeks
(c) less than 150 weeks
(d) between 150 and 200 weeks given it is still

working after 50 weeks
(e) more than 200 weeks given it is still

working after 100 weeks.

Components are manufactured by machines A,
B, C and D in equal numbers. When made by
machine A, 2% of the components are faulty.
The figures for machines B, C and D are 3%,
2.5% and 3.5%, respectively. A component is
picked at random. Calculate the probability
that it is
(a) faulty and made by machine C or faulty

and made by machine D
(b) faulty
(c) made by machine A given it is faulty
(d) faulty given it is made by machine C
(e) made by machine B given it is not faulty.

4
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Solutions to exercises

(a) 0.1102 (b) 0.5750 (c) 0.5892 (d) 0.4401
(e) 0.1888 (f) 0.4992

(a) 0.4 (b) 0.72 (c) 0.033 (d) 0.045
(e) 0.3818 (f) 0.3210 (g) 0.7235

2

1 (a) 0.9317 (b) 0.8633 (c) 0.504 (d) 0.4733
(e) 0.0432

(a) 0.015 (b) 0.0275 (c) 0.1818 (d) 0.025
(e) 0.2494

4

3

5.5 Independent events

Key point Two events are independent if the occurrence of either event does not change the
probability of the other event occurring.

For independent events we can apply the multiplication law of probability.

Key point The multiplication law of probability
If and are two independent events then

P(E1 and E2) = P(E1) P(E2)

E2E1

The multiplication law states that when and are independent, then the probability
of both events happening is the product of the individual probabilities.

The law can be extended to three or more independent events. For example, if ,
and are independent events then

Example 5.6 Reliability Engineering
A machine manufactures components, 90% of which are not faulty and 10% of
which are faulty. Two components are picked at random. Calculate the probability
that
(a) both components are not faulty
(b) both components are faulty.

Solution
Let the events and be

Note that . The events are independent.
(a) For both components to be not faulty we require and to happen. These

events are independent: that is, whether or not happens does not change theE1

E2E1

P(E1) = P(E2) = 0.9

 E2: the second component is not faulty
 E1: the first component is not faulty

E2E1

P(E1 and E2 and E3) = P(E1) P(E2) P(E3)

E3E2

E1

E2E1
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23 1164 Block 5 Laws of probability

probability of happening and vice versa. Hence the multiplication law can
be applied.

(b) The events that are complementary to and are

Note that .

Example 5.7 Reliability Engineering
The probability that a component is faulty is 0.05. Two components are picked at
random. Calculate the probability that
(a) both are faulty
(b) both are not faulty
(c) one of the components is not faulty
(d) at least one component is faulty.

Solution
We define events and to be

The events are independent and .
The complementary events, and , are given by

Then 

(a)

(b)

(c) If one component is not faulty, then the other component must be faulty. So we
have either ‘ and ’ or ‘ and ’.

(0.95)(0.05) = 0.0475P(E1 and E2)

(0.05)(0.95) = 0.0475P(E1 and E2)

E2E1 E2E1

(0 .95)(0 .95) = 0 .9025P(E1 and E2) =

(0 .05)(0 .05) = 0 .0025P(E1 and E2) =

1 - 0.05 = 0.95P(E1) = P(E2) =

E2: the second component is not faulty

E1: the first component is not faulty

E2E1

P(E1) = P(E2) = 0.05

E2: the second component is faulty

E1: the first component is faulty

E2E1

 = 0.01
 = (0.1)(0.1)

 = P(E1) P(E2)

  P(both components are faulty) = P(E1 and E2)

P(E1) = P(E2) = 0.1

E2: the second component is faulty

E1: the first component is faulty

E2E1

 = 0.81
 = (0.9)(0.9)
 = P(E1) P(E2)

  P (both components are not faulty) = P(E1 and E2)

E2
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235.5 Independent events 1165

Now the events ‘ and ’ and ‘ and ’ are mutually exclusive and so the
addition law of probability can be used.

An alternative way to view this is as follows. We can consider three possible
outcomes, , and , as follows:

The probability of has been calculated in (b), that is .
The event may be reworded to

and so, by (a), .
Now, since , and together cover every possible outcome, we know that

and so

(d) ‘At least one component is faulty’ means that either ‘one component is faulty’
or ‘both components are faulty’. Now

and these events are mutually exclusive. So

Example 5.8
Three coins are tossed. Calculate the probability that all the coins show heads.

Solution
Let the events , and be

 E3: third coin shows a head
 E2: second coin shows a head
 E1: first coin shows a head

E3E2E1

0.095 + 0.0025 = 0.0975

P(at least one component is faulty) =

 P(both components are faulty) = 0.0025
 P(one component is faulty) = 0.095

 = 0.095
 = 1 - 0.9025 - 0.0025

 P(X2) = 1 - P(X1) - P(X3)

P(X1) + P(X2) + P(X3) = 1

X3X2X1

P(X3) = 0.0025

X3: both components are faulty

X3

P(X1) = 0.9025X1

 X3: there are no components that are not faulty
 X2: one component is not faulty
 X1: two components are not faulty

X3X2X1

 = 0.095
 = 0.0475 + 0.0475

P(‘E1 and E2’ or ‘E1 and E2’) = P(‘E1 and E2’) + P(‘E1 and E2’)

E2E1E2E1
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23 1166 Block 5 Laws of probability

Clearly, and all the events are independent. So

 = 0.125
 = (0.5) (0.5) (0.5)

 P(E1 and E2 and E3) = P(E1) P(E2) P(E3)

P(E1) = P(E2) = P(E3) = 0.5

Exercises

A and B are independent events with 
and . The compound event ‘A

occurs, then A occurs, then B occurs’ is
denoted by AAB. Other compound events are
denoted in a similar way. Calculate the
probability of the following compound events
occurring:
(a) AAB (b) BBA (c) AABB

A fair die is thrown three times. Calculate the
probability of obtaining
(a) three 6s
(b) three 1s
(c) two 6s given the first number is a 1
(d) two 6s given the first number is a 6.

Components are made by machines A, B and
C. Machine A makes 35% of the components,

3

2

P(B) = 0 .90 .75
P(A) =1 machine B makes 25% and machine C makes

the rest. Two components are picked at
random. Calculate the probability that
(a) both are made by machine C
(b) one is made by machine A and one is

made by machine B
(c) exactly one is made by machine A
(d) at least one is made by machine B
(e) both are made by the same machine.

A machine makes resistors of which 96% are
acceptable and 4% are unacceptable. Three
resistors are picked at random. Calculate the
probability that
(a) all are acceptable
(b) all are unacceptable
(c) at least one is unacceptable.

4

Solutions to exercises

(a) 0.5063 (b) 0.6075 (c) 0.4556

(a) 0.0046 (b) 0.0046 (c) 0.0278
(d) 0.2778

2

1 (a) 0.16 (b) 0.175 (c) 0.455 (d) 0.4375
(e) 0.345

(a) 0.8847 (b) 0.000064 (c) 0.11534

3

End of block exercises

The probability that a component is reliable is
0.89. Four components are picked at random.
Calculate the probability that
(a) all are reliable
(b) all are unreliable
(c) at least one is unreliable
(d) at least one is reliable.

1 A machine makes three components, A, B and
C. For every 1000 components made, 400 are
component A, 250 are component B and the
rest are component C. Three components are
picked at random. Calculate the probability that
(a) all are component B
(b) all are of the same type

2
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(c) all are of a different type
(d) two of the components are of type A.

Three machines A, B and C manufacture a
component. Machine A makes 30% of the
components, machine B makes 35% of
the components and machine C makes the rest.
Components are classified as either acceptable
or faulty: 3% of those made by machine A are
faulty, 4% of those made by machine B are
faulty, and 3.5% of those made by machine C
are faulty.
(a) Find the probability that a component is

made either by machine A or by machine C.
(b) Find the probability that it is made by

machine B given that it is faulty.
(c) Find the probability that it is not made by

machine B given that it is not faulty.
(d) Two components are picked at random.

Calculate the probability that exactly one
of them is made by machine A.

(e) Three components are picked at random.
Calculate the probability that they are
made by different machines.

(f) Three components are picked at random.
Calculate the probability that they are all
acceptable.

The lifespans, L, of 807 components were
measured and the results recorded in Table 5.5.

4

3

A box contains 10 red, 12 blue and 8 yellow
blocks.
(a) A block is picked at random. Calculate the

probability that it is blue.
(b) A block is picked at random, its colour is

noted and then it is replaced. This is
repeated. Calculate the probability that
(i) both blocks are yellow
(ii) one block is yellow and one is red
(iii) both blocks are the same colour
(iv) the blocks have different colours.

A simple circuit is shown in Figure 5.3.6

5

Table 5.5
Lifespans of 807 components.

Lifespan (days) Number

19
86

417
210
75L Ú 500

400 … L 6 500
300 … L 6 400
200 … L 6 300

0 … L 6 200

(a) Calculate the probability that a component
has a lifespan of at least 400 days given
that it is still working after 200 days.

(b) Calculate the probability of a component
failing before reaching 500 days given that
it is still working after 300 days.

(c) Calculate the probability of a component
failing between 300 and 500 days given
that it is still working after 200 days.

BA

S 3

S1 S 2

Figure 5.3

, and are switches. The probabilities
that , and are closed are 0.86, 0.91 and
0.70 respectively. The switches open and close
independently.
(a) Calculate the probability that and are

both closed.
(b) Calculate the probability that a current can

flow from A to B.

Two machines A and B manufacture
components, with machine A making 55% and
machine B making the rest. Of those made by
machine A, 7% are defective; of those made
by machine B, 5% are defective.
(a) A component is picked at random.

Calculate the probability that it is made by
machine A given that it is defective.

(b) Two components are picked at random.
Calculate the probability that neither is
defective.

(c) Two components are picked at random.
Calculate the probability that they are
made by different machines.

An aeroplane has four engines that all work
independently of each other. The probability of
an engine failing during a flight is . If
the plane can fly on two engines, calculate the
probability that the plane is unable to fly.

3 * 10-6

8

7

S2S1

S3S2S1

S3S2S1
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Solutions to exercises

(a) 0.6274 (b) 0.0001 (c) 0.3726 (d) 0.9999

(a) 0.0156 (b) 0.1225 (c) 0.21 (d) 0.288

(a) 0.65 (b) 0.3972 (c) 0.6517 (d) 0.42
(e) 0.2205 (f) 0.8979

(a) 0.3617 (b) 0.8932 (c) 0.79574

3

2

1 (a) 0.4 (b) (i) 0.0711 (ii) 0.1778 (iii) 0.3422
(iv) 0.6578

(a) 0.7826 (b) 0.9348

(a) 0.6311 (b) 0.8817 (c) 0.495

1.08 * 10-168

7

6

5
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BLOCK 6
Probability distributions

6.1 Introduction

There are usually several possible outcomes for any given experiment. For example,
when a component is tested it may be classified as substandard, satisfactory or first
class. Here there are three possible outcomes. The outcome is a discrete variable. As
another example, consider measuring the diameter of a piston. It may be 10.101 cm,
10.093 cm, 10.102 cm, and so on. Here the outcome is a continuous variable, which
can have any value within a specified range.

Probability distributions are used to assign probabilities to the various possible
outcomes of an experiment. If the variable is discrete we use a probability distribu-
tion; if the variable is continuous we use a modified form of a distribution, called a
probability density function (p.d.f.).

Component description Probability

Substandard 0.10
Satisfactory 0.85
First class 0.05

6.2 Probability distributions

Key point The probability distribution of a discrete variable, X, gives the probabilities of all the
possible values of X.

Example 6.1
Components produced in a factory are graded as substandard, satisfactory or first
class. The percentage of each is 10%, 85% and 5% respectively. Thus the probability
distribution is as follows:
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23 1170 Block 6 Probability distributions

Number of calls Frequency

0 2
1 7
2 26
3 97
4 101
5 53
6 14

Construct a probability distribution for the number of calls.

Solution
Let X be the number of calls received. Note that X is a discrete variable that takes on
values 0, 1, 2, . . . , 6. The probability of each different value of X occurring is
calculated.

14

300
 = 0.0467P(X = 6) =

53

300
 = 0.1767P(X = 5) =

101

300
 = 0.3367P(X = 4) =

97

300
 = 0.3233P(X = 3) =

26

300
 = 0.0867P(X = 2) =

 = 0.0233

 P(X = 1) =

7

300

 = 0.0067

 P(X = 0) =

2

300

Example 6.2
A service engineer records the number of calls received in an 8-hour period for 300
similar periods. The results are given as
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236.2 Probability distributions 1171

Number of calls, X Probability

0 0.0067
1 0.0233
2 0.0867
3 0.3233
4 0.3367
5 0.1767
6 0.0467

A probability distribution may be represented graphically in the form of a bar chart.
Figure 6.1 is a bar chart that represents the probability distribution of Example 6.2.

The probability distribution is

Figure 6.1
Bar chart for
probability
distribution of
Example 6.2.

XO 0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

Probability

Note that when all the possible values of a variable have been considered, then the
sum of the probabilities is 1.

To find the probability of several outcomes, the individual probabilities are added.
Example 6.3 illustrates this.

Example 6.3
Using the data from Example 6.2, calculate the probability that the service engineer
receives five or six calls in an 8-hour period.

Solution
The individual probabilities are noted: .

So adding the probabilities we find the probability of receiving five or six calls.

 = 0.2234

 = 0.1767 + 0.0467

  P(X = 5 or 6) = P(X = 5) + P(X = 6)

P(X = 5) = 0.1767, P(X = 6) = 0.0467
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23 1172 Block 6 Probability distributions

6.3 Probability density functions

Consider a continuous variable, X, which can take on any value between some pre-
scribed limits. The probability that X lies somewhere between values, say, a and b is
found from a probability density function (p.d.f.), f (x).

Number absent Probability

2 0.06
3 0.18
4 0.405
5 0.05
6 0.075
7 0.23

Number absent Frequency

2 12
3 36
4 81
5 10
6 15
7 46

Exercises

Explain what is meant by a probability
distribution.

The number of employees absent each day in a
particular firm is recorded over a 200-day
period. The results are as follows:

2

1 (a) Calculate the corresponding probability
distribution.

(b) Calculate the probability there are five or
more absent employees on a day chosen at
random.

Solutions to exercises

(a) 2 (b) 0.355

Key point The probability that the continuous variable, X, lies between a and b, that is
, is given by

where f(x) is the probability density function of X.

P(a 6 X 6 b) = �
b

a
f (x) dx

P(a 6 X 6 b)
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236.3 Probability density functions 1173

For a function to be a valid p.d.f. it must

1 never be negative;
2 have a total area under the curve of 1, representing total probability.

Example 6.4
Given that X is a continuous variable, interpret the following expressions.
(a)
(b)
(c)
(d)

Solution
(a) This represents the probability that X lies between 15 and 20.
(b) This is the probability that X is less than 1.7.
(c) This is the probability that X is greater that 9.6.
(d) is not a valid statement for a continuous variable. Probability

statements for continuous variables must always be in terms of intervals. We
could calculate for example, but not .

Example 6.5
A p.d.f. for the continuous variable X is given by

(a) Check that f(x) is a valid p.d.f.
(b) Calculate .

Solution
(a) The function, f(x), is defined only on the interval and on this

interval it is never negative. Also

 = 1

 = 3x2401
 �

1

0
f(x) dx = �

1

0
 2x dx

0 6 x 6 1

P(0.1 6 X 6 0.7)

f(x) = 2x, 0 6 x 6 1

P(X = 2.6)P(2.59 6 X 6 2.61)

P(X = 2.6)

P(X = 2.6)
P(X 7 9.6)
P(X 6 1.7)
P(15 6 X 6 20)

Figure 6.2

.P(a 6 X 6 b) = 1 ba f (x) dx

x

f (x)

a b

f (x) dx
   b

a�

Thus the area under the p.d.f. between gives the probability that the
variable X lies between a and b. Figure 6.2 illustrates this.

x = a and x = b

M23_CROF5939_04_SE_C23.QXD  9/28/18  11:58 AM  Page 1173



23 1174 Block 6 Probability distributions

and so the total area under f(x) is 1. Hence f(x) is a valid p.d.f.

(b)

The probability that X lies between 0.1 and 0.7 is 0.48.

Example 6.6
A p.d.f., f(x), for a continuous variable X is given by

Calculate
(a) (b) (c) 

Solution

(a)

(b)

(c) is not a meaningful statement for a continuous variable.P(X = 1.6)

3

16 �
1

0
4 - x2 dx = 0 .6875P(X 6 1) =

3

16 �
1.5

0.5
4 - x2 dx = 0 .5469

P(0 .5 6 X 6 1 .5) =

P(X = 1.6)P(X 6 1)P(0.5 6 X 6 1.5)

f(x) =

3

16
 (4 - x2), 0 6 x 6 2

 = 0.48

 = 3x240.7
0.1

 P(0.1 6 X 6 0.7) = �
0.7

0.1
2x dx

Exercises

Explain what is meant by a probability density
function.

State two properties that a function must have
in order to be a probability density function.

A p.d.f., f(x), for a continuous variable X is
given by

f (x) =

3

10
 (x2

+ 1), 1 6 x 6 2

3

2

1 (a) Verify that f(x) can be a p.d.f.
(b) Find .
(c) Find .
(d) Find .

A p.d.f. for a continuous variable X is given by

f (x) = ex, x 6 0

4

P(X 7 1.25)
P(X 6 1.5)
P(1.7 6 X 6 2)
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Table 6.1

x P(x)

6.0 0.13
6.5 0.10
7.0 0.09
7.5 0.02
8.0 0.23
8.5 0.43

Table 6.2

Number of rejects per box Frequency

0 117
1 123
2 236
3 147
4 63
5 14

Calculate
(a)
(b)
(c)
(d) P(X 7 -2)

P(X 6 -1)
P(-3.5 6 X 6 -3)
P(-1 6 X 6 0)

A p.d.f. for the continuous variable X is given by

If , find .aP(0 6 X 6 a) = 0.5

f (x) = e-x, x 7 0

5

Solutions to exercises

(b) 0.3987 (c) 0.3875 (d) 0.8297

(a) 0.6321 (b) 0.0196 (c) 0.3679 (d) 0.86474

3 0.69315

End of block exercises

A p.d.f., f(x), has the form

Calculate .

Table 6.1 is a probability distribution.2

a

f (x) = a(x + 1), 0 6 x 6 1

1

A p.d.f. for the continuous variable X is given
by

Calculate
(a) (b) 
(c)

A p.d.f. for the continuous variable X is given
by

Calculate
(a)
(b) 
(c)
(d) the value of such that 90% of the X

values are less than .a
a

P(X 6 2)
P(X 7 1)
P(1 6 X 6 5)

f (x) = 2e-2x, x 7 0

5

P(X 6 3.5)
P(X 7 2.5)P(2 6 X 6 3)

f (x) =

x2

21
, 1 6 x 6 4

4

Find
(a) (b) 

(c) (d) 
(e)

The number of reject components in each of
700 boxes is counted and recorded in Table 6.2.
(a) Construct a frequency distribution from

the given data.
(b) Calculate the probability that the number

of reject components is between 1 and 4
inclusive.

3

P(6.5 6 x … 8.0)
P(x 6 7.5)P(x … 8.0)

P(x 7 7.5)P(x Ú 7.0)

6.3 Probability density functions 1175
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Number of rejects per box P(x)

0 0.1671
1 0.1757
2 0.3371
3 0.2100
4 0.0900
5 0.0200

1176 Block 6 Probability distributions

Solutions to exercises

(a) 0.77 (b) 0.66 (c) 0.57 (d) 0.32 (e) 0.34

(a)3

2

2
31 (a) 0.3016 (b) 0.7679 (c) 0.6647

(a) 0.1353 (b) 0.1353 (c) 0.9871 (d) 1.15135

4

(b) 0.813
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BLOCK 7
The binomial distribution

7.1 Introduction

Consider an experiment in which a particular result may or may not occur. For exam-
ple, a component is tested and it may be acceptable or not be acceptable, a circuit
may work or not work. Such outcomes are complementary, and so their probabilities
sum to 1. In general, we consider an experiment with possible outcomes of A and its
complement . We let and where clearly .

Suppose the experiment is repeated n times. We wish to calculate the probability
of A occurring k times and occurring times. For example, in testing a sample
of 10 components, a quality control engineer may wish to know the probability of
finding eight working components and two non-working components. The calcula-
tion of probabilities such as these uses the binomial distribution.

7.2 The binomial distribution

We consider an experiment, or trial as it is sometimes known, that is repeated n
times. On each occasion the event A may occur with probability p, or its comple-
ment, , may occur with probability . We assume that p and q are
constants. If A occurs k times then must occur times.

We can calculate the probability of no occurrences of A and n occurrences of , of
one occurrence of A and occurrences of , of two occurrences of A and 
occurrences of , and so on. Thus we can calculate a probability corresponding to
every possible outcome. These probabilities are known as a binomial distribution.
The number of occurrences of A is known as a binomial random variable.

Example 7.1 Reliability Engineering
A machine manufactures components, 90% of which are acceptable. Three compo-
nents are picked. Calculate the probability that the number of acceptable compo-
nents is
(a) 0 (b) 1 (c) 2 (d) 3

Solution
We define A and by

Then clearly, and .P(A) = 0 .1P(A) = 0 .9

A: the component is not acceptable

A: the component is acceptable

A

A
n - 2An - 1

A
n - kA

q = 1 - pA

n - kA

p + q = 1P(A) = qP(A) = pA
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23 1178 Block 7 The binomial distribution

(a) If there are no acceptable components then all three components are not
acceptable. We denote this by . Since the events are independent the
multiplication law can be applied.

(b) Here one of the three components is acceptable. We denote by the event:
the first component is acceptable, the second is not acceptable, the third is not
acceptable. Events have obvious meanings.

If one component is acceptable, then occurs. These
compound events are mutually exclusive and so the addition law can be applied.

(c) Two of the three components are acceptable. The various possibilities are

These compound events are mutually exclusive.

(d) All three components are acceptable. In this case there is only one possibility,
AAA.

The results of Example 7.1 are summarised in Table 7.1.

 = 0.729

  P(A A A) = (0.9)3

 = 0.243

 + (0.1)(0.9)(0.9)

 = (0.9)(0.9)(0.1) + (0.9)(0.1)(0.9)

  P(A A A  or A AA or A A A) = P(A A A) + P(A AA) + P(A A A)

A A A,   A AA,   AA A

 = 0.027

+ (0.1)(0.1)(0.9)

 = (0.9)(0.1)(0.1) + (0.1)(0.9)(0.1)

 = P(A A  A) + P(AAA) + P(A  A  A)

 P(one component is acceptable) = P(A A   A  or A A A  or A   A A)

AA A or AAA or A AA
AAA and A AA 

AA A

 = 0.001

 = (0.1)(0.1)(0.1)

 P(A A A) = P(A) P(A) P(A)

A A A

Number of acceptable
components Probability

0 0.001
1 0.027
2 0.243
3 0.729

1.000

Since all possibilities have been covered the probabilities sum to 1. Let the num-
ber of acceptable components be x. Clearly x is a variable that can have values 0, 1,
2 and 3 with varying likelihood. Table 7.1 shows how the total probability, 1, is

Table 7.1
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distributed between the various possible values of x. It is known as a probability
distribution of the variable x. Since there are two possible outcomes for each event
the distribution is referred to as a binomial distribution.

Exercises

The probability that a component is acceptable
is 0.95. Four components are picked at
random. Calculate the probability that
(a) all four are acceptable
(b) exactly three are acceptable
(c) all four are unacceptable.

1 The probability that a silicon chip works is
0.97. Five such chips are tested. Calculate the
probability that
(a) all five chips work
(b) one chip does not work.

2

Solutions to exercises

(a) 0.8145 (b) 0.1715 (c) 6.25 * 10-61 (a) 0.8587 (b) 0.13282

7.3 Combination notation

Before we can make progress and study a general binomial distribution we need to
introduce combination notation.

Recall the factorial notation: , , ,
and so on. We define the combination notation as follows:

4! = 4 * 3 * 2 * 13! = 3 * 2 * 12! = 2 * 1

Key point an

r
b =

n!

r!(n - r)!
 

For example, with we have

The quantity is the number of ways of selecting r objects from n distinct objects,

with the order of selection being unimportant.

Example 7.2
Calculate the number of ways of selecting 3 digits from 10 digits.

an

r
b

 = 10

 =

5!

3!2!

  a5

3
b =

5!

3!(5 - 3)!

n = 5, r = 3
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23 1180 Block 7 The binomial distribution

Solution

There are ways of making the selection.

 = 120

  a10

3
b =

10!

3!7!

a10

3
b

Exercises

Evaluate

(a) (b) (c) 

Calculate the number of ways of choosing 
7 objects from 26 distinct objects.

A nuclear power station is to be built. There
are 15 possible sites. A team of engineers is

3

2

a9

9
ba8

7
ba10

5
b

1 commissioned to select a shortlist of three
sites. Calculate the number of ways this may
be done.

Prove that

an

r
b = a n

n - r
b

4

Solutions to exercises

(a) 252 (b) 8 (c) 1

6578002

1 4553

7.4 Probability of k occurrences from n trials

We are now able to consider the problem posed in Section 7.1.
An experiment, or trial, has two possible outcomes, A and , with respective prob-

abilities of p and q where . The trial is repeated n times.p + q = 1
A

Key point The binomial distribution
The probability of k occurrences of A and occurrences of in a sequence of n
independent trials is

where .P(A) = p, P(A) = q = 1 - p

an

k
 bpkqn - k

An - k
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Example 7.3 Reliability Engineering
The probability that a component is acceptable is 0.97. Ten components are picked at
random. Calculate the probability that
(a) nine are acceptable
(b) three are unacceptable.

Solution
Let A and be defined:

Then . Ten components are exam-
ined, that is .

(a)

(b) If three components are unacceptable, then seven are acceptable.

Example 7.4 Reliability Engineering
The probability that a component is acceptable is 0.91. Twelve components are
selected at random. Calculate the probability that at least 10 are acceptable.

Solution
At least 10 components being acceptable means that 10 or 11 or 12 components are
acceptable. These three compound events are mutually exclusive. We calculate the
probability of each.

We have , , 

 =  0.3827

a12

11
b(0.91)11(0.09)P(11 acceptable components) =

 = 0.2082

a12

10
b(0.91)10(0.09)2P(10 acceptable components) =

0.91, 0.09, 12n =q =p =

 = 0.0026

 = 120(0.97)7(0.03)3

  P(three unacceptable) = P(seven acceptable) = a10

7
bp7q3

 = 0.2281

 = 10(0.97)9(0.03)

 = a10

9
b (0.97)9(0.03)1

 P(nine acceptable components) = a10

9
bp9q10 - 9

n = 10
P(A) = p = 0.97, P(A) = q = 1 - 0.97 = 0.03

A: the component is unacceptable
 A: the component is acceptable

A
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23 1182 Block 7 The binomial distribution

Since the events are mutually exclusive, the addition law is used.

There is a 91.34% chance that the 12 components contain 10 or more acceptable ones.

 = 0.9134

0.2082 + 0.3827 + 0.3225

P(10 or more acceptable components) =

 = 0.3225

 a12

12
b(0.91)12(0.09)0P(12 acceptable components) =

Exercises

The probability that a car will not develop a
major fault within the first 3 years of its life is
0.997. Calculate the probability that of 20 cars
selected at random
(a) 19 will not develop any major faults in the

first 3 years
(b) 19 or more will not develop any major

faults in the first 3 years.

The probability that a machine has a lifespan of
more than 7 years is 0.85. Twelve machines are
chosen at random. Calculate the probability
that
(a) 10 have a lifespan of more than 7 years
(b) 11 have a lifespan of more than 7 years
(c) 10 or more have a lifespan of more than 7

years.

A machine needs all five of its micro-chips to
be functional in order to work correctly. The

3

2

1 probability that a micro-chip works is 0.99.
Calculate the probability that the machine
works.

The probability that a bearing meets a
specification is 0.92. Six bearings are picked at
random. Calculate the probability that
(a) all six meet the specification
(b) more than four meet the specification
(c) one or none meets the specification
(d) exactly four meet the specification.

The probability of passing a module on the
first attempt is 0.9. A student takes six
modules. Calculate the probability that the
student
(a) passes five modules
(b) passes all modules
(c) is required to take two or more resits.

5

4

Solutions to exercises

(a) 0.0567 (b) 0.9984

(a) 0.2924 (b) 0.3012 (c) 0.7358

0.95103

2

1 (a) 0.6064 (b) 0.9227 (c) 1.835 � 10�5

(d) 6.877 � 10�2

(a) 0.3543 (b) 0.5314 (c) 0.11435

4
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7.5 Mean and variance

Key point The mean and variance of a binomial random variable, X, are given by

where n is the number of trials and p is the probability of an occurrence of X in a single
trial.

 variance = s2
= np(1 - p)

   mean = m = np

Example 7.5 Reliability Engineering
The probability that a component is acceptable is 0.96. Fifty components are tested.
The number of acceptable components is X. Calculate (a) the mean, (b) the variance
of X.

Solution
Here and .
(a) .
(b) .Variance = np(1 - p) = 1.92

Mean = np = 50(0.96) = 48
p = 0.96n = 50

End of block exercises

Evaluate

(a) (b) (c) (d) 

Write a simple expression for

(a) (b) (c) 

The probability that a component is acceptable
is 0.92. Ten components are selected at
random. Calculate the probability that
(a) all 10 are acceptable
(b) eight are acceptable
(c) one is unacceptable
(d) eight or more are acceptable.

The probability that a component has a
lifespan of more than 6 years is 0.85. Out of 10
components calculate the probability that
(a) nine have a lifespan of more than 6 years
(b) two have a lifespan of less than 6 years.

4

3

a n

n - 1
ban

n
ban

1
b

2

a100

99
ba12

9
ba10

1
ba10

7
b

1 A fair die is thrown eight times. Calculate the
probability that
(a) a 6 occurs six times
(b) a 6 never occurs
(c) an odd number of 6s is thrown.

A fair coin is tossed five times. Calculate the
probability that
(a) five heads are obtained
(b) four heads are obtained
(c) three heads are obtained
(d) two heads are obtained
(e) one head is obtained.

A batch of 1500 components is examined and
1411 are found to be acceptable. Five
components are picked at random from the
production line. Calculate the probability that
(a) all are acceptable
(b) four are acceptable
(c) two are unacceptable.

The probability that a component is reliable is
0.92. An engineer wants to collect a number of

8

7

6

5
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23 1184 Block 7 The binomial distribution

components to be at least 95% certain that
there are at least seven components that are
reliable. Calculate the number of components
the engineer should collect.

The probability that a component is acceptable
is 0.93. An engineer picks 200 components at
random. If X is the number of acceptable
components calculate (a) the mean, (b) the
variance of X.

9

Solutions to exercises

(a) 120 (b) 10 (c) 220 (d) 100

(a) n (b) 1 (c) n

(a) 0.4344 (b) 0.1478 (c) 0.3777 (d) 0.9599

(a) 0.3474 (b) 0.2759

(a) (b) 0.2326 (c) 0.48054.1676 * 10-45

4

3

2

1 (a) 0.03125 (b) 0.15625 (c) 0.3125
(d) 0.3125 (e) 0.15625

(a) 0.7365 (b) 0.2323 (c) 0.0293

9

(a) 186 (b) 13.029

8

7

6

M23_CROF5939_04_SE_C23.QXD  9/28/18  11:58 AM  Page 1184



BLOCK 8
The Poisson distribution

8.1 Introduction

We consider a fixed time interval, during which an event may happen 0, 1, 2, 3, . . .
times. For example, during a 12-hour period, a fire department may receive 0, 1, 2, 3
or more calls. The department will know from experience that it is likely to receive,
say, two or three calls, but on some days it may receive only one, or even none. On
other days it will receive four or more calls. It would be useful to the fire department
if it knew how likely it was to receive various numbers of calls. The Poisson distribution
serves this purpose.

8.2 The Poisson distribution

The Poisson distribution models the number of occurrences of an event in a given
time interval. It allows us to calculate the probability of the number of occurrences
being 0, 1, 2, 3, and so on. Note that in the Poisson distribution the number of occur-
rences can be infinite. In contrast, the number of occurrences in a binomial distribu-
tion is limited to the number of trials.

The number of occurrences of an event, E, in a given time interval is a discrete
variable, which we denote by X. If E does not occur then , if E occurs once
then , if E occurs twice then , and so on. If the occurrence of E in any
time interval is not affected by its occurrence in any preceding interval, then
the probability of X having a particular value can be modelled using the Poisson
distribution.

Suppose the number of occurrences, X, in the given time interval is measured
many times. The mean of X can then be found; we denote this mean by . The prob-
ability that X has a value r is given by the Poisson distribution.

l

X = 2X = 1
X = 0

Key point Poisson distribution

where is the mean of the distribution.l

P(X = r) =

e-l lr

r!
, r = 0, 1, 2, 3, . . .
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Example 8.1
In a particular Poisson distribution . Calculate the probability that (a) ,
(b) , (c) .

Solution
We are given and so the distribution is

(a) We evaluate the probability expression with .

(b)

(c)

Example 8.2 Reliability Engineering
A service engineer receives four emergency calls per day on average. Calculate the
probability that on a particular day the engineer will receive (a) no calls, (b) one
call, (c) two calls, (d) two or fewer calls, (e) more than four calls.

Solution
The average number of calls per day is four, that is . Let X be the number of
emergency calls received in 1 day. Then X is a variable with a Poisson distribution
given by

(a)

Thus there will be no calls on less than 2 days in 100.

(b)

There will be one call per day in just over 7 days in a 100.

 = 0.0733

  P(X = 1) =

e-441

1!
 

 = 0.0183

 P(X = 0) =

e-440

0!
 

 P(X = r) =

e-44r

r!
 

l = 4

 = 0.1804

  P(X = 3) =

e-223

3!
 

 = 0.2707

 P(X = 2) =

e-222

2!
 

 = 0.2707

  P(X = 1) =

e-221

1!
 

r = 1

P(X = r) =

e-22r

r!
 

l = 2

X = 3X = 2
X = 1l = 2

1186 Block 8 The Poisson distribution
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(c)

(d) ‘Two or fewer calls’ means that the engineer receives two calls, one call or no
calls. These events are mutually exclusive and so the addition law can be used.

(e) Let E be the event

Then the complement of E is given by

We calculate .

Since E and are complementary events then

and so

Example 8.3 Reliability Engineering
A service engineer mends washing machines. In a typical week, five machines will
break down. Calculate the probability that in a week
(a) three machines break down
(b) six machines break down
(c) fewer than three machines break down
(d) more than three machines break down.

Solution
On average, five machines break down in a week, that is . Let X be the number
of machines that break down in a week. Then X follows a Poisson distribution given by

(a)

= 0.1404

e-553

3!
P(X = 3) =

e-55r

r!
P(X = r) =

l = 5

 = 0.3712
 = 1 - 0.6288

 P(E) = 1 - P(E )

P(E) + P(E) = 1

E

 = 0.6288

 =

e-440

0!
+

e-441

1!
+

e-442

2!
+

e-443

3!
+

e-444

4!

 = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

 P(E) = P(X … 4)

P(E)

E: the engineer receives four or fewer calls in a day

E

E: the engineer receives more than four calls in a day

 = 0.2381

 = 0.0183 + 0.0733 + 0.1465

 P(X = 0 or X = 1 or X = 2) = P(X = 0) + P(X = 1) + P(X = 2)

 = 0.1465

 P(X = 2) =

e-442

2!
 

8.2 The Poisson distribution 1187
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23 1188 Block 8 The Poisson distribution

(b)

(c) ‘Fewer than three breakdowns’ means that or or . Since
these events are mutually exclusive we can use the addition law of probability.
Hence

(d) Let E be the event

The complementary event, , is

We calculate .

Now

So far we have looked at the probability of a number of occurrences during a time
period. Sometimes, however, we consider the probability of a number of occurrences
over a length as Example 8.4 illustrates.

Example 8.4 Reliability Engineering
A machine manufactures high-quality pipes. Experience has shown that on average
there are three faults per 100 m of pipe. Calculate the probability that in 100 m of
pipe there will be (a) no faults, (b) three faults.

 = 0.7349

  P(E) = 1 - P(E)

0.2651=

 = 0.1247 + P(X = 3) using (c)

 = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

 P(E) = P(X … 3)

P(E)

three or fewer machines break down

E =

E

E: more than three machines break down

= 0.1247

e-550

0!
+

e-551

1!
+

e-552

2!
 =

 P(X = 0) + P(X = 1) + P(X = 2)

=

P(X = 0 or X = 1 or X = 2)P(X 6 3) =

X = 2X = 1X = 0

= 0.1462

e-556

6!
P(X = 6) =
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238.3 Poisson approximation to the binomial distribution 1189

Solution
The average number of faults per 100 m is three, that is . Let X be the number
of faults per 100 m of pipe. Then X has a Poisson distribution given by

(a)

(b)

 = 0.2240

 P(X = 3) =

e-333

3!
 

 = 0.0498

 P(X = 0) =

e-330

0!
 

 P(X = r) =

e-33r

r!
 

l = 3

Exercises

In a computer laboratory, on average three
drives malfunction every month. Calculate the
probability that in a particular month
(a) two drives malfunction
(b) one drive malfunctions
(c) more than three drives malfunction.

A firm has on average seven people absent due
to illness per day. Calculate the probability that
on a particular day there are
(a) five people absent
(b) eight people absent
(c) more than three people absent.

2

1 A Poisson distribution is given by

Calculate
(a) (b) (c) 

An engineer receives, on average, five
emergency calls in an 8-hour period. Calculate
the probability that in an 8-hour period the
engineer receives
(a) exactly five calls
(b) fewer than three calls
(c) more than four calls.

4

P(X Ú 2)P(X 6 2)P(X = 2)

P(X = r) =

e-33r

r!
 

3

Solutions to exercises

(a) 0.2240 (b) 0.1494 (c) 0.3528

(a) 0.1277 (b) 0.1304 (c) 0.91822

1 (a) 0.2240 (b) 0.1991 (c) 0.8009

(a) 0.1755 (b) 0.1247 (c) 0.55954

3

8.3 Poisson approximation to the binomial distribution

The Poisson and binomial distributions are related. Consider a binomial distribution
in which n trials take place. Note that n is fixed. Suppose the probability of an event
A occurring on a single trial is p. Let X be the number of occurrences of A in n trials.
Also consider a Poisson distribution with mean .l

M23_CROF5939_04_SE_C23.QXD  9/28/18  12:51 PM  Page 1189



23 1190 Block 8 The Poisson distribution

If n is large and p is small and then the Poisson and binomial distributions
are very similar. Table 8.1 lists the probabilities for both distributions where 

and .l = 20(0.05) = 1p = 0.05
n = 20,

l = np

Table 8.1
Probabilities
for binomial
and Poisson
distributions.

Binomial Poisson

0.3585 0.3679
0.3774 0.3679
0.1887 0.1839
0.0596 0.0613
0.0133 0.0153
0.0022 0.0031r = 5

r = 4
r = 3
r = 2
r = 1
r = 0

P(X = r), l = 1P(X = r); n = 20, p = 0.05

Example 8.5 Reliability Engineering
A computer room contains 100 PCs. The probability that a PC breaks down in a
week is 0.005. Calculate the probability that in a week
(a) one machine breaks down
(b) no machine breaks down.

Solution
We solve the problem with both the binomial and the Poisson distribution.
Binomial distribution

The binomial distribution is then

(a)

(b)

Poisson distribution
Strictly speaking, to calculate the probabilities we should use the binomial distribu-
tion because the number of occurrences is finite. However, since n, the number of
trials, is large, 100, and the probability of breakdown small, 0.005, then a Poisson

 = 0.6058

 P(X = 0) = a100

0
b (0.005)0 (0.995)100

 = 0.3044

 P(X = 1) = a100

1
b (0.005)1 (0.995)99

 P(X = r) = a100

r
b (0.005)r (0.995)n - r

 X = number of occurrences of E
 p = probability that E occurs in a single trial = 0.005
 n = number of trials = 100
 E: the machine breaks down in a week
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238.3 Poisson approximation to the binomial distribution 1191

distribution can approximate closely to the binomial distribution. The mean of the
Poisson distribution is where . The Poisson distribution is then

(a)

(b)

Example 8.6 Reliability Engineering
The probability that a disk drive fails in any month is 0.004. An engineer is respon-
sible for 500 drives. Calculate the probability that in a month the number of drives
failing is (a) none, (b) one, (c) more than two.

Use the Poisson approximation to the binomial distribution.

Solution
Number of drives
Probability of failure

The Poisson distribution we use is

(a)

(b)

(c)

0.3233=

P(X 7 2) = 1 - 3P(X = 0) + P(X = 1) + P(X = 2)4

= 0.2707

e-221

1!
P(X = 1) =

= 0.1353

e-220

0!
P(X = 0) =

e-22r

r!
 P(X = r) =

np = 2l =

= p = 0.004
= n = 500

 = 0.6065

 P(X = 0) =

e-0.5(0.5)0

0!
 

 = 0.3033

  P(X = 1) =

e-0.5(0.5)1

1!
 

 P(X = r) =

e-0.5(0.5)r

r!
 

l = np = 0.5l
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23 1192 Block 8 The Poisson distribution

Exercises

On any day, the probability that a person is
absent due to illness is 0.001. In a workforce of
600 people, calculate the probability that on any
day the number of people absent is (a) none,
(b) one, (c) more than one, (d) less than three.

The probability that a component fails within a
month is 0.009. If 800 components are
examined calculate the probability that the
number failing within a month is (a) nine, 
(b) five, (c) less than three, (d) four or more.

2

1 A machine manufactures 350 micro-chips per
hour. The probability that a chip is faulty is
0.012. Calculate the probability that in a
particular hour there are (a) one, (b) three,
(c) more than three faulty chips manufactured.

3

Solutions to exercises

(a) 0.5488 (b) 0.3293 (c) 0.1219
(d) 0.9769

(a) 0.1070 (b) 0.1204 (c) 0.0255
(d) 0.9281

2

1 (a) 0.0630 (b) 0.1852 (c) 0.60463

End of block exercises

A Poisson distribution is given by

(a) State the mean value of X.
(b) Calculate the probability that .
(c) Calculate the probability that .
(d) Calculate the probability that .

In a computer laboratory, a technician
replaces, on average, four drives per month.
Calculate the probability that in a particular
month the technician replaces
(a) four drives
(b) more than four drives
(c) less than four drives.

A service engineer receives on average six
call-outs in an 8-hour period. Calculate the
probability that in an 8-hour period the
engineer receives

3

2

X Ú 2
X = 2
X = 5

P(X = r) =

e-44r

r!
 

1 (a) four call-outs
(b) seven call-outs
(c) between three and five call-outs inclusive.

A medium-sized firm has, on average, five
people absent on any day. Calculate the
probability that on a particular day there are
(a) four people absent
(b) more than four people absent.

A Poisson distribution is given by

Calculate
(a) (b) (c) P(X Ú 3)P(X … 3)P(X 6 3)

e-44r

r!
 P(X = r) =

5

4
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A workforce comprises 750 people. During
any week the probability that a person is
absent is 0.01. Use the Poisson approximation
to the binomial distribution to calculate the
probability that there are
(a) seven absent people
(b) five absent people
(c) more than four absent people.

6 The probability that a component fails within
2 weeks is 0.0075. If 500 components are
examined calculate the probability that the
number failing within 2 weeks is (a) three, 
(b) four, (c) less than three.

7

Solutions to exercises

(a) 4 (b) 0.1563 (c) 0.1465 (d) 0.9084

(a) 0.1954 (b) 0.3712 (c) 0.4335

(a) 0.1339 (b) 0.1377 (c) 0.3837

(a) 0.1755 (b) 0.55954

3

2

1 (a) 0.2381 (b) 0.4335 (c) 0.7619

(a) 0.1465 (b) 0.1094 (c) 0.8679

(a) 0.2067 (b) 0.1938 (c) 0.27717

6

5

8.3 Poisson approximation to the binomial distribution 1193
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x

N(x)

µ

Figure 9.1
A typical normal
probability density
function.

BLOCK 9
The normal distribution

9.1 Introduction

A variable that can take on any value within a given range is called a continuous
variable. Examples of continuous variables include the weights of packets of
sugar produced in a factory, the diameter of ball bearings and the heights of people.
The normal distribution allows us to calculate the probability of a continuous
variable falling within a particular range of values. Many variables such as weight,
volume and density have been found to be modelled by a normal distribution, which
is the reason why it has become one of the most important distributions needed by
engineers.

In this block we describe the normal distribution and show how it is used to calcu-
late probabilities. An understanding of probability density functions is essential;
these were introduced in Block 6 of this chapter.

9.2 The normal probability density function

Suppose a factory produces pistons for a particular model of car. The diameters of
the pistons must lie within a given range of values to be acceptable. The quality con-
trol manager measures the diameter of several hundred pistons. From these measure-
ments the mean and standard deviation can be calculated.

For a normal distribution we denote the mean by and the standard deviation by
. It is these two values that characterise a normal distribution. Suppose x is a vari-

able, such as length or weight. Then the normal probability density function, N(x),
is a bell-shaped curve, illustrated in Figure 9.1. Note that N(x) is symmetrical about

s

m
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239.2 The normal probability density function 1195

a vertical line placed at , the mean of the distribution. This means that a vari-
able that is normally distributed is as likely to lie above as below the mean. Further-
more, it is more likely to have a value close to the mean than further from the mean.
The symmetry of the normal distribution will be very important when we come to
calculate probabilities.

A formula for the normal probability density function N(x) is as follows.

x = m

x

N(x)

μ1 μ2

Figure 9.2
As increases, the
curve moves to the
right.

m

x

N(x)
σ1

σ2

σ2 > σ1

Figure 9.3
As increases, 
the spread of the
normal distribution
increases.

s

Key point Normal probability density function

N(x) =

1

s22p
 e-(x -m)2>2s2

, - q 6 x 6 q

Note that the expression for N(x) involves both and .
As the values of and change, the curve, N(x), changes but still retains the bell-

shaped feature and the symmetry about . Figure 9.2 shows two graphs of N(x),
both with the same value of but with different values of .

As increases the effect on N(x) is to ‘move’ it to the right, along the x axis.
Figure 9.3 shows two graphs of N(x), with the same value of , but different

values of .
In Figure 9.3, is greater than . Clearly the spread of the distribution increases

as increases.
In summary, the value of , the mean, determines where the centre of the distribu-

tion lies. The value of , the standard deviation, determines how far spread out the
distribution is.

s

m

s

s1s2

s

m

m

ms

x = m

sm

sm
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23 1196 Block 9 The normal distribution

Exercises

Figure 9.4 shows two normal distributions, 
A and B.

1 Figure 9.5 shows two normal distributions, 
A and B.

2

(a) Which distribution has the higher mean?
(b) Which distribution has the higher standard

deviation?

(a) Which distribution has the higher mean?
(b) Which distribution has the higher standard

deviation?

x

N(x)

A

B

Figure 9.4

x

N(x)

A

B

Figure 9.5

Solutions to exercises

(a) B (b) A1 (a) B (b) B2

9.3 The standard normal distribution

We have seen how a normal distribution, N(x), depends upon the mean, , and the
standard deviation, . We now look at a particular normal distribution with mean 0
and standard deviation 1. Such a distribution is called a standard normal distribu-

tion. Its probability density function is .N(x) =

1

22p
e-x2>2

s

m

Key point The standard normal distribution has a mean of 0 and a standard deviation of 1.

Suppose we have a continuous variable, x, which has a standard normal distribution.
Since x is continuous, it can take on any value. We can calculate the probability that
x will lie within a given interval, say (a, b).
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239.3 The standard normal distribution 1197

The quantity is illustrated in Figure 9.6.1
b

a  N(x) dx

Key point If x has a standard normal distribution, N(x), then the probability that x lies within the
interval (a, b) is

P (a 6 x 6 b) = �
b

a
 N(x) dx

x

N(x)

Oa b

Figure 9.6
The shaded area
represents the
probability that x
lies in the interval
(a, b).

x

N(x)

O z

Figure 9.7
The shaded area
represents the
value of A(z).

Because N(x) is a probability density function it can be shown that the total area
under N(x) is 1, that is

This represents total probability.
However, we are immediately presented with a problem because N(x) cannot be

integrated exactly.
To make numerical calculations easier we introduce a new function A(z) defined

by

Thus A(z) is the probability that x is less than z. Being a probability, A(z) must lie
between 0 and 1. In terms of an integral we have

The shaded area in Figure 9.7 represents A(z), so it will be helpful to think of A(z) as
the area under the graph of N(x) up to the point where .x = z

A(z) = P(x 6 z) = �
z

- q

 N(x) dx

A(z) = P(x 6 z)

�
q

- q

 N(x) dx = 1
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23 1198 Block 9 The normal distribution

Consider the case where . Then is illustrated in Figure 9.8.
Recall that N(x) is symmetrical about the mean, which for a standard normal is 0.

The total area under the curve is 1. Hence the shaded area in Figure 9.8 is 0.5, that is
.A(z = 0) = 0.5

A(z = 0)z = 0

x

N(x)

O

Figure 9.8
Owing to
symmetry

.A(z = 0) = 0.5

Values of A(z) for other values of z cannot be found by simply inspecting the graph.
A(z) must be found by evaluating the integral . This is difficult and must
be done numerically. Fortunately tables of A(z) are commonly available so that inte-
gration is not necessary. Values of A(z) for various values of z are given in Table 9.1
below.

Using Table 9.1 we are able to calculate the probability that x lies within a given
interval.

9.4 Calculating probabilities using Table 9.1

Table 9.1 can be used to calculate the probability that x lies within a given interval.
Recall that x follows a standard normal distribution: that is, it has a mean of 0 and a
standard deviation of 1. The values of A(z) in Table 9.1 give the probability that x is
less than z, that is

Example 9.1
The continuous variable, x, has a standard normal distribution. Calculate the prob-
ability that
(a) (b) (c) (d) 

Solution
(a) This case is illustrated in Figure 9.9.

From Table 9.1, . Hence

There is a probability of 0.8051 that the variable x is less than 0.86.

P(x 6 0.86) = 0.8051

A(0.86) = 0.8051

P(x 6 0.86) = A(0.86)

x 7 -0.86x 6 -0.86x 7 0.86x 6 0.86

A(z) = P(x 6 z)

1
z

- q
N(x) dx
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(b) This case is illustrated in Figure 9.10. Since the total area under the curve is 1,
we have

 = 0.1949

 = 1 - 0.8051

 P(x 7 0.86) = 1 - P(x 6 0.86)

x

N(x)

O 0.86

Figure 9.9
P(x 6 0 .86) = 0 .8051.

x

N(x)

O 0.86

Figure 9.10
P(x 7 0 .86) = 1 - 0 .8051 = 0 .1949.

x

N(x)

O�0.86

Figure 9.11
By symmetry P(x 6 -0.86) = P(x 7 0.86).

(c) Figure 9.11 illustrates the required area.

Using the symmetry of the normal distribution we see that

(d) Figure 9.12 illustrates the area.
Again by the symmetry we see that

and so

P(x 7 -0.86) = 0.8051

P(x 7 -0.86) = P(x 6 0.86)

 = 0.1949

 = 1 - P(x 6 0.86)

 P(x 6 -0.86) = P(x 7 0.86)
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Example 9.2
The variable x has a standard normal distribution. Calculate the probability that
(a) (b) (c) (d) 

Solution
(a) Figure 9.13 illustrates the area.

x 7 -0.75x 7 0.5x 6 -1.17x 6 2.06

x

N(x)

O�0.86

Figure 9.12
P(x 7 -0.86) = P(x 6 0.86).

x

N(x)

O 2.06

Figure 9.13
The shaded area
represents
P(x 6 2.06).

x

N(x)

O�1.17

Figure 9.14
The shaded area
represents
P(x 6 -1.17).

Using Table 9.1 we see

(b) Figure 9.14 illustrates the area.

0.9803P(x 6 2.06) =

Using the symmetry of the distribution we have

(c) Figure 9.15 illustrates the area.

1 - 0.8790 = 0.1210=

P(x 6 1.17)= 1 -

P(x 7 1.17)P(x 6 -1.17) =
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239.4 Calculating probabilities using Table 9.1 1203

Example 9.3
A variable, x, has a normal distribution with a mean of 0 and a standard deviation of
1: that is, it has a standard normal distribution. Calculate
(a) (b) (c) 

Solution
(a) Figure 9.17 illustrates the required area.

Recall that Table 9.1 gives values of A(z) where

A(z) = P(x 6 z)

P(-1.5 6 x 6 -0.7)P(-0.86 6 x 6 0.3)P(0.6 6 x 6 1.9)

0.7734=

P(x 6 0.75) P(x 7 -0.75) =

x

N(x)

O 0.5

Figure 9.15
The shaded area
represents
P(x 7 0.5).

x

N(x)

O�0.75

Figure 9.16
The shaded area
represents
P(x 7 -0.75).

(d) Figure 9.16 illustrates the required area.

1 - 0.6915 = 0.3085=

1 - P(x 6 0.5)P(x 7 0.5) =

x

N(x)

O 0.6 1.9

Figure 9.17
The shaded area
represents

.P(0.6 6 x 6 1.9)
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23 1204 Block 9 The normal distribution

that is, the probability that x is less than some specified value, z. We can view
the shaded area in Figure 9.17 as . Figure 9.18 illustrates this.A(1.9) - A(0.6)

x

N(x)

O 1.9

� �

x

N(x)

O 0.6 x

N(x)

O 0.6 1.9

Figure 9.18

gives the area
between 
and .x = 1.9

x = 0.6

A(1.9) - A(0.6)

So

There is a probability of 0.2456 that x lies between 0.6 and 1.9.
(b) Using the same reasoning as in (a) we have

Now

So

(c)

Example 9.4
Given that x has a standard normal distribution calculate
(a) (b) (c) P(-1.2 6 x 6 -0.5)P(-1.5 6 x 6 1)P(1 6 x 6 2)

 = 0.1752

 = 0.9332 - 0.7580

 = P(x 6 1.5) - P(x 6 0.7)

 = [1 - P(x 6 0.7)] - [1 - P(x 6 1.5)]

 P(-1.5 6 x 6 -0.7) = P(x 6 -0.7) - P(x 6 -1.5)

 = 0.4230

 = 0.6179 - 0.1949

 P(-0.86 6 x 6 0.3) = P(x 6 0.3) - P(x 6 -0.86)

 = 0.1949

 = 1 - P(x 6 0.86)

 P(x 6 -0.86) = P(x 7 0.86)

P(-0.86 6 x 6 0.3) = P(x 6 0.3) - P(x 6 -0.86)

 = 0.2456

 = 0.9713 - 0.7257

 = A(1.9) - A(0.6)

 P(0.6 6 x 6 1.9) = P(x 6 1.9) - P(x 6 0.6)
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Solution
(a)

(b)

(c)

= 0.1934

0.3085, 0.1151-=

P(x 6 0.5), P(x 6 1.2)

bb - a1 -  = a1 -

P(-1.2 6 x 6 -0.5) = P(x 6 -0.5) - P(x 6 -1.2)

= 0.7745

0.0668= 0.8413 -

P(x 6 1.5)b= P(x 6 1) - a1 -

P(-1.5 6 x 6 1) = P(x 6 1) - P(x 6 -1.5)

= 0.1359

0.9772, 0.8413-=

P(x 6 1)P(1 6 x 6 2) = P(x 6 2) -

Exercises

Given that y has a standard normal distribution
calculate
(a) (b)
(c) (d) 
(e)
(f)
(g)

Given that x has a standard normal distribution
calculate
(a) (b)
(c) (d)
(e) (f) 
(g)

Given that z has a standard normal distribution
calculate the probability that
(a) z lies within two standard deviations of the

mean

3

P( ƒ x ƒ 7 1.5)
P(|x| 6 1)P(x 7 0)
P(-1.75 6 x 6 -0.75)P(x 6 0)

P(-1.2 6 x 6 1.2)P(1 6 x 6 2)

2

P(-2.1 6 y 6 -1.7)
P(-0.15 6 y 6 0)
P(0.56 6 y 6 1.82)

P(y 7 -0.57)P(y 6 -0.9)
P(y 7 1.36)P(y 6 1.36)

1 (b) z lies more than one standard deviation
from the mean.

The temperature in a fridge follows a normal
distribution with a mean of and a standard
deviation of . Calculate the probability that
the temperature is (a) more than , (b) less
than , (c) between and .1°-2°1°

2°
1°

0°
4

M23_CROF5939_04_SE_C23.QXD  9/28/18  11:59 AM  Page 1205



23 1206 Block 9 The normal distribution

Solutions to exercises

(a) 0.9131 (b) 0.0869 (c) 0.1841 (d) 0.7157
(e) 0.2534 (f) 0.0596 (g) 0.0267

(a) 0.1359 (b) 0.7699 (c) 0.5 (d) 0.1866
(e) 0.5 (f) 0.6827 (g) 0.1336

2

1 (a) 0.9545 (b) 0.3173

(a) 0.02275 (b) 0.8413 (c) 0.81864

3

9.5 Non-standard normal distribution

So far we have calculated probabilities for a standard normal distribution. We now
consider non-standard normal distributions. In a non-standard normal distribution,
the mean is non-zero and/or the standard deviation is not 1.

Recall that Table 9.1 lists probabilities for a standard normal distribution. In order to
use Table 9.1 for problems involving non-standard normal distributions we introduce a
way of ‘standardising’ a variable.

Key point Suppose a variable, x, has a normal distribution with mean and standard deviation .
We standardise x to Z using the formula

Z =

x - m

s

sm

The variable now has a standard normal distribution and so Table 9.1

can be used.

Example 9.5
A variable, x, has a normal distribution with mean 5 and standard deviation 2.
Calculate the probability that
(a) (b) (c)

Solution
(a) We standardise 7 to

So has the same probability as where Z follows a standard normal
distribution.

Z 6 7x 6 7

 = 1

 =

7 - 5

2

 Z =

7 - m

s

2 6 x 6 6x 7 4 x 6 7

Z =

x - m

s
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(b) Applying the standardisation to 4 gives

So has the same probability as :

(c) Both 2 and 6 are standardised.

So

Example 9.6
The number of miles travelled on 5 litres of petrol by a particular model of car
follows a normal distribution with mean 47 and standard deviation 4.3. Calculate the
probability that on 5 litres of petrol a car can travel
(a) more than 50 miles
(b) between 45 and 55 miles.

Solution
We let M be the number of miles travelled on 5 litres of petrol. Then M has a normal
distribution with mean 47 miles and standard deviation 4.3 miles.
(a) We require the probability that . Using the standardisation we have

So

(b) We standardise 45 and 55.

So

-0.47, 1.86, Z =Z =

 1 - P(Z 6 0.70) = 0.2420

P(M 7 50) = P(Z 7 0.70) =

50 - 47

4.3
= 0.70Z =

M 7 50

 = 0.6247
 = P(Z 6 0.5) + P(Z 6 1.5) - 1
 = P(Z 6 0.5) - [1 - P(Z 6 1.5)]
 = P(Z 6 0.5) - P(Z 6 -1.5)

 P(2 6 x 6 6) = P(-1.5 6 Z 6 0.5)

Z =

2 - 5

2
= -1.5, Z =

6 - 5

2
= 0.5

 = 0.6915
 = P(Z 6 0.5)

 P(x 7 4) = P(Z 7 -0.5)

Z 7  -0.5x 7 4

 = -0.5

 Z =

4 - 5

2

 = 0.8413
 P(x 6 7) = P(Z 6 1)

9.5 Non-standard normal distribution 1207
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23 1208 Block 9 The normal distribution

=

= 0.6494

 P(Z 6 1.86) + P(Z 6 0.47) - 1

 P(45 6 M 6 55) = P(-0.47 6 Z 6 1.86)

Exercises

A variable, x, has a normal distribution with
mean 6 and standard deviation 1.5. Calculate
the probability that
(a) (b) (c) (d)
(e)
(f) x lies within one standard deviation of the

mean
(g) x lies more than two standard deviations

from the mean.

The temperature, , of a freezer follows a
normal distribution with mean and
standard deviation of . Calculate the
probability that
(a) (b) (c)

Studies of a particular type of car tyre show
that the mileage for which it can be used

3

-6 6 T 6 -3T 6 -7T 7 -5

2 °C
-6 °C

T  °C2

5 6 x 6 8
x 7 5 .5x 7 7x 6 5x 6 7.5

1 legally follows a normal distribution with
mean 38000 miles and standard deviation 
2500 miles. The manufacturers claim that 
‘9 out of 10 of our tyres last more than 
35000 miles’. Is the claim justified?

The diameters of ball bearings produced in 
a factory follow a normal distribution with
mean 6 mm and standard deviation 0.04 mm.
Calculate the probability that a diameter is 
(a) more than 6.05 mm, (b) less than 5.96 mm,
(c) between 5.98 and 6.01 mm.

A normally distributed variable has mean 2
and standard deviation 2.5. Calculate the
probability that the variable is negative.

5

4

Solutions to exercises

(a) 0.8413 (b) 0.2514 (c) 0.2514 (d) 0.6293
(e) 0.6568 (f) 0.6829 (g) 0.0455

(a) 0.3085 (b) 0.3085 (c) 0.4332

Only 88.49% of tyres last more than 35000
miles and so the claim is unjustified.

3

2

1 (a) 0.1056 (b) 0.1587 (c) 0.2902

0.21195

4

End of block exercises

The variable, z, has a standard normal
distribution. Calculate the probability that
(a) (b) (c)
(d) (e)
(f)
(g) -1.06 6 z 6 0.08

-1.38 6 z 6 0.75
0.52 6 z 6 1.42z 7 -1.36 

z 7 0.55z 6 -0.75z 6 1.42

1 The variable, x, has a standard normal
distribution. Calculate the probability that
(a) x is within 1.5 standard deviations of the

mean
(b) x is more than 1.75 standard deviations

from the mean.

2
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The variable, X, has a normal distribution with
a mean of 5 and a standard deviation of 3.
Calculate the probability that
(a) (b) (c)
(d) (e)

The lifespan of bulbs has a normal distribution
with mean of 10000 hours and a standard
deviation of 1200 hours. Calculate
(a) the percentage of bulbs that last more than

11000 hours
(b) the probability that the lifespan of a bulb is

between 8000 and 11000 hours
(c) the percentage of bulbs that fail before

8000 hours.

The lifespan of car batteries follows a normal
distribution with a mean of 5 years and a
standard deviation of 10 months. Calculate
(a) the probability that a car battery lasts more

than 6 years
(b) the percentage of batteries that fail before

they are 3 years old.

The scores from IQ tests have a normal
distribution with a mean of 100 and a standard
deviation of 15.
(a) Calculate the probability that a person has

an IQ of more than 120.
(b) Calculate the probability that a person has

an IQ of more than 130.
(c) What should a person score in order to be

described as being in the top 10% of the
population?

A factory produces metal bars used in the
steering columns of cars. The car manufacturer
requires that the bars are long.
The lengths of the bars produced in the factory
follow a normal distribution with mean 
60.2 cm and standard deviation 0.2 cm. What
percentage of bars produced by the factory are
acceptable to the car manufacturer?

A normally distributed variable, Y, has a mean
of 30 and a standard deviation of 4. Calculate
(a) (b)
(c) (d)
(e) P(Y is more than 1.25 standard deviations

from the mean).

P(25 6 Y 6 29)P(31 6 Y 6 35)
P(Y 6 28.2)P(Y 7 31.6)

8

60 � 0.2 cm

7

6

5

4

1 6 X 6 9X 6 1.75
X 6 2X 7 0X 7 10

3 The random variable, x, has a normal
distribution. How many standard deviations
above the mean must the point P be placed if
the tail-end is to represent (a) 10%, (b) 5%, 
(c) 1% of the total area? (See Figure 9.19.)

9

Consider Figure 9.20.10

x

N(x)

P?

Figure 9.19

x

N(x)

BA

Figure 9.20

The two tail-ends have equal area. How many
standard deviations from the mean must A and
B be placed if the tail-ends are (a) 10%, (b) 5%,
(c) 1% of the total area?

9.5 Non-standard normal distribution 1209
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23 1210 Block 9 The normal distribution

Solutions to exercises

(a) 0.9222 (b) 0.2266 (c) 0.2912 (d) 0.9131
(e) 0.2237 (f) 0.6896 (g) 0.3873

(a) 0.8664 (b) 0.0801

(a) 0.0475 (b) 0.9525 (c) 0.1587 (d) 0.1401
(e) 0.8165

(a) 20.33% (b) 0.7493 (c) 4.75%

(a) 11.51% (b) 0.82%5

4

3

2

1 (a) 0.0918 (b) 0.0228 (c) 119

47.72%

(a) 0.3446 (b) 0.3264 (c) 0.2956 (d) 0.2956
(e) 0.2113

(a) 1.28 (b) 1.64 (c) 2.33

(a) 1.64 (b) 1.96 (c) 2.5710

9

8

7

6

End of chapter exercises

Calculate (a) the mean and (b) the standard
deviation of the data set

State (a) the median and (b) the mode of the
data in question 1.

Two identical data points are added to the data
set of question 1. The mean of the new data set
is 29. Calculate the value of the additional data
points.

Table 1 shows the results of measuring the
petrol consumption of a car over 90 trials.

4

3

2

17, 26, 31, 19, 25, 20, 19, 29, 11, 27

1 The data set has a
mean of and a standard deviation of . The
data set B is , the data
set C is 
where k is a constant.
(a) State the mean of set B.
(b) State the mean of set C.
(c) State the standard deviation of set B.
(d) State the standard deviation of set C.

Out of 6000 components, 39 fail within 
12 months of manufacture.
(a) Calculate the probability that a component

picked at random fails within 12 months of
manufacture.

(b) A batch contains 2000 components. How
many of these would you expect to fail
within 12 months?

A fair die is rolled. Calculate the probability
that the score is
(a) 4 (b) 4 or more (c) more than 4 (d) not 4

Two fair dice are thrown. Calculate the
probability that the total is
(a) 9 (b) 13 (c) more than 9

State the complement of the following
statements.
(a) the score is more than 4
(b) all of the components are working
(c) at least two of the machines are not working
(d) none of the machines are switched on.

10

9

8

7

{x1 + k, x2 + k, x3 + k, . . ., xn + k}
{kx1, kx2, kx3, . . ., kxn}

sx
A = {x1, x2, x3, . . ., xn}6

(a) Calculate the mean consumption.
(b) Calculate the standard deviation.

State (a) the median and (b) the mode of the
distribution of question 4.

5

Table 1

Miles per gallon Frequency

42 17
43 18
44 12
45 20
46 23
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Components are manufactured by machines 
A and B. Machine A makes 55% of the
components. Of those components made by
machine A, 7% are unacceptable; of those
made by machine B, 5% are unacceptable. A
component is picked at random. Calculate the
probability that it is
(a) made by machine B
(b) acceptable
(c) acceptable and made by machine A
(d) unacceptable given it is made by machine B
(e) made by machine A given it is unacceptable.

Components are manufactured by three
machines, A, B and C. Machine A makes 30%
of the components, machine B makes 25% of
the components and machine C makes the rest.
Of those components made by machine A, 6%
are substandard; when made by machine B,
3% are substandard; and when made by
machine C, 5% are substandard. A component
is picked at random. Calculate the probability
that it is
(a) substandard
(b) made by machine B given it is substandard
(c) made by either machine A or machine B
(d) substandard and made by machine B
(e) substandard, given it is made by machine A
(f) made by machine A or is substandard.

The lifespans, L, of 2500 components were
monitored and recorded in Table 2.

13

12

11 (c) of more than 10000 hours given that it has
already lasted for at least 8000 hours

(d) of between 11000 and 12000 hours given
that it has already lasted for at least 9000
hours.

The probability that a component is acceptable
is 0.91. Ten components are picked at random.
Calculate the probability that
(a) eight are acceptable
(b) more than eight are acceptable
(c) three are not acceptable.

The probability that a motor will malfunction
within 5 years of manufacture is 0.03. Out of
eight motors calculate the probability that
within 5 years of manufacture
(a) all eight will malfunction
(b) six will malfunction
(c) none will malfunction.

The probability that a component works is
0.92. An engineer wants to be at least 99%
certain of carrying six working components.
Calculate the minimum number of components
that the engineer needs to carry.

A service engineer receives on average seven
calls in a 24-hour period. Calculate the
probability that in a 24-hour period the
engineer receives
(a) seven calls (b) eight calls (c) six calls
(d) fewer than three calls

A firm has 1400 employees. The probability
that an employee is absent on any day is 0.006.
Use the Poisson approximation to the binomial
distribution to calculate the probability that the
number of absent employees is
(a) eight (b) nine

The lengths of components have a normal
distribution, with a mean of 7 cm and a
standard deviation of 0.03 cm. Calculate the
probability that a component chosen at random
has a length
(a) between 6.95 cm and 7.02 cm
(b) more than 7.05 cm
(c) less than 6.96 cm
(d) between 6.95 cm and 6.99 cm.

19

18

17

16

15

14

Calculate the probability that a component
picked at random has a lifespan
(a) of between 8000 and 11000 hours
(b) of more than 11000 hours

Table 2

Lifespan, L (hours) Frequency

16
132
219
496

1012
480
145L 7 12000

11000 6 L … 12000
10000 6 L … 11000
9000 6 L … 10000

8000 6 L … 9000
5000 6 L … 8000

0 … L … 5000

End of chapter exercises 1211
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The diameters of bearings have a normal
distribution with a mean of 8 mm and a
standard deviation of 0.04 mm. In a batch of
6000 bearings how many would you expect to
have a diameter of
(a) more than 8.03 mm
(b) less than 7.95 mm

20 (c) between 8.01 mm and 8.06 mm
(d) more than 2.5 standard deviations from the

mean?

Solutions to exercises

(a) 22.4 (b) 5.886

(a) 22.5 (b) 19

62

(a) 44.2 (b) 1.475

(a) 44 (b) 46

(a) (b) (c) (d)

(a) 0.0065 (b) 13

(a) (b) (c) (d)

(a) (b) 0 (c)

(a) the score is 4 or less
(b) at least one of the components is not

working
(c) fewer than two of the machines are not

working
(d) some of the machines are switched on.

10

1

6

1

9
9

5

6

1

3

1

2

1

6
8

7

sksx + kkx6

5

4

3

2

1 (a) 0.45 (b) 0.939 (c) 0.5115 (d) 0.05
(e) 0.6311

(a) 0.048 (b) 0.1563 (c) 0.55 (d) 0.0075
(e) 0.06 (f) 0.33

(a) 0.6908 (b) 0.25 (c) 0.6960 (d) 0.2250

(a) 0.1714 (b) 0.7746 (c) 0.0452

(a) (b)
(c) 0.7837

12

(a) 0.1490 (b) 0.1304 (c) 0.1490 (d) 0.0296

(a) 0.1382 (b) 0.1290

(a) 0.7011 (b) 0.0475 (c) 0.0918 (d) 0.3232

(a) 1360 (b) 634 (c) 2007 (d) 7520

19

18

17

16

1.921 * 10-86.561 * 10-1315

14

13

12

11

1212 Block 9 The normal distribution
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Chapter 24
An introduction to Fourier series and the
Fourier transform

The ability to analyse waveforms of various types is an important
engineering skill. Fourier analysis provides a set of mathematical tools
that enable the engineer to break down a wave into its various
frequency components. It is then possible to predict the effect that a
particular waveform may have from knowledge of the effects of its
individual frequency components. Often an engineer finds it useful to
think of a signal in terms of its frequency components rather than in
terms of its time-domain representation. This alternative view is called
a frequency-domain representation. It is particularly useful when trying
to understand the effect of a filter on a signal. Filters are used
extensively in many areas of engineering. In particular, communication
engineers use them in signal reception equipment for filtering out
unwanted frequencies in the received signal.

When a signal or waveform is periodic, it is possible to represent it as
a sum of sine and/or cosine functions of different frequencies and
amplitudes. Such a frequency-domain representation is called a
Fourier series. Calculating a Fourier series is essentially an exercise in
integration, in particular the integration of trigonometrical functions. In
Block 1 of this chapter you will have the opportunity to calculate
several Fourier series. When a signal is not periodic the equivalent
frequency-domain representation is found by using a Fourier
transform. In Block 2, this important transform will be introduced.

This chapter is intended to provide an introduction to these topics
rather than give a thorough and rigorous treatment.
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Chapter 24 contents

Block 1 Periodic waveforms and their Fourier representation

Block 2 Introducing the Fourier transform

End of chapter exercises
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BLOCK 1
Periodic waveforms and their Fourier representation

1.1 Introduction

Suppose we have a periodic function . Under certain conditions, which will be given
at the end of Section 1.2 of this block, it can be expressed as the sum of an infinite num-
ber of sine and/or cosine functions. This infinite sum is known as a Fourier series.

For example, Figure 1.1(a) shows a graph of the function 2 sin t. Figure 1.1(b)
shows a graph of . Notice that we have now included a second sine
function that has twice the frequency of the first and a different amplitude. Figures 1.1(c)
and 1.1(d) are generated by adding still more sine functions, again with decreasing
amplitude and increasing frequency.

2 sin t - sin 2t

f(t)

Figure 1.1

Figures 1.1(c) and 1.1(d) show graphs of 

. and 2 sin t - sin 2t +
2
3 sin 3t -

1
2 sin 4t

2 sin t - sin 2t +
2
3 sin 3t 

t t

t t

(a) (b)

(c) (d)

As more and more sine terms are included the graph appears to resemble more and
more closely the periodic sawtooth waveform shown in Figure 1.2.

By using an infinite series of sine functions it can be shown that the sawtooth
waveform of Figure 1.2 can be represented exactly.

Figure 1.2
A periodic
sawtooth
waveform.

tπ 3π
O

π

�π

The infinite series of sine functions is the Fourier series of the sawtooth wave-
form. You will notice that the Fourier series is built up of sine functions of increasing
frequencies, and with decreasing amplitudes. In this block you will learn how to
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1216 Block 1 Periodic waveforms and their Fourier representation24

calculate the appropriate frequencies and amplitudes for yourself, so that, given any
periodic function, you will be able to calculate its corresponding Fourier series.

In the example above it was necessary only to include sine functions to construct
the Fourier series, but in general you will need both sine and cosine functions, unless
the periodic function under consideration takes rather special forms.

Exercises

The Fourier series of the sawtooth waveform
can be expressed concisely in the form

Noting that , ,
, and so on, use this form to

write out the first few terms in the infinite
series explicitly.

cos 3p = -1
cos 2p = 1cos p = -1

f (t) = a

q

n = 1
 a -2 cos np

n
b  sin nt

1 A Fourier series is given by

Write out the first four terms of this infinite
series.

f (t) =

1

2
+ a

q

n = 1
 

2

(2n - 1)p
 sin (2n - 1)t

2

Solutions to exercises

+
2
3 sin 3t -

1
2 sin 4t + Á

f (t) = 2 sin t - sin 2t1 1

2
+

2
p

 sin t +

2

3p
 sin 3t +

2

5p
 sin 5t + Á2

1.2 Calculating a Fourier series

To find a Fourier series for yourself you will make use of several formulae that
involve the integration of trigonometrical functions. You will also need the technique
of integration by parts. You may wish to revise these topics before proceeding.

Given a periodic function , with period T, calculate the quantities and 
from the following formulae. These quantities are known as Fourier coefficients:

bna0, anf(t)

Key point Fourier coefficients

bn =

2

T �
T

0
f (t) sin 

2npt

T
 dt, n = 1, 2, 3, Á

an =

2

T �
T

0
f (t) cos 

2npt

T
 dt, n = 1, 2, 3, Á

a0 =

2

T �
T

0
f (t) dt
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1.2 Calculating a Fourier series 1217 24

When these quantities have been calculated the Fourier series is given by the
following:

Key point Fourier series

f (t) =

a0

2
+ a

q

n = 1
 aan cos 

2npt

T
+ bn sin 

2npt

T
b

If we write out the first few terms of the infinite series explicitly we find

In this form we see that the Fourier coefficients are the amplitudes of the cosine
terms in the series, and the are the amplitudes of the sine terms in the series.

These formulae can look quite intimidating when first met, but we shall lead
you carefully through the various stages of the calculation in order that you develop
confidence in their use. However, you should always sketch a graph of the periodic
function before doing anything else.

Example 1.1
Sketch a graph of the periodic function

of period , from to .

Solution
Sketch the function for yourself.

t = 15t = -10T = 10

f (t) = e0 -5 6 t 6 0

1 0 6 t 6 5

bn

an

f (t) =

a0

2
+ a1 cos 

2pt

T
+ b1 sin 

2pt

T
+ a2 cos 

4pt

T
+ b2 sin 

4pt

T
 + Á

�10 �5 5 10 15

1

t

f (t)

Example 1.2
For the function

of period , in Example 1.1, evaluate : that is, calculate the Fourier
coefficient .

Solution
First identify the period, T.

10T =

a0

2

T
 �

T

0
f (t) dtT = 10

f (t) = e0 -5 6 t 6 0

1 0 6 t 6 5
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1218 Block 1 Periodic waveforms and their Fourier representation24

We need to find . We are required to integrate between and
. However, by studying the graph of you will see that is zero for t

between 5 and 10, and so we only need integrate between 0 and 5, and over this
interval the function takes the value 1. Now write down the required integral:

Perform the integration to find .

We conclude that the Fourier coefficient, , is equal to 1.

Example 1.3
For the function

of period , in Example 1.1, evaluate : that is, calculate

the Fourier coefficients .

Solution
As in Example 1.2, because is zero between we need only
perform the integration over the interval 

Write down the required integral:

Perform the integration and complete the calculation:

If you substitute the limits of integration you will find that all terms are zero since
for all integers n. Hence . You have found that all the Fourier coef-

ficients, , are zero. This means that there will be no cosine terms in the Fourier series.

Example 1.4
For the function

of period , in Example 1.1, evaluate : that is, calculate the

Fourier coefficients .bn

2

T �
T

0
f (t) sin 

2npt

T
 

 
dtT = 10

f (t) = e0 -5 6 t 6 0

1 0 6 t 6 5

an

an = 0sin np = 0

1

5
 D sin 

npt

5
np

5

 T
5

0

an =

2

10 �
5

0
1 cos 

2npt

10
 dtan =

t = 0 to t = 5.
t = 5 and t = 10f (t)

an

2

T �
T

0
f (t) cos 

2npt

T  
dtT = 10

f (t) = e0 -5 6 t 6 0

1 0 6 t 6 5

a0

1

5
 3t405 = 1

a0

2

10
 �

5

0
1 dta0 =

f (t)f (t)t = 10
t = 0f (t)2

101
10

0 f (t) dt
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1.2 Calculating a Fourier series 1219 24

Solution
As in Examples 1.2 and 1.3, because is zero between we need
only perform the integration over the interval .

Perform the integration:

Insert the limits of integration and so complete the calculation of :

This result gives us a formula for calculating each Fourier coefficient, . Evaluate
the formula when , , and so on:

When 

When 

When 

Continuing in this way you will find , , and so on. These are the
Fourier coefficients, .

Example 1.5
Combine the results of Examples 1.2, 1.3 and 1.4 to write down the Fourier series for

of period 10.

Solution
Using the Key point above for the Fourier series,

In this example and so the series reduces to

f (t) =

a0

2
+ a

q

n = 1
 bn sin 

npt

5

T = 10an = 0

f (t) =

a0

2
+ a

q

n = 1
 aan cos 

2npt

T
+ bn sin 

2npt

T
 b

f (t) = e0 -5 6 t 6 0

1 0 6 t 6 5

bn

b5 =

2

5p
b4 = 0

2
3p

n = 3, b3 =

-  
1

2p
 (cos 2p - 1) = 0n = 2, b2 =

-  
1
p

 (cos p - 1) =

2
p

n = 1, b1 =

n = 2n = 1
bn

-  
1

np
 (cos np - 1)

bn

1

5
 D -  

cos 
npt

5
np

5

T
5

0

bn =

2

10 �
5

0
1 sin 

2npt

10
 dtbn =

t = 0 to t = 5
t = 5 and t = 10f (t)
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1220 Block 1 Periodic waveforms and their Fourier representation24

where the numbers are those obtained in Examples 1.2 and 1.4. If we write
the series out explicitly we find

A graph of the first four terms in this series is shown in Figure 1.3. Notice how
closely, even with only four terms, it resembles the original graph obtained in
Example 1.1.

f (t) =

1

2
+

2
p

 sin 
pt

5
+

2

3p
 sin 

3pt

5
+

2

5p
 sin 

5pt

5
 + Á

a0 and bn

Figure 1.3
The first four
terms in the
Fourier series 
of .f (t) �10 �5 5 10 15 t

The Fourier series of has now been found.

Integration over any convenient period

Although the integrals given in the formulae for the Fourier coefficients have limits
0 and T, they can in fact be performed over any complete period. On occasions it

may be more convenient to integrate over a different interval, say from .

This is the case in the following example.

Example 1.6
(a) Sketch a graph of the function

of period , over the interval from .
(b) Find the Fourier series for .

Solution
(a) First draw the required graph over the interval stated.

f (t)
-3p to 3p2p

f (t) = e - t -p 6 t 6 0

0 0 6 t 6 p

-

T

2
  to  

T

2

f (t)

�3π Ο 3π
t

π

(b) State the value of T:

Because the period is the Fourier series formulae simplify somewhat. For 

example, terms like sin become simply .sin nt
2npt

T

2p

T = 2p

M24_CROF5939_04_SE_C24.QXD  9/29/18  10:40 AM  Page 1220



1.2 Calculating a Fourier series 1221 24

Because the function is given over the interval from it is
convenient to use this complete period in the Fourier coefficient integrals.
Noting that between write down the required integrals:

Now evaluate :

To find we note that the integrand is a product and we use integration by parts:

To achieve this result we have made use of the following facts: , 
for all n, and since the cosine function is even.

Use this result to find , and explicitly:

To find note that the integrand is a product and use integration by parts in the
same way as we did when finding :

1
p �

0

-p

- t sin nt dt =

1
p

 e c(- t)a -  

cos nt

n
 b d0

-p

- �
0

-p

-  

cos nt

n
 (-1) dt f

bn =

an

bn

-  

2

9p
a3 =

0a2 =

-  

2
p

a1 =

a3a2a1

cos (-np) = cos  np
sin (-np) = 0sin 0 = 0

 =

1
p

 a cos np

n2 -

1

n2 b

 =

1
p

 c -

cos nt

n2  d0

-p

 

 an =

1
p �

0

-p

- t cos nt dt =

1
p

 e c - t 
sin nt

n
 d0

-p

+ �
0

-p

sin nt

n
  dt f

an

1
p

 c - t2

2
 d0

-p

=

p

2
a0 =

a0

1
p �

0

-p

- t sin nt dtbn =

1
p

 �
0

-p

- t cos nt dtan =

1
p �

0

-p

- t dta0 =

0 and pf (t) = 0

-p to pf (t)
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1222 Block 1 Periodic waveforms and their Fourier representation24

Simplify this.

The remaining integral is , which vanishes.

Complete the calculation:

Explicitly, , , , and so on.
Putting all these results together we can write the first few terms in the Fourier

series as

A graph of these first few terms is shown in Figure 1.4.

f (t) =

p

4
-

2
p

 cos t - sin t +

1

2
 sin 2t -

2

9p
 cos 3t -

1

3
 sin 3t + Á

b3 = -
1
3b2 =

1
2b1 = -1

1
p

 e0 -

-p cos(-np)

n
f =

1
n

 cos npbn =

�
0

-p

  cos nt

n
 dt = c  sin nt

n2
d0

-p

1
p

 e c t cos nt

n
d0

-p

- �
0

-p

cos nt

n
 dt fbn =

Figure 1.4

�3π Ο 3π
t

π

Maple and Matlab can be used to calculate Fourier series. In fact, there are built-in
packages for doing this and you should explore what is available. In the following
example we demonstrate one way in which a Fourier series can be found using more
basic commands.

Example 1.7

Consider the function 

(a) Use software to plot a graph of this function in the interval .
(b) Use software to calculate the coefficients in the Fourier series expansion of f (t).
(c) Plot the Fourier series expansion in the interval using a finite

number of terms, N, and by increasing N observe the convergence of the series
towards the original function f (t).

(-4p, 4p)

(-p, p)

f (t) = μ
p/2 -p 6 t 6 -p/2

ƒ t ƒ -p/2 6 t 6 p/2 period = 2p

p/2 p/2 6 t 6 p

.
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1.2 Calculating a Fourier series 1223 24

Maple

(a) This piecewise function can be defined in Maple using the piecewise function and
plotted as follows:

> f:=t->piecewise(-Pi<t and t<-Pi/2,Pi/2,-Pi/2<t and t<Pi/2,
abs(t), Pi/2<t and t<Pi,Pi/2); plot(f(t),t=-Pi..Pi);

The graph is shown in Figure 1.5.

(b) The Fourier coefficients can be calculated using the integration command int in con-
junction with the formulae in the Key point on page 1216.

T:=2*Pi; # the period of the function
a0:=(2/T)*int(f(t),t=-Pi..Pi);
a:=n->(2/T)*int(f(t)*cos(2*n*Pi*t/T),t=-Pi..Pi);
b:=n->(2/T)*int(f(t)*sin(2*n*Pi*t/T),t=-Pi..Pi);

(c) The sum function is then used to add to the first N terms in the series and the result

is plotted over the interval . (Here .)

N:=10; # the number of terms in the series
plot(a0/2 + sum( a(n)*cos(2*n*Pi*t/T) +
b(n)*sin(2*n*Pi*t/T),n=1..N),t=-4*Pi..4*Pi);

The result of calculating the Fourier series with terms is shown in Figure 1.6.
You should use the software to which you have access to experiment with different val-
ues of N. You should also try to reproduce the graphs in Examples 1.5 and 1.6.

N = 10

N = 10(-4p, 4p)

a0

2

−π
2

π
2

tπ
2

ππ−
O

Figure 1.5
A graph of the piecewise function f (t).

π
2

t−4π − 2π 2π 4πO

Figure 1.6
A graph of the Fourier series,
generated by Maple and calculated
with 10 terms.

Solution
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1224 Block 1 Periodic waveforms and their Fourier representation24

Matlab

There are numerous ways of finding Fourier series in Matlab, some numerical and some
symbolic. The following code will find the Fourier series of f (t), having period T. It then
displays N terms of the series and plots a graph of the approximation together with the
original function for comparison. Rather than typing all this code into the Matlab Com-
mand Window, it is preferable to store it in a text file, known as an m-file, which can then
be reused and amended easily. You should refer to the Matlab on-line help for more
details and alternatives.

Here, by way of example, we have defined the given function in terms of unit step
functions, which in Matlab are referred to as heaviside() functions (see Section 8.5,
page 202).

syms t n T N % creates these as symbolic variables as
opposed to numbers.
evalin(symengine, 'assume(n,Type::Integer)'); % informs
Matlab that n is an integer;
% this enables simplification.
%
a = @(f,t,n,T) (2/T)* int(f*cos(2*n*pi*t/T),t,-T/2,T/2);%
calculates coefficients a_n for function f(t).
b = @(f,t,n,T) (2/T)*int(f*sin(2*n*pi*t/T),t,-T/2,T/2); %
calculates coefficients b_n for function f(t).
% Here T is the period.
%
% The following calculates the Fourier series of f(t) with
N terms:
fourierseries = @(f,t,N,T) a(f,t,0,T)/2 + symsum(a(f,t,n,T)*
cos(2*n*pi*t/T) +

b(f,t,n,T)*sin(2*n*pi*t/T), n, 1, N)
%
% now define the function whose Fourier series we are inter-
ested in:
f = (heaviside(t+pi)-heaviside(t+pi/2))*pi/2 + (heaviside(t+pi/2)-
heaviside(t-pi/2))*abs(t)

+ (heaviside(t-pi/2)-heaviside(t-pi))*pi/2
% display the Fourier series nicely, showing 5 terms
% set precision to 4dp to avoid clumsy display
digits(4)
vpa(fourierseries(f,t,5,2*pi))
%
% plot a graph using 5 terms and the original function for
comparison
%
fplot(f,[-pi,pi])
hold on
fplot(fourierseries(f,t,5,2*pi),[-pi,pi])

This yields the following series as output:

1.178 - 0.02546*cos(5.0*t) - 0.07074*cos(3.0*t) -
0.6366*cos(t) - 0.3183*cos(2.0*t)

and the graph shown in Figure 1.7.
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1.2 Calculating a Fourier series 1225 24

− π
2

π
2

π
2

ππ−
O

Figure 1.7
Graphs of f (t) and its Fourier series, generated by Matlab,
calculated with five terms.

Fourier series of odd functions and even functions

When a function is odd, its Fourier series will contain no cosine or constant terms.
Consequently for all n.

When a function is even, its Fourier series will contain no sine terms. Conse-
quently for all n.

These facts will enable you to save considerable effort during the calculation of a
Fourier series.

Convergence of the Fourier series

There are certain conditions that must be satisfied before we can be sure that a
Fourier series truly represents the function . These conditions, which are called
the Dirichlet conditions, state that the integral over a complete period
must be finite, and may have no more than a finite number of discontinuities in
any finite interval. Fortunately, most functions of interest to engineers satisfy these
conditions. At any point where is continuous, the Fourier series converges to .
At any point where is discontinuous, the Fourier series converges to the average
of the two function values at either side of the discontinuity. So, referring to the
graph shown in Example 1.1, the Fourier series converges to the value 1 when 
say, because is continuous there and equal to 1, but converges to the value 
when , the point of discontinuity, and is the average of the function values on
either side of .x = 5

1
2x = 5

1
2f (t)

x = 2

f (t)
f (t)f (t)

f (t)
1 ƒ f (t) ƒ  dt

f (t)

bn = 0

an = 0
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1.3 Half-range Fourier series

When a function is not periodic but is defined only over a finite interval, 
say, as shown in Figure 1.8, a Fourier series can still be calculated.

0 6 t 6

T

2

We perform a periodic extension of the function. This can be done in several
ways, but two useful extensions generate an even or an odd function as shown in
Figures 1.9(a) and (b). As noted earlier this simplifies the calculation of a Fourier
series.

1226 Block 1 Periodic waveforms and their Fourier representation24

Exercises

(a) Sketch a graph of the function with period
defined by

(b) Find the Fourier series for this function.

Find the Fourier series representation of the
function

of period .2p

f (t) = e -4 -p 6 t … 0

4 0 6 t 6 p
 

2

f (t) = c 0 -p 6 t 6 -
p

2

4 -
p

2  … t …
p

2

0 p

2  6 t 6 p

2p
1 Find the Fourier series representation of the

function

of period 2.

f (t) = e2(1 + t) -1 … t … 0

0 0 6 t 6 1
 

3

Solutions to exercises

(b) 

+

8

5p
 cos 5t . . .

f (t) = 2 +

8
p

 cos t -

8

3p
 cos 3t

a0 = 4, an =

8

np
  sin 

np

2
, bn = 01

+

2

9p
 cos 3pt -

1

3
 sin 3pt . . .b

1

2
+

2
p

 a 2
p

  cos pt - sin pt -

1

2
 sin 2pt3

2

5
 sin 5t +  . . .b8

p
 a2 sin t +

2

3
 sin 3t +2

O t

f(t)

T
2

Figure 1.8
A function defined
over the interval

0 6 t 6

T

2
.
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O t

f(t)

T
2

T
2

−

O t

f(t)

T
2

T
2

−

(a)

(b)

Figure 1.9
(a) An even
periodic extension.
(b) An odd
periodic extension.

Whichever extension we choose the resulting Fourier series gives a representation

of the original function in the interval . If the extension is even we obtain

a so-called half-range cosine series; if the extension is odd, the result is a half-range 
sine series. The Fourier series formulae given on pages 1216–1217 can still be used
but it can be shown that they can be simplifed as follows:

0 6 t 6

T

2

Example 1.8

Consider the function defined by 

(a) Sketch f (t), .
(b) Sketch an odd periodic extension of f (t) having period 2, and show three full

periods.
(c) Determine the half-range sine series of f (t) and write out explicitly the first

three non-zero terms.

Solution
(a) Figure 1.10(a) shows a graph of f (t).
(b) Figure 1.10(b) illustrates the odd periodic extension. Note that the period is

T = 2.

0 6 t 6 1

f (t) = L 2t 0 6 t 6
1
2

2 - 2t 1
2 6 t 6 1.

Key point For f (t) defined on the interval

Half-range sine series

Half-range cosine series

f (t) =

a0

2
+ a

q

n = 1
an cos 

2npt

T
     where    a0 =

4

T
 
L

T/2

0
f (t)dt, an =

4

TL

T/2

0
f (t) cos 

2npt

T
 dt

f (t) = a

q

n = 1
bn sin 

2npt

T
       where       bn =

4

T
 
L

T/2

0
f (t) sin 

2npt

T
 dt

0 6 t 6

T

2
 :
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(c) We use the formulae on page 1227 with .

Then the half-range Fourier sine series is

The first few coefficients are calculated as

and so the half-range sine series can be written as

For , the Fourier series returns the value of f (t). For values of t outside of
this range, the Fourier series returns the value of the odd extension of f (t).

0 … t … 1

f (t) =

8

p2
 sin pt -

8

9p2
 sin 3pt +

8

25p2
 sin 5pt -  . . .

b1 =

8

p2,       b2 = 0,      b3 = -

8

9p2,      b4 = 0,      b5 =

8

25p2,   . . .

f (t) = a

q

n = 1

8 sin(np/2)

n2p2  sin npt

=

8 sin(np/2)

n2p2

= 2a2 sin(np/2)

(np)2 -

2 sin np

(np)2 +

2 sin(np/2)

(np)2 b

= 2a -

cos(np/2)

np
+ c2 sin npt

(np)2 d
0

1/2

+

cos(np/2)

np
- c2 sin npt

(np)2 d
1

1/2
b

      + c (2 - 2t)a -

cos npt

np
b d1

1/2
-

L

1

1/2
(-2) a -

cos npt

np
b  dtb

= 2a c2ta -

cos npt

np
b d

0

1/2

-

L

1/2

0
2a -

cos npt

np
b  dtb

= 2a
L

1/2

0
2t  sin npt dt +

L

1

1/2
(2 - 2t) sin npt dtb

= 2
L

1

0
f (t) sin npt dt

bn =

4

TL

T/2

0
f (t) sin 

2npt

T
 dt

T = 2
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O 1

1

O 1

1

(a)

(b)

t

t

f(t)

T  =2

−1

Figure 1.10
(a) The function
f(t). (b) The odd
periodic extension,
period 2.
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Exercises

Find the half-range cosine series of the
function defined in Example 1.8.

Graph an appropriate periodic extension of
, and hence find its 

half-range cosine series.
f (t) = 3t, 0 6 t 6 p

2

1 Find the half-range sine series representation
of f (t) = 2 - t, 0 6 t 6 2.

3

Solutions to exercises

f (t) =

a0

2
+ a

q

n = 1
an cos npt

a0 = 1, an =

8 cos(np/2) - 4 - 4 cos np

n2p2
,1

4
pa

q

n = 1

sin npt/2

n
3

3p

2
+

6
pa

q

n = 1
a cos np - 1

n2
b  cos nt2

1.4 Fourier series in the solution of partial differential equations

An important application of Fourier series arises in the solution of partial differential equations.
In Examples 4.2–4.3 (pages 1078, 1079) we obtained the solution of the heat equation,

subject to the boundary conditions u(0, t) 0, u(L, t) 0 in the form

(1)

This arises in the modelling of the heat distribution in a metal bar, length L, when
both ends are maintained at temperature 0º. In order to determine the constants Bn we
need to impose a condition that prescribes the initial temperature distribution in the
bar. Suppose the initial temperature, , is given by

as shown in Figure 1.11.

u0(x) = u(x, 0) = μ
2

L
 x 0 6 x …

L

2

2 -

2

L
 x

L

2
6 x 6 L

u0(x)

u(x, t) = a

q

n = 1
Bn sin 

npx

L
 e-1npc

L 22 t
==

0u

0t
= c2 

0
2u

0x2,

O L

1

x

u0(x) = u(x, 0)

L
2

O L x

Figure 1.11
The metal bar and
its initial
temperature
distribution, u0(x).
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Then, applying the initial condition (t 0) in equation (1) gives

Comparison with the Fourier series formulae in the Key point on page 1227, taking

and using the independent variable x instead of t, shows that is

expressed as a half-range Fourier sine series

This integral is similar to that in Example 1.8 and can be found in the same way. It is

left as an exercise for the reader to show that

so that the solution of the p.d.e. is

This gives the temperature in the bar at any position x, , at any time
t Ú 0.

0 … x … L

u(x, t) = a

q

n = 1
 
8 sin(np/2)

n2p2  sin 
npx

L
 e-1npc

L 22 t

Bn =

8 sin(np/2)

n2p2

u0(x) = a

q

n = 1
Bn sin 

npx

L
         where Bn =

2

LL

L

0
u0(x) sin 

npx

L
 dx

u0(x)L =

T

2

u0(x) = a

q

n = 1
Bn sin 

npx

L
 

=

1230 Block 1 Periodic waveforms and their Fourier representation24

Exercises

In Examples 4.5 and 4.6 (Chapter 21, Block 4)
we obtained the solution of the wave 

equation, subject to the boundary

conditions u(0, t) 0, u(L, t) 0 in the form

Here u(x, t),

, represents the displacement of a
string of length L that is fixed at both ends. We
have assumed the string is released from rest.
In order to determine the constants Cn we need
to impose a condition describing the initial
position of the string. Show that if we impose

then Cn =

32

3n2p2
 sin 

np

4
.

u(x, 0) = μ
4

L
 x 0 6 x 6

L

4

4

3L
 (L - x)

L

4
6 x 6 L

0 … x … L

u(x, t) = a

q

n = 1
Cn cos 

npct

L
 sin 

npx

L
.

==

0
2u

0t2
= c20

2u

0x2
,

1 In the End of block Exercises on page 1086
(Chapter 21, block 4) the steady-state
temperature distribution in a square plate of
side 1 was shown to be

u(x, y) = a

q

n = 1
 An sin npy 1enpx

- e2npe- npx2

2

Given that the temperature on the edge x 0
is maintained at 

=

with the temperature on the other three edges ,

show that An =

1

1 - e2np
 

4

n2p2 sin 
np

2
.

0°

u10, y2 = e y 0 6 y 6 1/2

1 - y 1/2 6 y 6 1
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End of block exercises

Find the Fourier series representation of the
function , of period .

Find the Fourier series representation of

, of period .

Find the first four non-zero terms in the
Fourier series representation of

of period .

Show that the Fourier series representation of
, of period , can be

written

2a

q

n = 1
 
1-12n + 1

n
 sin nx

2pf (x) = x, -p 6 x 6 p

4

2p

f (t) = c 0 -p 6 t 6 -
p

2

1 -
p

2  6 t 6
p

2

0 p

2  6 t 6 p

3

2pf (t) =

t

2
, 0 6 t 6 2p

2

2pf (t) = t2, 0 6 t … 2p
1 (a) Find the Fourier series expansion of

of period .
(b) Use the series to show that

(Hint: let and read the comments
concerning convergence at the end of
Section 1.2 of this block.)

(c) Use the series to show that

(Hint: let .)t = 0

a

q

n = 1
 (-1)n + 1 

1

n2
=

p2

12
 

t = p

a

q

n = 1
 
1

n2
=

p2

6

2p

f (t) = e 0 -p 6 t 6 0

t2 0 6 t 6 p

5

Solutions to exercises

+

1

5
 cos 5t -  . . .b

f (t) =

1

2
+

2
p

 acos t -

1

3
 cos 3t3

a0 = p, an = 0, n Ú 1, bn =

-1

n
2

a0 =

8p2

3
, an =

4

n2
, bn = -

4p

n
1 (a)

bn = -  
p

n
 cos np +

2

pn3
 (cos np - 1)

a0 =

p2

3
, an =

2 cos np

n2
,5

1.4 Fourier series in the solution of partial differential equations 1231
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BLOCK 2
Introducing the Fourier transform

2.1 Introduction

Many practical signals are not periodic. Examples are pulse signals, such as that shown
in Figure 2.1, and noise signals. Under certain conditions it can be shown that a non-
periodic function f(t) can be expressed not as a sum of sine and cosine waves but as an
integral. This idea gives rise to the Fourier transform, which is described in this block.

Figure 2.1
A pulse signal.

t

f (t)

2.2 Calculating a Fourier transform

The Fourier transform of a function f(t) is a function of a new variable , which is
found from the following formula.

v

Key point The Fourier transform of f(t) is a function defined by

F{ f (t)} = F(v) = �
q

- q

 f (t)e-jvt dt

F(v)

Some authors use alternative definitions of the Fourier transform, but the one used
here is widely accepted. However, when consulting other texts be aware of possible
variations.

It is frequently the case that when a Fourier transform is calculated the result is a
complex function, as you will see in the examples below.

Example 2.1
Find the Fourier transform of the function defined by

Solution
A graph of f(t) is shown in Figure 2.2.

f (t) = e3 -1 6 t 6 1

0 otherwise
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2.2 Calculating a Fourier transform 1233 24

We apply the formula for finding the Fourier transform:

Note that in this example f (t) is defined to be zero outside the interval ,
and so the integral reduces to

This can be written as , by making use of Euler’s relations (Chapter 11,

Block 3). Its graph is shown in Figure 2.3. The function occurs frequently and
is often referred to as the sinc function.

 sin v

v

F(v) = 6 
 sin v

v

 =

3e 
jv

- 3e-jv 

jv
 

 =

3e-jv 

- jv
-

3e 
jv

- jv
 

 = c3e-jvt

- jv
 d1

-1

 F{ f (t)} = F(v) = �
1

-1
3e-jvt dt

-1 6 t 6 1

F{ f (t)} = F(v) = �
q

- q

 f (t)e-jvt dt

�1 1

3

t

f (t)

F(w)

w

Example 2.2
Find the Fourier transform of the function where u(t) is the unit step
function.

Solution
A graph of this function is shown in Figure 2.4. Notice that it is zero when t is
negative.

f (t) = u(t)e-t

Figure 2.4

t

f (t)

1

Figure 2.3
A sinc function.

Figure 2.2
A pulse signal.
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The Fourier transform is

Because is zero when t is negative, the limits of integration can be altered as
follows:

Further, since when the integral becomes

Carry out this integration by combining the two exponential terms into a single term:

Complete the integration by noting that the contribution from the upper limit is zero,
because tends to zero as t tends to infinity.

This is the required Fourier transform. Unlike the function in Example 2.1 this is
complex.

Because the Fourier transform in Example 2.2 is a complex function we cannot
immediately plot its graph. However, it is possible to find its modulus and argument,
and plot graphs of these against . Such plots are called amplitude spectra and
phase spectra respectively.

The amplitude spectrum of is the modulus of which  equals

. A graph of this function is shown in Figure 2.5.
1

21 + v2

1

1 + jv
f (t) = u(t)e-t

v

1

1 + jv
 F(v) =

e-t

�
q

0
e-(1 + jv)t dt = c e-(1 + jv)t

-(1 + jv)
d

q

0
F(v) =

F(v) = �
q

0
e-t e-jvt dt

t Ú 0u(t) = 1

F(v) = �
q

0
u(t)e-t e-jvt dt

u(t)e-t

F(v) = �
q

- q

u(t)e-t e-jvt dt

Figure 2.5
The amplitude
spectrum of

.f (t) = u(t)e-t

�10 �5 5 10

1

ω

|F(ω)|

1234 Block 2 Introducing the Fourier transform
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It is usual practice to make use of tables of transforms such as those shown in
Table 2.1.

Table 2.1
Table of common Fourier transforms.

f(t)

A, constant

Au(t)

1

2a

a2
+ v2

e-a|t|, a 7 0

p

j
 3d(v - a) - d(v + a)4sin at

p3d(v + a) + d(v - a)4cos at
e-jvad(t -  a)

d(t)

Aapd(v) -

j

v
b

2pAd(v)

2 sin va

v
e1 -a … t … a

0 otherwise

A

a + jv
Au(t)e-at, a 7 0

F(v)

Maple and Matlab have built-in commands for finding Fourier, and other, trans-
forms.

Example 2.3
Use software to define and plot a graph of the two-sided decaying exponential
function and find its Fourier transform, . 

Solution

F(v)f (t) = e- ƒt ƒ

Maple

The function f (t) can be defined and plotted (here for ) using the following
command. Note that the modulus function in Maple is abs, for absolute value.

> f:=t-> exp(-abs(t));
plot(f(t),t=-4..4);

The graph is shown in Figure 2.6. In order to find the Fourier transform, the ‘integral
transform’ package must first be loaded. The following commands do this and calculate
the required transform.

> with(inttrans):
fourier(f(t),t,w);

and the output is

Thus = F(v) =

2

v2
+ 1

.F{ f (t)}

2

v2
+ 1

- 4 … t … 4

2.2 Calculating a Fourier transform 1235
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24 1236 Block 2 Introducing the Fourier transform

Example 2.4 Electronic Engineering – Fourier analysis 
and digital audio

The mechanism by which sounds can be heard is as follows. A source of sound, for
example a singer or a musical instrument, causes the air pressure in its vicinity to rise
and fall rapidly. This in turn causes a sound wave to travel through the air until
it reaches the ears of a listener, or maybe a microphone. The number of times that
the air pressure rises and falls each second is the frequency of the sound wave,
measured in cycles per second, or hertz.

If a sound wave has a frequency of 440 Hz then a listener will hear a single note,
A. If the frequency is higher than this, the pitch of the note will be higher too. If the
frequency is lower, then a lower-pitched note will be produced. Musical pieces and
songs will be made up from sounds at many different frequencies. Most human
beings can hear frequencies only in the range 20 Hz up to 20000 Hz. Sounds with
frequencies outside this range will not be heard by humans, although they may be
heard by other creatures.

When a sound wave arrives at a microphone it causes a thin diaphragm to vibrate
at the same frequency. This motion is converted into an electrical voltage within the
microphone. This electrical voltage is a time-domain signal. The voltage will vary
with time just as the frequency of the sound varies as the musical pitch is changed
during the course of a song or piece of music. To store this continuous voltage signal
on a digital computer or CD we take samples of it and store these instead. To obtain
a high-quality recording we need to take a large number of samples every second.
Then, by taking the Fourier transform we can determine which sound frequencies

Matlab

>> syms t w
fplot(exp(-abs(t)),[-4,4])

then the command

f=exp(-abs(t))
fourier(f,t,w)

calculates the transform producing

2/(w^2+1)

Thus as before.= F(v) =

2

v2
+ 1

F{ f (t)}

Figure 2.6
A graph of the
two-sided
decaying
exponential
function.

1

−4 −3 −2 −1 O 1 2 3 4

f(t)

t
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are being sung or played. A form of Fourier transform especially adapted to deal
with sampled signals is known as the discrete Fourier transform, or DFT.

For a good introduction to the mathematics underlying the DFT the reader is referred to
Engineering Mathematics: A Foundation for Electronic, Electrical, Communications and
Systems Engineers, 5th edn by A. Croft, R. Davison, M. Hargreaves and J. Flint (Pearson
Education).

One of the technical difficulties associated with storing digital audio is the
enormous volume of data that has to be stored. If some of these data can be dis-
carded then this problem can be reduced. One way this can be achieved is to
ignore any sounds having frequencies greater than 22000 Hz. An important result
in digital audio theory is called the Nyquist sampling theorem. This states that a
signal needs to be sampled at a rate that is twice the highest signal we want to
record. Hence if we want to record a signal as high as 22 kHz we need to sample
at 44 kHz. It is for this reason that, for CD purposes, an audio signal is sampled at
44100 times each second. We have already shown in Chapter 5, Section 2.8, that
with 16-bit technology, and at this sampling rate, we need around 10 megabytes
to store a 1-minute stereo recording.

An extremely important modern application of mathematics is to find ways in
which these large files can be reduced in size or compressed. PC users will know
that there are techniques for compressing binary data files. Some of these techniques
are known as loss-less. This means that none of the original information is lost in the
compression process. Audio .wav files are produced by loss-less compression.
Unfortunately such files are still enormous. The key to achieving substantial savings
in file size is to introduce so-called lossy compression. The most widely known lossy
compression technique is MP3. This technique works by dividing the frequency
range into a large number of different bands. Within each band some of the fre-
quency components are discarded. This is possible because of the way the human ear
works. For example, suppose two very close frequencies are being sounded, one
played loudly and one played quietly. The quieter sound is masked by the louder one
and so its corresponding frequency component can be discarded without a noticeable
effect on the sound heard.

To understand compression techniques such as MP3 thoroughly requires not only
a knowledge of the physiology of the human ear but also a good understanding of the
Fourier transform and related techniques.

Exercises

Find, using Table 2.1, the Fourier transform of

Find, by direct integration, the Fourier
transform of

f (t) = e e-t t Ú  0

et t … 0

2

f (t) = e1 -1 … t … 1

0 otherwise
 

1 Find, using Table 2.1, the Fourier transform of
.

Find, using Table 2.1, the Fourier transform of
and 0 otherwise.f (t) = e-3t if t 7 0

4

f (t) = 4
3

2.2 Calculating a Fourier transform 1237
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1238 Block 2 Introducing the Fourier transform24

2.3 The frequency-domain representation of a non-periodic function

Under certain conditions a non-periodic function f (t) can be expressed in the following
form:

where is the Fourier transform of f (t). Such a representation is called a Fourier
integral representation.

Example 2.5
Find the Fourier integral representation of the function f (t) given in Example 2.1.

Solution
In Example 2.1 the pulse function was shown to have Fourier transform

. Hence the Fourier integral representation of the pulse is

2.4 Linearity of the Fourier transform

The Fourier transform possesses a property known as linearity, which can be used to
find transforms of a wider range of functions than those already discussed.

f (t) =

1

2p
 �

q

- q

 
6 sin v
v

 ejvt dv

F(v) =

6 sin v

v

F(v)

f (t) =

1

2p
 �

q

- q

 F(v) e 
jvt dv

Solutions to exercises

2

1 + v2
2

2 sin v
v

1

1

3 + jv
4

8pd(v)3

Key point The Fourier transform is a linear transform. This means that if k is a constant:

 F{kf (t)} = kF{ f (t)}

 F{ f (t) + g(t)} = F{ f (t)} + F{g(t)} 
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242.4 Linearity of the Fourier transform 1239

Example 2.6
Use the linearity properties and the table of transforms to find the Fourier transform
of .

Solution
The transforms of can be obtained separately from the table.

Now write down the required Fourier transform:

1

1 + jv
+

1

2 + jv

1

2 + jv
 F{u(t)e-2t} =

1

1 + jv
 F{u(t)e-t} =

u(t)e-t and u(t)e-2t

u(t)e-t
+ u(t)e-2t

Exercises

Find the Fourier transform of
.3u(t) -  7u(t)e-3t

1

Solutions to exercises

3apd(v) -

j

v
b -

7

3 + jv
 1

End of block exercises

Find the Fourier transform of .

Find the Fourier transform of for
and 0 otherwise.

Find the function f (t) that has Fourier
transform

The first shift theorem states that if is
the Fourier transform of f (t) then

F{e jat f (t)} = F(v - a)

F(v)4

F(v) =

3

2 + jv
 -

7

1 + jv
 

3

-2 … t … 2,
f (t) = 52

6u(t)e-3t1 where a is a constant. Use this theorem to find
the Fourier transform of

The second shift theorem states that if is
the Fourier transform of f (t) then

(a) Prove this theorem from the definition of
the Fourier transform.

(b) Given that

F{u(t)e-t} =

1

1 + jv

F{ f (t - a)} = e-jav F(v)

F(v)5

g(t) = e e2jt -3 … t … 3

0 otherwise
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24 1240 Block 2 Introducing the Fourier transform

use the second shift theorem to find

(c) Verify the result in (b) by direct
integration.

F{u(t + 4)e-(t + 4)}

Find the Fourier transform of for
, and 0 otherwise.-3 … t … 3

f (t) = 76

Solutions to exercises

3u(t)e-2t -  7u(t)e-t3

10 sin 2v

v
2

6

3 + jv
1

14 sin 3v

v
6

(b) 
e4jv

1 + jv
 5

2 sin 3(v - 2)

v - 2
4

End of chapter exercises

(a) Sketch a graph of the function .
(b) Show from the definition of the Fourier

transform that

(c) Show that the Fourier transform of f (t) is
an even function of .

Sketch a graph of and find its
Fourier transform.

(a) Sketch a graph of

(b) Find the Fourier transform of f (t).
(c) Show that this Fourier transform is purely

imaginary.

(a) Sketch a graph of where u(t) is the
unit step function.

(b) Sketch a graph of .
(c) Find the Fourier transform of f (t).

f (t) = 7e2tu(- t)

u (- t)4

f (t) = e e-2t t 7 0

-e2t t 6 0

3

f (t) = e-|3t|2

v

F{f (t)} = F(v) =

2

1 + v2

f (t) = e-|t|1 (a) Sketch a graph of three cycles of the
function with period given by

(b) Find its Fourier series representation.

Find the Fourier series representation of the
function with period 2 given by

Find the Fourier series representation of the
function with period 0.02 defined by

Find the Fourier series representation of the
function with period 1 given by

From the definition of the Fourier transform
find when .f (t) = u(t)te-3tF (v)

9

f (t) = e t 0 6 t 6
1
2

0 1
2 6 t 6 1

8

f (t) = e1 0 … t 6 0.01

0 0.01 … t 6 0.02

7

f (t) = e3t 0 6 t 6 1

3 1 6 t 6 2

6

f (t) = 1 -

ƒ t ƒ

p
,   -p … t 6 p

2p
5
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24End of chapter exercises 1241

Solutions to exercises

if n is odd and 

zero if n is even.

(b) bn = 0, a0 = 1, an =

4

n2p2
5

(c) 
7

2 - jv
4

(b) 
-2jv

4 + v2
3

6

9 + v2
2

1

(3 + jv)2
9

a0 =
1
4, an =

1

2p2n2
 3(-1)n

- 1], bn =

(-1)n + 1

2pn
8

a0 = 1, an = 0, for n Ú  1, bn =

1
np

 31 - (-1)n]7

a0 =
9
2, an =

3

n2p2
 (cos np - 1), bn = -  

3

np
6
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Typical examination papers

This section contains two typical examination papers, with questions
drawn from a wide range of topics within the book.

Full solutions are available on the Companion Website at
www.pearsoned.co.uk/croft.
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Paper 1

1 (a) Express as partial fractions

(b) Solve the equation

(c) Simplify the following expression as much as possible:

2 (a) Consider the function

(i) State any poles of f.
(ii) Sketch f.

(iii) State the equations of any asymptotes of f.
(b) The function g is defined by

(i) State the domain of g.
(ii) State the range of g.

(iii) Calculate the maximum possible value of g.
(iv) Calculate the value of t at which .

3 (a) Given

find, if possible,
(i) AB (ii) CB (iii) (iv) (v) the transpose of C
If a calculation is not possible then state this clearly.

(b) Consider the system

(i) Write the system in the form

where D and E are matrices and .

(ii) Calculate .
(iii) Use matrix multiplication to find X and hence state the values of x and y.

D-1

X = ax

y
b

DX = E

 x + 6y = -32

 4x - 3y = 7

B-1
ƒ B ƒ

A = a1 -2

4 3
b , B = a 0 4

-3 2
b , C = a 2 3 1

-1 0 4
b

g = 10

g(t) = 5(3 - 2e-t ),  t Ú 0

f(x) =

2x

x2
- x - 2

sin 2A(tan A + cot A)

2v2
- v + 6 = 0

x - 8

2x2
+ 3x - 2
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1244 Typical examination papers

4 (a) The vectors a and b are given by

Calculate
(i)

(ii)
(iii) the angle between .

(b) Vectors c and d are given by

Calculate
(i) a unit vector that is perpendicular to c

(ii) a unit vector that is perpendicular to d
(iii) a unit vector that is perpendicular to both c and d.

(c) Given vectors u, v and w the triple scalar product is 
Show that

5 The function y is defined by

(a) Determine 

(b) Determine 

(c) Locate and identify all maximum and minimum points of y.
(d) Locate all the points of inflexion of y.

6 (a) Evaluate

(b) Use a suitable substitution to evaluate

(c) Evaluate

7 (a) The complex numbers are defined by

(i) Calculate .
(ii) Calculate in cartesian form.

(iii) Calculate in cartesian form.

(iv) Express 
(b) Form the quadratic equation whose roots are z = -3 + 2j and z = -3 - 2j.

z1 in polar form.

z2
z3

z1z2

ƒ z2 ƒ

z1 = 3 + 2j z2 = 1 - 3j z3 = -2 + j

z1, z2 and z3

�
2

1
3xe2x

 dx

�
2

0
 x2 2x3

+ 9 dx

(i) �
2

0
(cos 3x - 1) dx (ii) �

3

1
ae-2x

+

2
x

 b  dx

d2y
dx2.

dy
dx.

y(x) = 2x3
+ 3x2

- 36x + 9

u # (v * w) = (u * v) # w

u # (v * w).

c = (5, 3, -2) d = (-1, 4, 1)

a and b
ƒ a ƒ  and ƒ b ƒ

a # b

a = (4, 2, -1) b = (2, -3, 1)
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Paper 2

1 (a) Solve the following trigonometrical equation, stating all the solutions
between 0° and 360°:

(b) Express in the form , . Hence find
the smallest positive value of t for which

(c) Figure Q1 shows three forces acting at the origin. Find the resultant force.

4 sin 2t - 3 cos 2t = 4

a Ú 0°R cos(2t + a)4 sin 2t - 3 cos 2t

4 sin u = 3 cos u

7 N
5 N

9 N

x

y

40°50°
30°

Figure Q1

2 (a) If

find A.
(b) Determine the eigenvalues and corresponding eigenvectors of the system

3 (a) Find all values of z such that

State your solutions in polar form.
(b) An LCR circuit has a voltage source of 2 V applied with a frequency of Hz,

a capacitor of , an inductor of and a resistor.
Calculate the complex impedance in cartesian form.

6 Æ3 * 10-3 H1.5 * 10-4 F
103

z3
= j

 -2x + 3y = ly

 9x + 4y = lx

(7A)-1 = £1 0 1

1 1 0

1 0 0

≥
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(c) Describe the path traced out by a point represented by the complex number

as varies from 0 to .
4 A uniform lamina is enclosed by the curve and the

x axis.
(a) Sketch the lamina.
(b) Calculate the volume generated when the lamina is rotated about the x axis.
(c) Show that the moment of inertia of the lamina about the y axis is where

M is the mass of the lamina.
5 (a) The sequence is defined by

(i) State the third term.
(ii) State the limit of as k tends to infinity.
(iii) State a sequence that has identical terms to but which starts at

.
(b) A function is such that , , and .

Using the Maclaurin series state a cubic approximation to . Hence find an
approximation to .

(c) Find the first three non-zero terms in the binomial expansion of .
State the range of validity of your approximation.

6 (a) Consider the differential equation

(i) Write the equation in standard form

(ii) Determine the integrating factor.
(iii) Find the general solution.
(iv) Find the particular solution satisfying .

(b) Solve

7 (a) State the Laplace transform of (i) , (ii) . [Hint: Use the first
shift theorem.]

(b) Calculate the inverse Laplace transform of (i) , (ii) .

(c) Solve the following differential equation using Laplace transforms:

dx

dt
+ 3x = 1 + t,  x(0) = 0

s

s2
+ 4s + 5

1

s2
+ 4s + 5

e-2tt sin 3tt sin 3t

d2y

dx2 -

dy

dx
- 2y = x + e2x,  y(0) = 0, y¿(0) = 0

y(1) = 2

dy

dx
+ Py = Q

x 
dy

dx
= x + y,  y(1) = 2

f (x) = 21 + x2

f (0.5)
f (x)

f ‡(0) = 4f –(0) = 1f ¿(0) = -2f (0) = 3f (x)
k = 0

x3k4g3k4
x3k4

x[k] =

2k + 1

3k + 1
, k = 2, 3, 4, . . .

x3k4
13M

5

y = 2x2
+ 1, x = 1, x = 2

pu

z = 2eju
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8 (a) The lifetimes of 50 experimental batteries are measured to the nearest
10 hours and recorded as follows:

(i) Calculate the mean lifetime.
(ii) State the median lifetime.

(iii) Calculate the standard deviation.
(b) Metal bars are subject to one of three hardening processes, A, B and C, before

being used in the manufacture of measuring gauges.
After hardening each bar is examined for surface defects. Any bar with

surface defects is rejected. Of 650 bars, 250 are hardened using process A,
200 by process B and 200 by process C. Of those undergoing process A, 230
are accepted, of those undergoing process B, 185 are accepted, and of those
undergoing process C, 178 are accepted.

(i) Out of 100 bars picked at random, calculate the number expected to be
rejected.

(ii) If a bar selected at random is rejected, calculate the probability that it
was hardened by process A.

(iii) The length of time for which bars are subjected to the hardening process
is carefully controlled and follows a normal distribution with a mean of
450 minutes and a standard deviation of 12 minutes. Of the 650 bars,
calculate the number whose hardening time lies between 440 minutes
and 455 minutes.

9 (a) A function, , has a period of and is defined on by

Calculate the Fourier series of . State the first four non-zero terms.
(b) Calculate the Fourier transform of defined by

f (t) = μ
0 t 6 0

t 0 … t … 1

2 - t 1 6 t … 2

0 t 7 2

f (t)
f (t)

f (t) = e t  0 … t … p

0  p 6 t 6 2p

(0, 2p)2pf (t)

Lifetime of cell Number of batteries

40 13
50 12
60 9
70 13
80 2
90 1

Paper 2 1247
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Appendix 1
SI units and prefixes

Throughout the book SI units have been used. Below is a list of these units together
with their symbols.

Quantity SI unit Symbol

length metre m
mass kilogram kg
time second s
frequency hertz Hz
electric current ampere A
temperature kelvin K
energy joule J
force newton N
power watt W
electric charge coulomb C
potential difference volt V
resistance ohm �
capacitance farad F
inductance henry H

Prefix Symbol

exa E
peta P
tera T
giga G
mega M
kilo k
hecto h
deca da
deci d
centi c
milli m
micro m

nano n
pico p
femto f
atto a10-18

10-15
10-12
10-9
10-6
10-3
10-2
10-1
101
102
103
106
109
1012
1015
1018
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Index

AA

acceleration 139, 673
constant 143, 194, 213

addition 3, 65
of algebraic fractions 114–16
associativity of 3

of vectors 678
commutativity of 3

of vectors 678
of complex numbers 456–7
of fractions 25–6
of like terms 88–9
of logarithms 309
of matrices 526–7
of vectors 677–80, 688–9, 696

addition law of probability 1156–8
adjoint matrices 566–8
admittance 277–8, 518
aerofoil 484
algebra

algebraic expressions 65–9
arguments of functions 144
collecting like terms 88–9
factorisation 99–100
removing brackets 91–7

algebraic fractions 66, 106
addition 114–16
cancelling common factors 106–9
division 110–13
multiplication of 110–13
reciprocals of 66–8
subtraction 114–16

formulae 68, 119
rearranging 125–31
substitution 119–23

solving inequalities 264–5
see also indices; symbolic algebra

packages

alloys, composition of 53, 55
amplifiers 319, 321–2
amplitude

modulation 375–6
of trigonometrical functions 364–5
of waves 387

amplitude spectra 1234
analytical methods 977
angles 337–40

of depression 426–7
of elevation 425–6, 427–9
between line and plane 735–6
phase 393–4
between two vectors 709–10
units 337–40, 424–5

angular frequency 387–90, 394–7
approximations, small-angle 969–70
arbitrary constants 987
areas 673

bounded by curves 847–55
parts of which lie below x axis

852–5
of circles 120–1, 145
of surfaces of revolution 932–3
of triangles 722–3
under velocity–time graphs 850–1

Argand diagrams 465–6
arguments

of complex numbers 469–70
of functions 143–4

arithmetic mean see mean
arithmetic sequences 951–3
arithmetic series 952
arrangements 62–3
arrays 530
associativity

of addition 3
of vectors 678

of multiplication 4, 65–6
of matrices 535

asymptotes 198, 199
attenuation 321
augmented matrices 615, 617–19

row-echelon form of 620–1, 624–5
auxetic materials 55
auxiliary equations of differential

equations 1025–32
average rate of change 743–4
average values of functions 842, 935–8
averages

mean 1133–4
of binomial random variables 1183
of frequency distributions 1135–7

median 1138–9
mode 1139

axes
real and imaginary 465–6
right-handed set 1055–6
three-dimensional 1055–6
x and y 147–8

projections onto 353–4
reflections in 580–3
volumes of revolution 903–8

axial direction 54–5

BB

back substitution 618
banking of an aircraft 749–51
bar charts 1171
bases 72, 85–6

of exponential functions 293
of logarithms 306–8

basis vectors 685
beams

bending moments in 194–6, 232–3,
837–8
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bending of 991–3
shear forces in 182–3

bearings 429–32
bending moments 194–6, 232–3, 837–8
Bessel function 973, 974

of order zero 973
binary digit 85
binary numbers 85–6
binomial distribution 1177–9, 1180–2,

1189–91
binomial expansion 961
binomial random variables 1177, 1183
binomial theorem 961–6
bits 85–6
block diagrams 140–1, 155
Bode plots 331
BODMAS rule 6–7, 73
boundary conditions 1075, 1079–81,

1229
brackets 7–8, 73, 91–7
branch currents 51, 224, 655
breakdown rates 5
breaking forces 1133
Brinell hardness 123, 124
byte 86

CC

cables, tension in 345–6
capacitance 513
capacitors

complex impedance 515–17
discharge of 296
phase relationships 513
reactance of 67–8, 212–13
voltage across 744

car crash testing 181–2
car suspension 224–6
cartesian form

of functions 165
of vectors 685

direction ratios and cosines 693–4,
698–9

equations of lines 729–30
equations of planes 732
in n dimensions 700–1
in three dimensions 695–9
in two dimensions 685–94

catenary curves 173, 301
centigrade, converting to kelvin 141
centres of mass

of collections of point masses 910–15
of plane lamina 915–22

chain rule 779–82, 1067–8
change

(delta) notation 68–9, 746–7
percentage 49
rates of 743–8
see also differentiation

characteristic equations 634–6

1250 Index

chords 743
circuit voltages 604–5
circles, areas of 120–1, 145
closed intervals 60
coding theory 62–3
coefficients

damping 1124
discharge 151
equating 244–5
Fourier 1216–17
of linear equations 218
of linear functions 177, 179
of polynomial expressions 77
of quadratic expressions 101
of restitution 128–9, 131
of stiffness 182

cofactors of matrix elements 549
column vectors 687
combination notation 1179–80
common denominators 25

lowest 114–16
common differences of arithmetic

sequences 951
common factors 100

cancelling 106–9
highest 13–14

common ratios of geometric sequences
953–5

communication networks, reliability
96–7, 122

commutativity
of addition 3

of vectors 678
of multiplication 4, 65
of scalar product of vectors 706
see also non-commutativity

compact disc technology 86, 1236–7
complementary events 1150
complementary functions of differential

equations 1021–32, 1045
completing the square 238–40, 1111–12
complex conjugates 455–6, 492
complex impedance 515–17
complex numbers 450

addition 456–7
Argand diagrams 465–6
arguments of 469–70
De Moivre’s theorem 480, 496–9
division of 459–62, 477–80
equal 455
exponential form of 492–4
in form r(cos u + j sin u) 474–6
Joukowski transformation 484–8
locus of a point 480–3
modulus of 467–9
multiplication of 458–9, 477–80
phasors 514–17
polar form 470–2, 477–80
real and imaginary parts 452, 454–6
roots of 510
solving polynomial equations 504–10
square roots of negative numbers

452–4

subtraction 456–7
complex planes 465–6
complex roots 235–6
components of vector 687
composite functions 155–6
composite transformations, in computer

graphics 589–92
compound events 1148–9
compression techniques, digital audio

86, 1237
computer-aided design (CAD) 256
computer-aided manufacture (CAM)

256
computer algebra packages 70

differential equations 1011–14,
1017–18

integration 857–60, 864–5
plotting graphs of functions 152–3

computer graphics and matrices 572
composite transformations 589–92
reflection 580–3
representation of points 572–3
rotation 578–80
scaling 576–7
shearing 584–5
transformation matrices 575
transformations of lines 575–6
translation 586–8

concave down curve 819, 820
concave up curve 819, 820
concavity 819–20
conditional probability 1159–62
conductance 67–8
cones, volumes of 213
constant-coefficient linear differential

equations 983–5
constant terms

of linear equations 218
of linear functions 177, 178–9, 180
of polynomial expressions 77
of quadratic expressions 101

constants 64, 77
arbitrary 987
engineering 84
exponential 291, 293
of integration 829
of proportionality 128, 151, 282, 283,

1124
spring 641

continuous data 1131–2
continuous functions 168–70
contour plots 1052–4
convergence criteria 950
convergence of Fourier series 1225
converging sequences 947–8, 950
cooling

Newton’s law of 297–8
temperature of cooling liquids 22–3,

34
coordinates 148

homogeneous 586–8
cosecant 348

hyperbolic 299–301
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cosine
definitions 342, 354–6
direction cosines of vectors 693–4,

698–9
hyperbolic 173, 299–303, 837
inverse 349–50, 377
power series expansion 490, 491, 492
properties 342–7
see also trigonometry

cosine rule 419–23
cosine series, half-range 1227
cosine waves 375–6, 390

see also engineering waves
cotangent 348

hyperbolic 299–301
Cramer’s rule 603–5
cross product see vector product of

vectors
crush 181
cryptography 10
cube roots 81
cubic expressions 78, 244
currents, electrical 284, 604, 611

branch currents 51, 224, 655
decay of 297, 305
and differential equations 984–5,

1004
Kirchhoff’s current law 224
and Laplace transform 1121–3
mesh currents 655–60
Ohm’s law 119, 138, 139, 515–16
phase relationships 512–13
rate of change of 762
root-mean-square value of sinusoidal

939–40
through diodes 318–19

curve fitting 256–7
curves

areas bounded by 847–55
catenary 173, 301
lengths of 929–31

cycles of functions 171
cycloids 934
cylinders, volumes of 121, 1052

DD

damping coefficient 1124
data see statistics
De Moivre’s theorem 480, 496–9
decay, exponential 294
decibels (dB) 319, 321–2
decimal numbers 37–43, 85

decimal places 37, 40
rounding 40
significant figures 42–3

decimal points 37
definite integrals

evaluating 840–3
finding exactly 858–60

Index 1251

with infinite limits 845, 860
and integration by substitution 877–8
as limit of a sum 898–9

degrees (angles) 337, 424–5
degrees of polynomials 78, 193, 243–4
degrees (temperature) 141
delta functions 207
(delta) notation 68–9, 746–7
denominators 4, 20, 66

common 25
lowest common 114–16
of rational functions 197, 200
of transfer functions 248–9

dependent variables 148, 149, 980–1
depression, angles of 426–7
derivatives 748–9

evaluating 761–2
higher 764–7, 1070–3
Laplace transform of 1116–17
partial 1060, 1064, 1065, 1070–3
tables of 755–8, 759–60
see also differentiation

determinants 544
of 2 x 2 matrices 544–7
of 3 x 3 matrices 550–2
of 4 x 4 matrices 553–4
Cramer’s rule 603–5
evaluating vector products 721–3
expanding along rows or columns

550
and minors of elements 548
properties of 555–9

DFT (discrete Fourier transform) 1237
diagonal dominance in matrices 653
difference 3, 65
difference of two squares 103–4
differential equations 977–8, 980, 1076

auxiliary equations of 1025–32
complementary functions of

1021–32, 1045
computer packages 1011–14,

1017–18
conditions 987
constant-coefficient linear 983–5
dependent and independent variables

980–1
homogeneous form 1021–3
linearity of 982–3
order of 981–2
partial 1075–6
particular integrals of 1034–40
solving 985–7

with computer packages 1011–14,
1017–18

by direct integration 988–93
by Euler’s method 1014–17
general solutions 987, 1011–12,

1040–4
with integrating factors 1003,

1005–9
with Laplace transform 1118–25
particular solutions 1013–14

by separation of variables
995–1001

writing in standard form 1003–4
differentiation 771, 742

chain rule 779–82, 1067–8
equations of normals 805–6
equations of tangents 799–801
evaluating derivatives 761–2
finding higher derivatives 764–7,

1070–3
implicit 785–9
integration as reverse of 828–9
logarithmic 795–7
Newton–Raphson method 801–4
parametric 791–3
partial 1060

higher derivatives 1070–3
with product, quotient or chain rule

1067–8
with respect to x 1061–5
with respect to y 1065–6
stationary values of functions of

two variables 1087–91
points of inflexion 819–22
product rule 773–5, 1067–8
quotient rule 776–7, 1067–8
stationary points 809–10

first-derivative test 810–16
of functions of two variables

1087–91
second-derivative test 816–18

tables of derivatives 755–8, 759–60
digital audio technology 86, 1236–7
digital image processing 524
digital signals 700–1, 712–13
diodes 318–19
directed line segments 673–6
direction cosines of vectors 693–4,

698–9
direction of vectors 671
direction ratios of vectors 693, 698–9
Dirichlet conditions 1225
discharge coefficients 151
discontinuities 168, 203
discontinuous functions 168–70
discrete data 1131
discrete Fourier transform (DFT) 1236
displacement 672, 673
distance 672, 673
distinct real roots 235–6
distributivity

laws of 91
of scalar product of vectors 706
of vector product of vectors 718–19

diverging sequences 948
division 4, 66

of algebraic fractions 110–13
of complex numbers 459–62, 477–80
of fractions 31–2

domains of functions 148–50
maximal 212

dot product see scalar product of vectors
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double roots 233, 235–6
dynamic systems 978

EE

eigenvalues 632–6
eigenvectors 637–43
elementary row operations on matrices

622–5
elevation, angles of 425–6, 427–9
elimination methods 252–7

Gaussian 623–5
energy 120, 673
engineering constants 84
engineering waves

adding 394–7
amplitude of 387
angular frequency of 387–8, 394–7
frequency of 391–2
oscilloscope traces 389–90
period of 368–9, 388–90
phase of 393–4
rectified half sine waves 368–9
time displacement of 392–4
time-varying waves 386
see also periodic waveforms

equals sign 68
equating coefficients 244–5
equations 68

characteristic 634–6
curve, normal to 805–6
involving logarithms and

exponentials 316–19
linear 218–26

of straight lines 187–9
of tangents 799–801

trigonometrical 377–84
vector equations of lines 726–30
vector equations of planes 731–2
see also differential equations;

polynomial equations; quadratic
equations; simultaneous equations

equilibrium position 1124
equivalent fractions 21–3
Euler’s method 1014–17
Euler’s relations 491–2
even functions 172–4, 1225
examination papers 1242–7
experimental probability 1147
exponential constant 291, 293
exponential decay 294
exponential expressions 291–2

simplifying 292
solving equations involving 316–19

exponential form of complex numbers
492–4

exponential functions 291, 293–8
power series expansions 490–2, 968
two-sided decaying 1235

exponential growth 294

1252 Index

exponentiation 72–4
exponents 72–4, 291
extension

of metal wires 30
of springs 49, 189, 213, 282–3

FF

factorials 61–3
factorisation 10, 99–104

by equating coefficients 244–5
prime 10–16
solving quadratic equations 231–3

factors 99
common 100

cancelling 106–9
highest 13–14

integrating 1003, 1005–9
linear 271–5
quadratic 271, 276–8

finite sequences 947
first-derivative test 810–16
first derivatives 764
first-order differential equations 981

solving
with integrating factors 1003, 1005–9
by separation of 995–1001

writing in standard form 1003–4
first shift theorem

Fourier transform 1239
Laplace transform 1127

fluids
composition of 56
discharge from tanks 151, 983–4
flow rate 284
flow round corners 1054
head of tank 1000
heat flow in insulated pipes 130–1
temperature of cooling liquids 22–3, 34
temperature, in pipe 1077–8
see also gases

forces 435, 673, 674–5
on bars 22
breaking forces 1133
moments of 722
in pulley systems 611–12
resolution of 435–8, 679–80
resolution of forces 435–8
resolution on inclined plane 438–40
resultant of forces 440–4, 678–9
shear forces in beams 182–3
on tank walls 843
in trusses 346–7

formulae 68, 119
integration by parts 867–71
rearranging 125–31
reduction 873
for scalar product of vectors 708–9
solving quadratic equations 234–7
substitution in 119–23

for vector product of vectors 719–20
Fourier coefficients 1216–17
Fourier integral representation 1238
Fourier series 973, 1215–25

half-range 1226–8
in solution of partial differential

equations 1229–30
waveform synthesis using 974

Fourier transform 1232–9
discrete (DFT) 1237

Fourier’s law of heat conduction 753
fractional indices 80–3
fractions 4, 20

algebraic 66, 106
addition 114–16
cancelling common factors 106–9
division 110–13
multiplication 110–13
reciprocals of 66–8
subtraction 114–16

equivalent 21–3
improper 20, 270–1

partial fractions of 278–80
inverted 31
mixed 27
operations on 25–32
partial 270

finding inverse Laplace transform
1113–14

of improper fractions 278–80
integration using 885–6
of proper fractions 271–8

percentages 47–9
proper 20, 270–1

partial fractions of 271–8
simplest form of 21–3
see also ratios

free variables 256, 617
free vectors 676
frequency 391–2

angular 387–8, 394–7
of sound wave 1236

frequency distributions 1135–7
functions 138

arguments of 143–4
average values of 842, 935–8
Bessel 973
complementary 1021–32
composition of 155–6
continuous 168–70
delta 207
dependent and independent variables

148, 149, 980–1
discontinuous 168–70
domains of 148–50

maximal 212
even 172–4, 1225
exponential 291, 293–8

power series expansions 490–2, 968
two-sided decaying 1235

Fourier integral representation 1238
Fourier series 1215–25
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Fourier transform 1232–9
graphs of 147–51
hyperbolic 173, 299–303, 837
inputs and outputs of 140–1, 142
inverse 161–3
limits of 169–70
linear 177–83
linear independence of 1024
logarithmic 314
Maclaurin series 967–70
many-to-one 159–61
mathematical modelling 138–40
modulus 201–2
odd 174–5, 1225
one-to-one 160–1
parametric representations of 165–7
periodic 171
points of inflexion 819–22
polynomial 192–6

Maclaurin 968–9
Taylor 972

probability density 1172–4
normal 1194–5

ramp 212
ranges of 148–50
rational 196–200
root-mean-square values of 938–40
as rules 140–2
signum 212
sinc 1233
stationary points 809–10

first-derivative test 810–16
of functions of two variables

1087–91
second-derivative test 816–18

Taylor series 971–2
transfer 68

poles of 248–9
trigonometrical 360–70

amplitude of 364–5
graphs of 360, 361, 362, 363–4
integration of 888–91
periodic properties 365, 366–70

of two variables 1050–2
contour plots of 1052–4
stationary points of 1087–91
three-dimensional graphs of

1055–8
unit impulse 207
unit step 202–6
see also Laplace transform; straight

lines

GG

gains, signal 319, 321–2
gases

composition of 53–4
compression of 50
expansion of 851

Index 1253

Gauss–Seidel method 650–3
Gaussian elimination 623–5
general solutions 

of differential equations 987,
1011–12, 1040–4

of partial differential equation 1077
geometric sequences 953–5
geometric series 955
gradients

of straight lines 179–81, 181–4,
187–8

of tangents 745–8, 755
graph paper 326–30
graphs 147–51

amplitude spectra 1234
areas bounded by curves 847–55
Bode plots 331
computer packages for 152–3
contour plots 1052–4
discontinuities 168, 203
of even functions 172–3
of exponential functions 293–5
of functions of two variables 1052–4,

1055–8
of linear functions 177–83
log–linear 323–4, 326–9, 330–1
log–log 324–6, 329–31
of logarithmic functions 314
of modulus functions 201–2
of odd functions 174–5
phase spectra 1234
of polynomial functions 193
of rational functions 197–9
solving inequalities 267–8
solving polynomial equations 249–50
solving quadratic equations 241
solving simultaneous equations

257–9
three-dimensional 1055–8
of trigonometrical functions 360, 361,

362, 363–4
of unit step functions 202–6
velocity–time 850–1

Greek alphabet 64
growth, exponential 294

HH

half-range cosine series 1227
half-range sine series 1227
hardness

Brinell 123, 124
Vickers 409–11

head, of liquid in tank 983, 1000
heat conduction, Fourier’s law of 753
heat equation 753, 1075–6

one-dimensional 1078–81
heat flow 

in insulated pipes 130–1
through a window 753–4

heat transfer 
by conduction 1078–81, 1084–5
during quenching 1000–1

heights of towers 426, 427–9
hertz (Hz) 391–2
higher derivatives 764–7
higher partial derivatives 1070–3
highest common factors 13–14
homogeneous coordinates 586–8
homogeneous differential equations

1021–3
Hooke’s law 186, 282, 1124
horizontal asymptotes 198, 199
hyperbolic functions 173, 299–303, 837
hyperbolic identities 301–3
hypotenuse 341

II

identities 68
hyperbolic 301–3
trigonometrical 372–6, 500–2,

888–90
identity matrices 525, 538, 563–4
imaginary axes 465–6
imaginary numbers 452, 454–6

see also complex numbers
impedance, complex 515–17
implicit differentiation 785–9
improper fractions 20, 270–1

partial fractions of 278–80
impulse functions 207
inconsistent equations 255
increments 68–9
indefinite integrals 829

finding exactly 857–8
tables of 830–3

independent events 1163–6
independent variables 148, 149, 980–1
indices 72–86

fractional 80–3
index notation 72–4
laws of 74–7, 291, 292
negative 79–80
polynomial expressions 77–8, 192,

193
powers and bases 85–6
scientific notation 83–4

inductance 513
inductors

complex impedance 515–17
phase relationships 513

inequalities
solving algebraically 264–5
solving using graphs 267–8
symbols 261–3

inertia, moments of 124, 923–6
parallel axis theorem 927
perpendicular axis theorem 927

infinite limits of integrals 845, 860
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infinite sequences 947–8
infinite series 949–51
infinity 60

sum to 950–1
inflexion, points of 819–22
inhomogeneous differential equations

1021
general solutions of 1040–4
particular integrals of 1034–40

initial conditions 1075
of differential equations 987

initial value problems 987
inputs to functions 140–1, 142
integers 3

see also positive integers
integral sign 829
integrals

definite
evaluating 840–3
finding exactly 858–60
with infinite limits 845, 860
and integration by substitution

877–8
as limit of a sum 898–9

indefinite 829
finding exactly 857–8
tables of 830–3

particular 1034–40
see also Laplace transform

integrands 829
integrating factors 1003, 1005–9
integration 826

areas bounded by curves 847–55
areas of surfaces of revolution 932–3
average values of functions 935–8
centres of mass

of collections of point masses
910–15

of laminae 915–22
computer packages 857–60, 864–5
constants of 829
definite integrals

evaluating 840–3
finding exactly 858–60
with infinite limits 845, 860
and integration by substitution

877–8
as limit of a sum 898–9

as differentiation in reverse 828–9
Fourier series 1215–25
indefinite integrals 829

finding exactly 857–8
tables of 830–3

lengths of curves 929–31
as limit of a sum 895, 897–901
moments of inertia 923–6
numerical methods

Simpson’s rule 863–5
trapezium rule 861–3

with partial fractions 885–6
by parts 867–71
by reduction formulae 873

1254 Index

root-mean-square values of functions
938–40

rules of 835–8
solving differential equations by

988–93
by substitution 874–83
tables of integrals 830–3
of trigonometrical functions 888–91
volumes of revolution 903–8

inter-arrival times 5
inter-breakdown times 5
Internet security 10
intersection 

of line and plane 733
of two planes 734–5

intervals 60
inverse functions 161–3
inverse Laplace transform 1107–14

completing the square 1111–12
using partial fractions 1113–14

inverse matrices 544, 563–8, 609–12
of 2 x 2 matrices 564–6
general case 566–8

inverse proportion 284–5
inverse trigonometrical ratios 349–50,

377
inverted fractions 31
inverted numbers 60–1
iterative techniques

Gauss–Seidel method 650–3
Jacobi’s iterative method 646–9

JJ

Jacobi’s iterative method 646–9
Joukowski aerofoil 487–8
Joukowski transformation 484–8

KK

kelvin, converting centigrade to 141
kinetic energy 120
Kirchhoff’s current law 224
Kirchhoff’s voltage law 655–60, 985

LL

laminae
centres of mass 915–22
moments of inertia 923–6

laminar flow 151
Laplace transform 1096–7

of derivatives 1116–17
first shift theorem 1127
inverse 1101, 1107–14

properties of 1102–4
second shift theorem 1127
solving differential equations

1118–25
tables of 1098–101

Laplace’s equation 1072–3
steady-state heat conduction and

1084–5
two dimensions 1076–7

law of conservation of mass 984
laws of distributivity 91
law of heat conduction (Fourier) 753
laws of indices 74–7, 291, 292
laws of logarithms 309–12
laws of probability 1156–8, 1163–6
LCR circuits 512, 516, 984–5
leading diagonals of square matrices

597
length of a curve 929–31
limit of a sum, integration as 895,

897–901
limits

of functions 169–70
of infinite sequences 947–8
of integrals 840

infinite 845, 860
linear differential equations 982–3
linear equations 218–26, 1077

solving 220–6
see also simultaneous equations

linear expressions 78, 243–4
linear factors 271–5
linear functions 177–83
linear inequalities 264–5
linear transforms 1102

Fourier 1232–9
see also Laplace transform

linearity
of differential equations 982–3
of Fourier transform 1238–9
of Laplace transform 1107–8

linearly independent functions 1024
lines see straight lines
liquids see fluids
local maxima 809
local minima 809
locus of a point 480–3
log–linear graphs 323–4, 326–9, 

330–1
log–log graphs 324–6, 329–30
logarithmic differentiation 795–7
logarithmic functions 314
logarithms 306–14

bases of 306–8
laws of 309–12
log–linear graphs 323–4, 326–9,

330–1
log–log graphs 324–6, 329–31
natural 307
signal gains 319, 321–2
solving equations involving 316–19

lossy and loss-less compression 1236
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lower limit of integral 840
lowest common denominator 114–16
lowest common multiples 14–16

MM

Maclaurin polynomials 968–9
Maclaurin series 967–70
magnitude

of complex numbers 467–8
of vectors 671, 675

main diagonals of square matrices 525
many-to-one functions 159–61
Maple software 70

complex numbers 461, 462
differential equations 1012, 1013,

1018
differentiation, higher derivatives

766–7
eigenvectors 641, 643
integration 858, 859, 860, 864
for matrix calculations 530–1, 540
partial fractions 280
plotting graphs of functions 152–3
prime numbers 11, 12

mass 672, 673
centres of

of collections of point masses
910–15

of plane lamina 915–22
law of conservation of 984
per unit area 916–18

mass–spring–damper systems 1123–4
mathematical modelling 138–40
mathematical notation 59–69
Matlab software 70

complex numbers 461, 462
differential equations 1011, 1012,

1013, 1014, 1018
differentiation, higher derivatives 767
eigenvectors 643
integration 858, 859, 860, 865
for matrix calculations 530–1, 540
partial fractions 280
plotting graphs of functions 153
prime numbers 12

matrices 523–4
addition 526–7
adjoint 566–8
augmented 615, 617–19

row-echelon form of 620–1, 617–19
determinants 544

of 2 x 2 matrices 544–7
of 3 x 3 matrices 550–2
of 4 x 4 matrices 553–4
Cramer’s rule 603–5
evaluating vector products 721–3
expanding along rows or columns

550–2

Index 1255

and minors of elements 548
properties of 555–9

diagonal dominance 653
eigenvalues 632–6
eigenvectors 637–43
electrical networks 655–60
elementary row operations 622–5
elements 523

cofactors 549
minors 548–9
place signs 549

identity 525, 538, 563–4
inverse 544, 563–8, 609–12
modal 645
multiplication of 534–40

by numbers 528–30
orthogonal 597
singular 546, 564
skew symmetric 597
solving simultaneous equations

Cramer’s rule 603–5
Gauss–Seidel method 650–3
Gaussian elimination 623–5
inverse matrix method 609–12
Jacobi’s iterative method 646–9

square 525, 538
subtraction 526–7
symmetric 597
transpose of 525–6, 527, 539
see also computer graphics and

matrices
matrix form of simultaneous equations

607–9
augmented matrices 615, 617–19

maximal domains of functions 212
maximum points see stationary points
maximum power transfer 815–16
mean 1133–4

of binomial random variables 1183
of frequency distributions 1135–7

mean values of functions 842, 935–8
mean-square values 939
median 1138–9
mesh currents 655–60
method of sections 346–7
minimum points see stationary points
minors of matrix elements 548–9
minutes (angles) 424–5
mixed fractions 27
modal matrices 645
mode 1139
modulus 61, 263

of complex numbers 467–9
of vectors 673 675, 682–3

in n dimensions 700–1
in three dimensions 697
in two dimensions 691–2

modulus functions 201–2
moments 910, 911–12

bending 194–6, 232–3, 837–8
of forces 722
of inertia 124, 923–6

parallel axis theorem 927
perpendicular axis theorem 927

MP3 technology 1237
multiplication 3–4, 65–6

of algebraic fractions 110–13
associativity of 4, 65–6

of matrices 535
commutativity of 4, 65
of complex numbers 458–9,

477–80
of fractions 28–30

of matrices 534–40
by numbers 528–30

of polynomial expressions 243–4
of vectors by scalars 682–3, 689

see also scalar product of vectors;
vector product of vectors

multiplication law of probability
1163–6

music technology 86, 1236–7
mutually exclusive events 1155–6
mutually perpendicular axes 695

NN

n-dimensional vectors 700–1
natural logarithms 307
negative indices 79–80
negative numbers 3

and inequalities 262
square roots of 452–4

negative vectors 676
Newton–Raphson method 801–4
Newton’s law of cooling 297–8
newtons (N) 435
nodes, in electrical circuits 224
non-commutativity

of matrix multiplication 535
of vector product of vectors 718

non-linear differential equations 982–3
non-standard normal distribution

1206–8
non-trivial solutions 628
normal distribution 1194–5

non-standard 1206–8
standard 1196–205
tables of probabilities 1198–205

normal probability density function
1194–5

normalised vectors 713
see also unit vectors

normals to curves 799, 805–6
norms of vector 700–1
not equals sign 68
notation 59–63

combination 1179–80
(delta) notation 68–9, 746–7
differentiation 748–9

higher derivatives 764–6
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factorial 61–3
functions 141
index 72–4
inequalities 261–3
integration 829
logarithms 307
modulus 61, 263
scientific 83–4
sigma 69, 946
symbols 60, 64–9
trigonometrical equations 377–8

number lines 59–60, 261
numbers

bases 85–6
binary 85–6
decimal 37–43, 85

decimal places 37, 40
rounding 40
significant figures 42–3

factorials 61–2
highest common factors 13–14
imaginary 452, 454–6
lowest common multiples 14–16
modulus of 61
negative 3

and inequalities 262
square roots of 452–4

notation 59–63
operations on 3–8
prime 10–16
reciprocals of 60–1
roots of 81–3
see also complex numbers; 

fractions
numerators 4, 20, 66

of rational functions 197
numerical integration 861
numerical methods 857, 1011, 977

Euler’s method 1014–17
Newton–Raphson method 801–4
Simpson’s rule 863–5
trapezium rule 861–3

Nyquist sampling theorem 1237

OO

octal numbers 87
odd functions 174–5, 1225
Ohm’s law 119, 138, 139, 515–16
one-to-many rules 158–9
one-to-one functions 159–60
open intervals 60
order of differential equations

981–2
order of operations 6–8
origins of graphs 147
orthogonal matrices 597
oscilloscope traces 389–90
outputs of functions 140–1

1256 Index

PP

parallel axis theorem 927
parallel lines 178, 180
parameters 165
parametric differentiation 791–3
parametric representations of functions

165–7
partial derivatives 1060, 1064, 1066,

1070–3
partial differential equations 1072–3,

1075–7
Fourier series in solution of 1229–30
solution of 1077–8

partial differentiation 1060
higher derivatives 1070–3
with product, quotient or chain rule

1067–8
with respect to x 1061–5
with respect to y 1065–6
stationary values of functions of two

variables 1088–9
partial fractions 270

finding inverse Laplace transform
1113–14

of improper fractions 278–80
integration using 885–6
of proper fractions 271–8

partial sums, sequences of 949–51
particular integrals of differential

equations 1034–40
particular solutions of differential

equations 1013–14
parts, integration by 867–71
Pascal’s triangle 961–2
percentage change 49
percentages 47–9
periodic expressions 357
periodic extension 1226
periodic functions 171
periodic square wave 206
periodic waveforms 1215–16

Fourier series 1215–25
see also engineering waves

periods
of functions 171
of waves 368–9, 388–90

permutations 63
perpendicular axis theorem 927
perpendicular components of forces

679–80
phase

in electrical circuits 512–13
of waves 393–4

phase spectra 1234
phasors 514–17
pistons 121–2
place signs of matrix elements 549
planes

angle between line and 735–6

complex 465–6
intersection of line and 733
intersection of two 734–5
vector equations of 731–2

plus or minus sign 60
points of contact of tangents 799–801
points of inflexion 819–22
Poisson distribution 1185–91
Poisson ratio 54–5
polar form of complex numbers 470–2,

477–80
poles

of rational functions 200
of systems 546
of transfer functions 248–9
polynomial equations 243, 246
solving
with complex numbers 504–10
graphical methods 249–50
when one solution is known 247–9
see also linear equations; quadratic

equations
polynomial expressions 77–8, 192, 193,

243
factorisation 101–4, 244–5
multiplication of 243–4
in rational functions 196–200

polynomial functions 192–6
Maclaurin 968–9
Taylor 972

position matrices 572
position vectors 572, 689–90, 695–6
positive displacement pumps 121–2,

128
positive integers 3

sum of cubes of first n 959
sum of first n 958
sum of squares of first n 958–9

postmultiplication of matrices 535
power, electrical

gain 321–2
loss during transmission 50
maximum transfer of 815–16
in resistors 283–4

power of signals 701
power series expansions 490–2, 968–70,

973
powers see indices
precedence rules 6–7
prefixes, SI 1248
premultiplication of matrices 535
pressure 673

changes in 1119–20
and fluid flow 284
in vessels 34

prime factorisation 10–16
prime numbers 10–12
probability

addition law of 1156–8
complementary events 1150
compound events 1148–9
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conditional 1159–62
experimental and theoretical 1146–7
independent events 1163–6
of k occurrences from n trials 1180–2
multiplication law of 1163–6
mutually exclusive events 1155–6
tables of 1198–205
tree diagrams 1151–3

probability density functions 1172–4
normal 1194–5

probability distributions 1169–71
binomial 1177–9, 1180–2, 1189–91
normal 1194–5
non-standard 1206–8
standard 1196–205
tables of probabilities 1198–205
Poisson 1185–91

product rule 773–5, 1067–8
products 3–4, 65
projectiles 893, 990–1
projections 353–4
proper fractions 20, 270–1

partial fractions of 271–8
proportionality 282–5

constants of 128, 151, 282, 283, 1124
pulley systems 611–12
pulse waves 205
pumps, positive displacement 121–2,

128
Pythagoras’s theorem 403–4

QQ

quadrants 352–3
quadratic equations 230–1

solving
by completing the square 238–40
with complex numbers 504–5
by factorisation 231–3
by formulae 234–7
graphical methods 241

quadratic expressions 78, 243–4
factorisation 101–4

quadratic factors 271, 276–8
quality control 23, 48–9, 50
quantisation 86
quenching, heat transfer during 1000–1
quotient rule 776–7, 1067–8
quotients 4, 66

RR

radians 338–40
ramp functions 212
ranges of functions 148–50
rates of change 743–8

Index 1257

see also differentiation
rational functions 196–200
ratios 51–5

Poisson 54–5
RC circuit 516–17
reactance 67–8, 212
real number lines 59–60
real parts of complex numbers 454–6
reciprocals

of algebraic fractions 66–8
and negative indices 79
of numbers 60–1
of trigonometrical ratios 348

rectified half sine waves 368–9
reduction formulae 873
reflection, in computer graphics 580–3
reliability 97
removing brackets 91–7
repeated linear factors 274–5
repeated roots 233, 235–6
resistance, electrical 283, 284, 612

equivalent 129–30
phase relationships 512–13

resistivity 283
resistors

complex impedance 515–17
equivalent resistance 1219–30
maximum and minimum values 50
Ohm’s law 119, 138, 139, 515–16
in parallel 127
phase relationships 512–13
power in 283–4
tolerance bands 130
voltage across 130, 119

resolution of forces 435–8, 679–80
on inclined plane 438–40

restitution, coefficient of 128–9, 131
resultant of forces 440–4, 678–9
revolution, surfaces of 932–3
revolution, volumes of 903–8
right-angled triangles 341, 403

Pythagoras’s theorem 403–4
solving 405–11

right-handed screw rule 715–16
root-mean-square values of functions

938–40
roots 81–3

complex 235–6
of complex numbers 510
distinct real 235–6
of equations 219, 231, 246
of negative numbers 452–4
repeated 233, 235–6
surd form 222, 236

rotation, in computer graphics 578–80
rounding 40
row-echelon form of augmented

matrices 620–1, 624–5
row vectors 687

SS

saddle points 1087–8
sawtooth pulses 205–6
sawtooth waves 185–6, 1215
scalar product of vectors 703–5

angle between two vectors 709–10
components of vectors 711–13
formulae for 708–9
properties of 706–7

scalars 671–3, 706–7
multiplication of vectors by 682–3,

689
scaling, in computer graphics 576–7
scientific notation 83–4
secant 348

hyperbolic 299–301
second-derivative test 816–18
second derivatives 764
second-order differential equations 981

complementary functions of
1021–32, 1045

general solutions of 1040–4
particular integrals of 1034–40

second partial derivatives 1070–3
second shift theorem

Fourier transform 1239
Laplace transform 1127

seconds (angles) 424–5
sections, method of 346–7
separation of variables method

995–1001
one dimensional heat equation

1078–81
wave equation 1081–4

sequences 943, 945
arithmetic 951–3
converging 947–8, 950
geometric 953–5
infinite 947–8
of partial sums 949–51

series 943, 946
arithmetic 952
first n positive integers

sum of 958
sum of cubes of 959
sum of squares of 958–9

Fourier 973, 1215–25
half-range 1226–8

geometric 955
infinite 949–51
Maclaurin 967–70
power series expansions 490–2,

968–70
Taylor 971–2

shear forces in beams 182–3
shearing, in computer graphics 584–5
SI units and prefixes 1248
sigma notation 69, 946
signal gains 319, 321–2
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signal modulation 375–6
signal ratio 321–2
significant figures 42–3
signum functions 212
simple harmonic motion 999, 1031–2
simply supported beams 182–3
Simpson’s rule 863–5
simultaneous equations 188, 252

with infinite number of solutions
255–6, 617, 619

matrix form of 607–9
augmented matrices 615, 617–19

with no solution 255, 617–18
solving

Cramer’s rule 603–5
elimination methods 252–7
Gauss–Seidel method 650–3
Gaussian elimination 623–5
graphical methods 257–9
inverse matrix method 609–12
Jacobi’s iterative method 646–9

trivial and non-trivial solutions
628–31

types of solution 255–6, 617–19
sinc function 1233
sine

definitions 341, 354–6
hyperbolic 299–303, 837
inverse 349–50, 377
power series expansion 490, 491,

492, 969
properties 342–7
see also trigonometry

sine rule 413–18
sine series, half-range 1227
sine waves 360, 389–90

rectified half 368–9
see also engineering waves

singular matrices 546, 564
skew symmetric matrices 597
small-angle approximations 969–70
software see Maple software; Matlap

software; symbolic algebra
packages

solids of revolution 903–8
volumes generated by rotating areas

about y axis 906–8
solutions 68

of partial differential equation 1077–8
sound wave, frequency of 1236
surd form 222, 236
spectral matrices 645
speed 672
spheres, volumes of 145
spring constant 641
spring stiffness 225, 1124
springs

extension of 49, 189, 213, 282–3
mass–spring–damper systems 

1123–4
tension in 186

1258 Index

square, completing the 238–40,
1113–14

square matrices 525, 538
square roots 81–3

of negative numbers 452–4
squares, difference of two 103–4
stability of systems 493–4, 546
standard deviation 1141–4
standard normal distribution 1196–205
state matrices 546
stationary points 809–10

first-derivative test 810–16
of functions of two variables 1087–91
nature of 1090–1
second-derivative test 816–18

statistics
continuous data 1131–2
discrete data 1131
mean 1133–4
of frequency distributions 1135–7
median 1138–9
mode 1139
standard deviation 1141–4
variance 1141–4

stiffness coefficient 182
straight lines 177

angle between plane and 735–6
distance between two points 189–90
equations of 187–9
gradients of 179–81, 184–6, 187–8
intersection of plane and 733
linear functions 177–83
transformations of 575–6
vector equations of 726–30

strain 39, 54–5
streamfunction 1054
stroke, piston 121
subscripts 64
substitution

back 618
in formulae 119–23
integration by 874–83

subtraction 3, 65
of algebraic fractions 114–16
of complex numbers 456–7
of fractions 25–6
of like terms 88–9
of logarithms 309–10
of matrices 526–7
of vectors 680–1, 696

sums 3, 65
of infinite series 949–51
sequences of partial sums 949–51
sigma notation 69, 946
to infinity of geometric series 955
see also addition; series

superposition 1077
superscripts 64
surd form 222, 236
surfaces of revolution, areas of 932–3
surveying 424–32

angles of elevation and depression
425–9

bearings 429–32
Symbolic Math Toolbox 1011, 1012
symbols 60, 64–9
symmetric matrices 597
system poles 546
systems of linear equations see

simultaneous equations

TT

tail of a vector 674
taking logs 316–19
tangent (trigonometry)

definitions 342, 354–6
hyperbolic 299–301
inverse 349–50, 377
properties 342–7
see also trigonometry

tangents
equations of 799–801
gradients of 745–8, 755
Newton–Raphson method 801–4

Taylor polynomials 972
Taylor series 971–2
temperature 673

converting centigrade to kelvin 141
of cooling liquids 22–3, 34
distribution in metal plates 1053,

1058
expansion of metal with 50
of fluid in pipe 1077–8
gradients as derivatives 751–2
heat flow in insulated pipes 130–1
heat transfer during quenching

1000–1
of metal bars 23
Newton’s law of cooling 297–8

tensile strength 39
tension

in cables 345–6
in springs 186

theoretical probability 1146–7
theoretical pump delivery 121–2, 128
thermal conductivity 753
third derivatives 764
three-dimensional graphs 1055–8
three-dimensional vectors 695–9
thrust 225
thyristors 937–8
time displacement of waves 392–4
time-varying waves 386
towers, heights of 426, 427–9
transfer functions 68

poles of 248–9
transformation matrices 575
translation, in computer graphics 586–8
transpose, of a matrix 525–6, 527, 539
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transposition
of formulae 125–31

transverse direction 54–5
trapezium rule 861–3
tree diagrams 1151–3
trial in binomial distribution 1177

probability of k occurrences from n
trials 1180–2

triangle law 677–8
triangles

and angles of elevation and
depression 425–9

areas of 722–3
right-angled 341, 403

Pythagoras’s theorem 403–4
solving 405–11

solving using cosine rule 419–23
solving using sine rule 413–18

trigonometrical equations 377–84
trigonometrical functions 360–70

amplitude of 364–5
graphs of 360, 361, 362, 363–4
integration of 888–91
periodic properties 365, 366–70

trigonometrical identities 372–6, 500–2,
888–90

trigonometrical ratios
definitions 341–2, 348, 354–6
in four quadrants 352–8
inverse 349–50, 377
power series expansions 490, 491,

492, 969, 970
properties 342–7
small-angle approximations 969–70

trigonometry
cosine rule 419–23
resolution of forces 435–8
resolution on inclined plane 438–40
resultant of forces 440–4
sine rule 413–18
solving right-angled triangles 405–11
surveying

angles of elevation and depression
425–9

bearings 429–32
trivial solution 628–31, 1080
trusses 346–7
turning effect see moments

UU

uniform rate of temperature change 752
unit impulse functions 207
unit step functions 202–6
unit vectors 682–3, 685–7, 695, 713

Index 1259

units, SI 1248
unstable systems 494, 547
upper limit of integral 840

VV

values of functions 141
average 842, 935–8

variables 64, 138
binomial random 1177, 1183
continuous 1131–2
dependent and independent 148, 149,

980–1
discrete 1131
free 256, 617
separation of variables method

995–1001
variance 1141–4

of binomial random variables 1183
vector equations of lines 726–30
vector equations of planes 731–2
vector norm 700–1
vector product of vectors 703, 716–18

evaluating with determinants 721–3
formulae for 719–20
properties of 718–19

vector sums 679
vectors 671–3

addition of 677–80, 688–9, 696
cartesian form 685

direction ratios and cosines 693–4,
698–9

equations of lines 729–30
equations of planes 731–2
in n dimensions 700–1
in three dimensions 695–9
in two dimensions 685–94

components of 687
equal 675–6
equations of lines 726–30
equations of planes 731–2
heads and tails of 674
mathematical description of 673–6
modulus of 673, 675, 682–3

in n dimensions 700–1
in three dimensions 697
in two dimensions 691–2

multiplication by scalars 682–3, 689
negative 676 
position 572, 689–90, 695–6
resolution of forces 679–80
resultant of forces 678–9
right-handed screw rule 715–16
scalar product of 703–5

angle between two vectors 709–10

components of vectors 711–13
formulae for 708–9
properties of 706–7

subtraction of 680–1, 696
unit 682–3, 685–7, 695, 713
vector product of 703, 716–18

evaluating with determinants
721–3

formulae for 719–20
properties of 718–19

velocity 138–9, 143, 672, 673
velocity–time graphs 850–1
vertical asymptotes 198, 199
vertical intercepts 178–9, 180
vibrating circular membrane 973
vibration 284–5, 1123–4

eigenvalues and eigenvectors and
641–3

Vickers hardness 409–11
voltage 160–1, 284, 604–5

across capacitors 744
across diodes 318–19
across resistors 130, 119
complex impedance 515–17
gain 319, 322
Kirchhoff’s voltage law 656–60, 985
Ohm’s law 119, 138, 139, 515–16
phase relationships 512–13
in transmission lines 303

volumes
of cones 213
of cylinders 121, 1052
generated by rotating areas about y

axis 906–8
of revolution 903–8
of spheres 145

volumetric efficiency of pumps 128

WW

wave equation 1076, 1081–4
waveform synthesis using Fourier series

974
waves

cosine 375–6, 390
pulse 205
sawtooth 185–6, 1215
sine 360, 389–90

rectified half 368–9
see also engineering waves; periodic

waveforms
weight 672
work 673
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